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Abstract. Object detection is a pivotal aspect of computer vision, es-
sential for diverse recognition tasks. This study centers on exploring deep
learning methodologies for object detection, specifically targeting the
identification of URLs in images captured by mobile phones. We con-
duct a comparative analysis of three models from the YOLO family –
YOLOv3, YOLOv4, and YOLOv5 – recognized for their efficacy in ob-
ject detection. Our research addresses the unique challenge of detecting
URLs in images, particularly considering the limited availability of URL-
labeled dataset. Through rigorous experimentation and evaluation, we
demonstrate the generalization capabilities of YOLOv3, YOLOv4, and
YOLOv5, as measured by average precision scores. Furthermore, we high-
light the resilience of the YOLOv4 model against various image-related
challenges. Our findings contribute significantly to the advancement of
computer vision, specifically in the domain of object detection for real-
world applications. By evaluating the performance of cutting-edge deep
learning models, we provide valuable insights into their effectiveness for
URL detection, thereby enriching our understanding of their practical
utility. This research serves as a foundation for future investigations
aimed at leveraging deep learning techniques to enhance object detection
accuracy across diverse contexts.

Keywords: Object Detection · Deep Learning · Convolutional Neural
Networks (CNN) · YOLO · URL Detection · Small Sample.
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1 Introduction

Object detection plays a central role in any recognition system, encompassing
the task of identifying an object’s class and estimating its spatial coordinates by
delineating a bounding frame around the object. Recent advancements in deep
learning-based object detection have delivered remarkable outcomes. However,
the real-world implementation of object detection faces a host of challenges when
confronted with actual images, including factors like noise, occlusion, lighting
fluctuations, rotations, and others. These elements have a pronounced impact
on the precision of object detection and demand thorough scrutiny during the
detection process.

Conversely, the web has consistently served as a medium that allows the
transfer of data in a simple and fast way. It counts as a necessary tool in modern
life, offering a multitude of prospects for both individuals and large corporations.

World Wide Web, often referred to as the Web or WWW, encompasses all
publicly accessible websites and pages that users can access on their local devices
via the Internet. These pages and documents are interconnected through hyper-
text links, which users can click to access information. This information can
take various forms, including text, images, audio, and video. To visit a website,
a specific page on a site, or more precisely, an ”online resource” (such as content
or an online service), users can enter its address, known as a Uniform Resource
Locator (URL), into the browser’s address bar. The URL is indispensable for
pinpointing a particular page within the vast sea of billions of web pages. Each
web resource possesses a unique URL, which serves as the web address displayed
in your browser.

To be more efficient and remove the step of entering the URL, especially
with increasing processing capabilities such as the availability of smartphones
and visual input devices such as cameras built into smartphones, this process
can be divided into three steps: image acquisition, URL localization, and URL
recognition. In this paper, we will mainly focus on the second step, which plays
a crucial role in the localization of URLs in a captured image containing text.
Object detection methods are well suited to accomplish this process. The detec-
tion of a URL can be useful in several fields, particularly in the field of tourism.
The tourist can take a picture of a URL and view website information without
having to type on their keyboard. Businesses, store owners, and their customers
can advertise and post information by leaving URLs to the services they offer on
their ad slots, and users can retrieve the URL(s) by clicking a button. The model
can also be used to capture URL references while listening to a presentation at a
conference. Given the capability of smartphone cameras lately, taking a picture
of a URL in transit should result in a ”good quality” image that can be passed
as input to a model, and the URL(s) of interest will be recovered.

The primary objective of this study is to evaluate the efficacy of three es-
tablished object detection models, namely YOLOv3, YOLOv4, and YOLOv5, in
the specific context of detecting URLs within images. This task presents several
challenges due to the diverse conditions under which the images are captured,
including variations in lighting, orientation, and the presence of noise.
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Our motivation to employ YOLO models for URL detection stems from their
capability to execute real-time object detection directly from images, eliminating
the need for extensive preprocessing or feature engineering. Unlike conventional
methods reliant on handcrafted features and post-processing techniques, YOLO
models offer a more streamlined and efficient approach. By evaluating the per-
formance of YOLO models in detecting URLs across diverse conditions, our goal
is to offer valuable insights into their efficacy and potential real-world applica-
tions. Furthermore, we aim to discern any distinctive advantages these models
may possess over existing methods for URL detection.

Through this investigation, we endeavor to advance the comprehension of
object detection methodologies and their practical relevance in addressing chal-
lenges associated with URL detection in images.

The subsequent sections of the manuscript are designed as follows: Section
2 provides a comprehensive review of the related work in object detection us-
ing YOLO models, this section aims to establish the context and significance of
our research within the broader landscape of computer vision. Following this,
Section 3 offers a concise overview of the key concepts underpinning this paper,
highlighting the distinctive attributes of the chosen models, which motivated
our selection. Section 4 outlines the evaluation process we employed, detailing
the dataset, metrics, and experimental setup. Section 5 is dedicated to the pre-
sentation of experimental results and ensuing discussions, where we analyze the
performance of the YOLO models in URL detection tasks. Finally, in Section 6,
the paper draws its conclusions.

2 Literature review

The YOLO network has been widely utilized across various domains, encompass-
ing tasks such as detecting malicious URLs [1], identifying small ships in optical
images [2], analyzing smoking behavior in images [3], and recognizing vehicle
targets [4]. These applications underscore the versatility and effectiveness of the
YOLO algorithm in object detection tasks.

Advancements in object detection have been driven by models like YOLOv3,
YOLOv4, and YOLOv5, each tailored to address specific challenges encountered
in real-world scenarios. YOLOv5 introduces the DK YOLOv5 model, optimized
for low-light conditions and demonstrating superior accuracy compared to other
models [5]. Additionally, YOLOv5 has been pivotal in creating real-time detec-
tors resilient to lighting and rotation variations, as evidenced in applications
like vehicle wheel detection [6]. These models have significantly propelled ob-
ject detection technology, finding applications ranging from facial recognition
to autonomous vehicles [6]. Moreover, advanced techniques have been proposed,
such as an enhanced YOLOv3 method for small object detection, incorporating
modules like DCM, CBAM, and multi-level fusion to enhance feature expression
and accuracy [7].

Researchers have also explored practical implications of YOLO-based mod-
els. For instance, a website developed using the YOLOv3 algorithm assists visu-
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ally impaired individuals in real-time object recognition and auditory guidance
[8]. Additionally, studies on the scalability of on-device object detection using
YOLOv4, CNNs, and TensorFlow Lite have addressed challenges related to lim-
ited computational resources and real-time performance [9]. Techniques such as
model compression, quantization, and hardware accelerators have been evaluated
to optimize efficiency and effectiveness, laying the foundation for more robust
object detection systems. These advancements underscore the versatility and ef-
fectiveness of YOLO-based models in overcoming diverse challenges encountered
in object detection scenarios.

Leveraging the capabilities of the YOLO network, tailored approaches can
be developed to accurately detect URLs within photos, harnessing the algo-
rithm’s demonstrated high accuracy and recall rates across various object detec-
tion tasks. This objective forms the central focus of the present study.

3 Backgrounds

Prior to delving into the process and the diverse techniques employed in object
detection, it is essential to establish a precise comprehension of object detec-
tion itself. Frequently, this term is used interchangeably with techniques like
image classification, object recognition, segmentation, and more. Nonetheless, it
is imperative to acknowledge that many of the techniques mentioned are dis-
tinct tasks typically encompassed within the broader realm of object detection.
Treating them as synonyms is inaccurate, as each corresponds to a task of equal
importance. Thus, we can distinguish these computer vision tasks [10]:

Image classification is about predicting the class of an element in an image,
while object localization is about locating the presence of objects in an image
and indicating their location using a bounding box (see Figure 1a), and object
detection is about locating the presence of objects with a bounding box and
the types or classes of objects located in an image. Figure 1b clearly shows the
result of an object detection process in a road scene.

Another extension of this division of computer vision tasks is semantic im-
age segmentation, where instances of recognized objects are indicated by high-
lighting specific pixels of the object. This technique gives a precise location (at
the pixel level) of an object and the pixels found. The pixels produced can also
be called a mask (see Figure 1c). Combining semantic segmentation with object
detection leads to instance segmentation, which first detects object instances
and then segments each into detected boxes (in this case called regions of inter-
est). In other words, each object in the image gets its own unique mask, even if
there are other objects with the same class (see Figure 1d).

In this paper, we will focus on object detection, where it is widely accepted
that progress in this field has generally crossed two periods: ”the traditional
object detection period (before 2014)” and ”the period of deep learning-based
detection (after 2014)” [11].

During the traditional object detection period (before 2014), object detec-
tion predominantly relied on classical machine learning techniques. Among the
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Fig. 1: The different computer vision tasks.

notable methods that emerged during this period, three significant approaches
are worthy of mention. These include the Viola-Jones detector, originally de-
veloped in 2001 by Paul Viola and Michael Jones [12] for real-time human face
detection, and it has demonstrated its utility in diverse applications. The His-
togram of Oriented Gradients (HOG), introduced in 2005 by N. Dalal and B.
Triggs [13], represents an enhancement over SIFT descriptors, shape contexts,
and contour orientation histograms. HOG provides a robust, scale-invariant so-
lution. Additionally, there is the Deformable Partial Model (DPM) [14], initially
proposed by P. Felzenszwalb in 2008 as an extension of the HOG detector. DPM
introduced a novel strategy involving learning the components and their overall
structure.

Despite the success of traditional approaches, the effort required to create
effective and efficient detection models remains significant. Therefore, they have
been completely replaced by methods based on deep neural networks, resulting
in greater accuracy and generalization [11]. In the era of deep learning, object
detection is grouped into two classes: ”two-step detection” and ”one-step de-
tection”. Typically, an object detector solves two successive tasks: finding an
arbitrary number of objects (perhaps even zero) and classifying each object and
estimating its size using a bounding box. Methods that combine both tasks in
one step are called single-step detectors.
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One-stage detectors skip the region proposal step, which is generally part
of two-stage object detection like Faster-RCNN and Mask-Mask-RCNN, and
perform detection directly on a dense sampling of locations. They generally
consider all positions in the image as potential objects and try to classify each
region of interest as a background or target object.

Within the realm of single-step object detection algorithms, a noteworthy
mention goes to the YOLO (You Only Look Once) family of algorithms [15],
which serves as the central focus of this investigation. This approach employs a
single, fully trained neural network that receives an image as input and directly
generates predictions for bounding boxes and their associated class labels for an
entire image in one pass. This end-to-end optimization, akin to image classifi-
cation, contributes to its remarkable speed. The base YOLO model achieves a
prediction rate of 45 FPS (Frames Per Second), as benchmarked on a Titan X
GPU [15].

Another noteworthy discovery presented by Redmon et al. [15] highlighted
the broad applicability of YOLO to both artwork and natural images sourced
from the internet. Additionally, YOLO demonstrated superior performance com-
pared to detection techniques such as the Deformable Parts Model (DPM) and
Region-Based Convolutional Neural Networks (RCNN), surpassing them by a
significant margin.

In the subsequent sections, we provide a concise overview of the three models
under consideration.

3.1 YOLOv3

YOLOv3 [16] is primarily comprised of two key components: a feature extractor
and a detector. The initial step involves passing the image through the feature
extractor known as Darknet-53. Darknet-53 is responsible for processing the
image and generating feature maps at various scales. These feature maps at
each scale are subsequently directed into distinct branches of the detector. The
detector’s primary function is to process these multiple feature maps at diverse
scales, culminating in the creation of output grids that contain objectivity scores
and bounding boxes. The complete architecture of YOLOv3 is illustrated in
Figure 2.

Darknet-53 integrates both residual blocks and Feature Pyramid Networks
(FPNs), as illustrated in Figure 3. Serving as a feature extractor, Darknet-53
accepts single-scale images of arbitrary dimensions as input and yields appro-
priately scaled multi-level feature maps. This feature design enables exceptional
performance across a broad range of input resolutions.

3.2 YOLOv4

Developed in 2020 by Alexei Bochkovsky, the YOLOv4 [18] architecture features
CSPDarknet53 as its backbone, which builds upon the foundation of DarkNet-53.
It incorporates a CSPNet (Cross Stage Partial Network) strategy, as referenced
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Fig. 2: YOLOv3 Architecture [17].

Fig. 3: Feature Pyramid Network (FPN)[17].

in [19], to partition the base layer’s feature map into two segments and subse-
quently reunite them through a multistep hierarchy. This division and reunifi-
cation approach facilitates more degraded flow within the network. Following
the backbone, YOLOv4 adopts PANet (Path Aggregation Network), as cited in
[20], as a parameter aggregation method from various levels of the backbone for
distinct detector levels, deviating from the FPN approach employed in YOLOv3.

Furthermore, an SPP block, as referenced in [21], is introduced for the notable
expansion of the receptive field. This block effectively isolates crucial contextual
features while maintaining minimal impact on network operational speed. Fi-
nally, YOLOv3 is employed as the network’s head, tasked with extracting perti-
nent features. Figure 4 provides a clear structure of the YOLOv4 architecture.

3.3 YOLOv5

Developed by Ultralytics in 2020 [22], this development marked a substantial
enhancement in facilitating real-time object detection. The shift from Darknet
to PyTorch as a framework played a pivotal role in this improvement. Darknet,
known for its complexity in configuration and limited production readiness, was
surpassed by PyTorch, leading to significant reductions in both training and
prediction times.
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Fig. 4: YOLOv4 Architecture [18].

The model’s architecture bears similarities to YOLOv4, incorporating CSP-
Darknet53 as the backbone, SPP and PANet for the neck, and employing YOLOv3
as the head, as illustrated in Figure 5.

Fig. 5: YOLOv5 Architecture [23].

The reduction in model size is a standout feature of the fifth version of YOLO
(YOLO-v5). Notably, the smallest YOLO-v5 model is 27MB, a substantial de-
crease from the 244MB size of YOLO-v4 on Darknet. YOLO-v5 also asserts
superior accuracy and a higher frames-per-second performance compared to its
predecessors.
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4 Methodology Steps Description

This section offers an in-depth clarification of the evaluation methodology em-
ployed in this study. The research involves a comparative analysis of three deep
models within the YOLO family: YOLOv3, YOLOv4, and YOLOv5. These mod-
els are single-stage detectors recognized for their fast, high-accuracy detection
capabilities and are ideally suited for deployment on low-end systems, such as em-
bedded platforms. The overall process of evaluation includes three main stages,
as shown in Figure 6.

Fig. 6: Flowchart of the evaluation method.

Within this section, we outline the primary stage involving the creation and
preparation of the training dataset. Subsequently, we delve into the training
process for the three selected models. The section culminates with a series of
tests conducted on images presenting various challenges, aimed at assessing the
models’ generalization aptitude across distinct usage scenarios featuring diverse
content.

4.1 Creating and Preparing the Training and Testing Datasets

The chosen object detection algorithms are rooted in deep learning, and their
intricate architecture necessitates training on specific datasets to attain the de-
sired objectives. The dataset plays a pivotal role in influencing the models’ per-
formance; thus, it is imperative to have a robust dataset in order to achieve
optimal performance.

In the context of this research, our focus lies on the application of various
models for the detection of URLs. A challenge surfaced during the preliminary
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phase of our study, as no standardized database was readily available for con-
ducting a comprehensive evaluation and comparison of these models. In response,
we undertook the task of creating our own dataset, comprising a total of 160
images, all of which feature URLs.

The URL starts with three consecutive letters ’w’ and a dot, followed by
a label. The label is a series of English letters from a to z (not case-sensitive)
and can also contain digits from 0 to 9. Hyphens can be added, but not at the
beginning or at the end, and adding more than one consecutively is not allowed.
The label length is between 3 and 63 characters maximum. In the end, after a
point, an extension is added. The most used extensions are ”.com”, ”.net” and
”.org”. This part can be called the domain name.The URL can start with a
protocol such as http://, but modern web clients like browsers automatically
add the protocol before the URL if it doesn’t contain one. The URL can also
contain, after the extension name, more data, such as the filename /index.html
or subdirectories like /dir1/dir2 (see Figure 7).

Fig. 7: URL structure.

For our image dataset, we created random tag names according to the pre-
viously listed conventions with the defined extension added at the end, which
is:.com, .net, .org, .fr, .dz, .ca, .uk. These extensions are widely spread,
especially in our region. We added a few URLs with additional data at the end,
but for the majority of images, we focused heavily on the domain name (label
and extension).

Object detection techniques exclusively process pixel-level data, which im-
plies that they perceive distinct variations between the letter ’A’ in one font
style and the same letter ’A’ in a different font style. Moreover, there can be
substantial disparities between a handwritten letter and its printed equivalent,
despite both conveying the same semantic meaning through different visual rep-
resentations (see Figure 8). So, as a starting point for creating the dataset, the
printed URLs are written using the popular Arial font. and for color, black is
chosen.

The majority of global printing is performed on A4 paper, and thus, our
dataset will exclusively feature sample URLs that have been printed on A4
paper. These URLs will be juxtaposed with randomly generated text written
in various languages, encompassing Latin, Arabic, Chinese, Russian, and Indian
scripts.

After the generation of numerous simulated images, the next step consists
of a manual labeling process. During this phase, each image’s linked URL box
is defined and manually set. Subsequently, these annotations are stored using

.com
.net
.org
http://
/index.html
/dir1/dir2
.com
.net
.org
.fr
.dz
.ca
.uk
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Fig. 8: The letter ’A’ written by different fonts.

the YOLO image annotation format, wherein each image corresponds to an
individual text annotation file, denoted by the same name as the image itself.
Each line within the annotation file serves to define a ground-truth object present
within the image, represented like this:

” < objectclass >< x >< y >< width >< height > ”

This dataset format is compatible exclusively with Darknet-based versions of
YOLO, namely YOLOv3 and YOLOv4, and is not compatible with YOLOv5. To
accommodate YOLOv5, we adopted the Roboflow web platform, which serves as
a comprehensive solution for hosting, annotating, and converting datasets across
diverse formats.

4.2 Model training

The models are trained on 80 % (127 images) of all the data (160 images). The
training is carried out without data augmentation in a Google Colab environ-
ment. The training parameters are:

– YOLOv3 utilizes input images set to dimensions of 416 × 416 during its
30-epoch training, spanning a total duration of 7 hours to achieve optimal
weights.

– YOLOv4, on the other hand, configures input images at dimensions of 608×
608 throughout its 30-epoch training, resulting in a total training duration
of 7 hours to obtain the best weights.

– In the case of YOLOv5, the medium-sized model is selected, achieving a
more effective balance between precision and speed. The input image di-
mensions are configured at 640× 640 over the course of 30 epochs. Notably,
in contrast to its predecessors, this model demonstrated exceptional speed by
completing the training process in just 15 minutes, ensuring optimal weights.
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Originally, YOLOv3 and YOLOv4 were implemented using the Darknet
framework, a choice consistent with the historical development of YOLO ver-
sions. Darknet offers a lightweight and efficient implementation, making it well-
suited for real-time object detection. This framework has been integral to earlier
iterations of YOLO and has demonstrated effectiveness in various applications.

In contrast, YOLOv5 has undergone a shift in its implementation, now uti-
lizing PyTorch, a widely adopted deep learning framework. PyTorch is renowned
for its user-friendly nature, providing a seamless environment for research exper-
imentation and development. The decision to transition to PyTorch for YOLOv5
was influenced by its flexibility, extensive community support, and robust capa-
bilities in the realm of deep learning research.

Moreover, to mitigate overfitting concerns, we employed built-in regulariza-
tion techniques such as L1 weight decay, incorporated transfer learning by uti-
lizing pre-trained models on larger datasets, and implemented cross-validation.

Specifically, we employed k-fold cross-validation, where the dataset is par-
titioned into k (k=3) subsets, or folds, of equal size. The model is trained k
times, each time using a different combination of k-1 folds for training and the
remaining fold for validation. This process allows for a more robust evaluation
of the model’s performance, as it ensures that every data point is used for both
training and validation across different iterations.

By averaging the performance metrics obtained from each fold, we obtain
a more reliable estimate of the model’s generalization ability, thereby reducing
the risk of overfitting to the training data. This approach enables us to assess
the stability and consistency of our models across different subsets of the data,
providing valuable insights into their performance under varying conditions.

In all cases, official pre-trained weights are chosen to apply transfer learning.
The final weights of the models are uploaded to the local machine to be used in
the evaluation phase.

5 Model evaluation, results and discussion

The evaluation is conducted through a two-part process. In the initial stage, we
assess the models’ capacity for generalization in URL detection by considering
their overall performance, which involves the utilization of the entire test dataset.
In the subsequent stage, we subject the three models to testing under various
conditions commonly encountered in photos taken with mobile phones, thereby
evaluating their stability.

In the field of object detection, the evaluation of model performance relies
on several crucial metrics that provide a comprehensive assessment of a model’s
object detection capabilities. Hereafter, we define the main metrics for object
detection:

The Intersection over Union (IoU), also known as the Jaccard Index, quanti-
fies the similarity between predicted bounding boxes and actual bounding boxes.
Formally, IoU equals the intersection between the real and predicted bounding
boxes divided by their union. Figure 9a clearly illustrates this concept of IoU.



YOLO Network-based URL Detection in Varied Conditions... 45

IoU ranges from 0 to 1; the closer the actual and predicted bounding boxes, the
closer the IoU measure is to 1 (see Figure 9b).

(a) Intersection over Union (IoU). (b) Examples of the IoU metric.

Fig. 9: Intersection over Union (IoU) metric.

Precision and recall. Precision assesses the proportion of correct predictions
among all positive predictions, while recall measures the proportion of true pos-
itives identified among all actual objects.

Further, the precision-recall curve illustrates the trade-off between precision
and recall for different confidence thresholds, providing an overall view of the
model’s performance across a range of confidence thresholds.

Another way to compare the performance of object detectors is by calculating
the Average Precision (AP), a numerical measure corresponding to the area
under the Precision-Recall curve. In practical terms, the AP serves as a metric
that combines precision and recall, providing a summary of the Precision-Recall
curve by averaging precision values across the recall range from 0 to 1. The
computation of AP follows the formula:

AP = Σn(Rn −Rn−1)× Pn (1)

Where:

– (Rn) is the recall at position n in the sorted list of proposals
– (Pn) is the corresponding precision at (Rn).

The formula involves the summation over distinct recall levels (Rn) in the
sorted list of proposals. For each recall level, the corresponding precision (Pn)
is multiplied by the change in recall (Rn −Rn−1), and the results are summed.
This formula captures the average precision across various recall levels and is
commonly employed in assessing the performance of object detection models.

5.1 Generalization ability evaluation

The evaluation involves a subset of 20% of the complete dataset, comprising 33
images. We have selected an IoU threshold of 0.5 for this assessment. Results
are depicted in Figure 10.
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(a) YOLOV3 (b) YOLOV4

(c) YOLOV5

Fig. 10: Precision-Recall curve.

In the evaluation of our object detection models, distinct performance charac-
teristics emerge. YOLOv3, for instance, achieved an average accuracy of 70.53%.
Notably, precision begins to decline once recall surpasses 75%.

Conversely, YOLOv4 demonstrates a notably higher average accuracy of
90.91%, with a subsequent drop in precision observed after reaching a recall
rate of 98%. As for YOLOv5, it achieves an average accuracy of 88.63%, with
precision exhibiting a decrease once recall exceeds 91%.

Despite the limited dataset size, the above observations underscore the model’s
ability to generalize effectively.

5.2 Evaluation in different conditions

In this section, we assess the model’s performance using images that present
challenges not encountered in the training dataset. These challenges include:

– Distinct typestyles, such as Algerian, Bradley Hand ITC, and Jokerman.
– Different background colors and character colors.
– Rotation of images of 90° and 180°.
– URLs prefixed with the https:// protocol tag.
– Handwritten URL characters.
– Images with Gaussian Noise.

https://


YOLO Network-based URL Detection in Varied Conditions... 47

The table below showcases the models’ performance as measured by the
average precision (AP) for each difficulty category.

Table 1: Average Precision (AP) of YOLOv3, YOLOv4, and YOLOv5 for dif-
ferent difficulties

Model
Difficulty YOLOv3 YOLOv4 YOLOv5

Colors 31.17% 54.55% 27.27%
Font 72.73% 84.29% 88.07%
HTTP Protocol 12.12% 28.9% 13.64%
Handwritten characters 0.0% 0.0% 0.0%
Rotation (180°) 27.27% 18.18% 18.18%
Rotation (90°) 0.0% 0.0% 0.0%
Gaussian noise 36.36% 37.36% 83.98%

From results presented in Table 1, we can draw the following conclusions:

Testing with distinct typestyles: This challenge had a relatively minor
impact on the models’ performance, as all three models demonstrated closely
aligned average accuracies. YOLOv3 yielded the lowest average accuracy of
72.7%, while YOLOv5 achieved the highest average accuracy of 88.07%, and
YOLOv4 84.2%. Furthermore, Figures 11, 12, and 13 provide a comprehensive
representation of URLs successfully identified within text samples rendered in
three different fonts.

Fig. 11: Different character polices (YOLOV3).
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Fig. 12: Different character polices (YOLOV4).

Fig. 13: Different character polices (YOLOV5).

Testing with different color polices and backgrounds: This challenge
posed a significant impact on the models’ performance. YOLOv3, for instance,
exhibited the inability to detect URLs against a colored background, yet it
demonstrated success in detecting URLs with colored characters, achieving an
average accuracy of 31.71%. In contrast, YOLOv4 emerged as the top-performing
model in this context, attaining an average accuracy of 54.44%. YOLOv4 man-
aged to successfully detect all URLs with colored characters and a majority of
URLs against colored backgrounds. Conversely, YOLOv5 displayed the weakest
performance with an average accuracy of 27.27%, struggling to detect URLs with
colored objects, as well as those against colored backgrounds. Additionally, Fig-
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ures 14, 15, and 16 provide a visual representation of the identification of URLs
within text samples that feature colored characters and are placed against col-
ored backgrounds.

Fig. 14: Different color polices and backgrounds (YOLOV3).

Fig. 15: Different color polices and backgrounds (YOLOV4).

Testing with different image rotations (90° and 180°): Rotating the
images by 180° had no notable influence on the models’ performance. However,
when rotated by 90°, the models’ performance was significantly decreased, with
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Fig. 16: Different color polices and backgrounds (YOLOV5).

all three models achieving an average accuracy of 0%. As evident in Figures 17,
18, and 19.

Fig. 17: Image rotations -90°, 180° (YOLOV3).
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Fig. 18: Image rotations -90°, 180° (YOLOV4).

Fig. 19: Image rotations -90°, 180° (YOLOV5).

URL prefixed with the http:// protocol tag: In the case of URLs pre-
fixed with the http:// tag, the models encountered difficulties in their detection,
with some models failing to identify the complete URL, recognizing only the
domain name. YOLOv3 exhibited an average accuracy of 12.12%, YOLOv4 out-
performed the others with the highest accuracy at 28.9%, and YOLOv5 achieved
an accuracy of 13.64%. Examples of detections for this particular challenge are
illustrated in Figures 20, 21 and 22.
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Fig. 20: URL prefixed with the http:// protocol tag (YOLOV3).

Fig. 21: URL prefixed with the http:// protocol tag (YOLOV4).

Handwritten URL characters: In this case, all models were unable to iden-
tify the URL, resulting in an average accuracy of 0% across the board. Figure
23 provides an image depicting a sheet with various handwritten URLs that
remained unrecognized by all three models.

http://
http://
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Fig. 22: URL prefixed with the http:// protocol tag (YOLOV5).

Fig. 23: Handwritten URL characters (YOLOv3, YOLOv4, and YOLOv5).

Gaussian noise addition: The introduction of noise had a profound impact
on the models’ accuracy, leading to the detection of false objects. YOLOv3’s
accuracy dropped to 36.36%, and YOLOv4 also experienced a decrease, with
an accuracy of 37.36%. In contrast, YOLOv5 achieved the highest accuracy of
83.98% under these conditions (see Figures 24, 25, and 26).

http://
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Fig. 24: Images with Gaussian noise (YOLOv3).

Fig. 25: Images with Gaussian noise (YOLOv4).

6 Conclusion

In this study, we investigated a very interesting topic in the field of computer
vision, specifically focusing on object detection, a pivotal stage in recognition
processes. Our primary goal was to assess the generalization capability and ro-
bustness of three distinct models—YOLOv3, YOLOv4, and YOLOv5—in the
context of URL detection within mobile phone-captured images.

– The experimental results, expressed in terms of average precision, allowed
us to deduce the following conclusions:

– The three models gave very satisfactory generalization results, and the best
is YOLOv4.

Concerning stability for several difficulties, the 3 models did not completely
recognize URLs rotated by a 90° rotation angle, where the average precision
achieved is 0:0%. Also, for handwritten URLs, all three models provided an
average accuracy of 0.0%.

To improve these results, we propose to:

– increase the size of the dataset.
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Fig. 26: Images with Gaussian noise (YOLOv5).

– Augment the image set with images containing different difficulties for the
training dataset.

– Test other versions of the YOLO family, even other models of the two-stage
detector family.
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