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ABSTRACT. We repeat and reformulate some more or less known general integral formulae and deduce from them
some applications in a concise way. We then present some general double integral formulae which play an essential role
in the calculation of fundamental solutions to homogeneous elliptic operators. In particular, this yields generalizations
of definite integrals found in standard integral tables. In the final section, the area of an ellipsoidal hypersurface in Rn

is represented by a hyperelliptic integral.
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1. INTRODUCTION AND NOTATION

By “general integral formulae”, we understand here integral formulae containing “arbi-
trary” functions, i.e., formulae that hold at least for functions in a space of infinite dimension.
E.g., Frullani’s formula∫ ∞

0

f(ax)− f(bx)

x
dx = f(0) log(

b

a
), a > 0, b > 0

holds for each temperate test function f ∈ S(R1), but of course also in a much more general
context, see [17]. In contrast, the special case∫ ∞

0

cos(ax)− cos(bx)

x
dx = log

( b

a

)
, a > 0, b > 0,

of Frullani’s formula is just a special definite integral.
Besides the many integral representations (Cauchy, Bochner–Martinelli, Leray–Koppelmann

etc.) in complex analysis, see, e.g., [1], there is a host of general integral formulae in real analysis
contained in integral tables, see, e.g., [2, 13.2 Schlömilch’s Transformation, p. 251], [6, pp. 7, 63,
117, 129, 227 307], [9, pp. 93, 96, 98, 102, 107,109, 110, 114, 119, 121, 123, 125, 126, 130], [12,
pp. 6–8], [15, Thms. 1–6, pp. 125–134].

The aim of this article is to attract attention to some general integral formulae in real analysis,
to their connection with integrals over δ-measures (see Section 2) and to some applications (see
Section 3). In Section 4, we present a general integral formula for double integrals, which
earlier enabled to represent fundamental solutions of the homogeneous elliptic operators ∂4

x +
∂4
y + ∂4

z + 2a∂x2∂
2
y + 2b∂2

x∂
2
z + 2c∂2

y∂
2
z , see [20]. Section 5 is devoted to the calculation of the

(hypersurface) area of an ellipsoidal hypersurface in Rn. In dimensions n ≥ 4 and for generic
diameters, this yields a hyper-elliptic integral not reducible to elliptic ones.
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Let us introduce some notation. The inner product of x, ξ ∈ Rn is denoted by xξ. We employ
the standard notation for distributions as in [18] and, in particular, we denote the Heaviside
function by Y, see [18, p. 36]. We write δs for the delta distribution with support in s ∈ R, i.e.,
δs =

d
dxY (x− s).

The Fourier transform is defined as

(Ff)(ξ) =

∫
Rn

e−iξxf(x)dx

for f ∈ L1(Rn) and extended to the space of temperate distributions S ′(Rn) by continuity.
The pull-back h∗T = T ◦ h ∈ D′(Ω) of a distribution T in one variable t with respect to a

submersive C∞ function h : Ω → R, Ω ⊂ Rn open, is defined as in [16, Def. 1.2.12, p. 19], i.e.,

⟨ϕ, h∗T ⟩ =
〈 d

dt

(∫
Ω

Y (t− h(x))ϕ(x)dx
)
, T

〉
, ϕ ∈ D(Ω).

2. AN INTEGRAL FORMULA OF W. GRÖBNER AND N. HOFREITER AND ITS COMPANION

In [12, Equ. 031.13f], the formula

(2.1)
∫ ∞

0

f
(
ξx+

η

x

)dx
x

= 2

∫ ∞

2
√
ξη

f(u)√
u2 − 4ξη

du, ξ > 0, η > 0

is stated. A companion formula holds for ξ, η of opposite sign:

(2.2)
∫ ∞

0

f
(
ξx+

η

x

)dx
x

=

∫ ∞

−∞

f(u)√
u2 − 4ξη

du, ξη < 0.

(Obviously, suitable conditions on the function f must be imposed in order to ensure the exis-
tence of the improper integrals.)

An important application of the above formulae is the Fourier transform of Riemann’s sin-
gularity function Y (x)x−1e−iη/x, η ∈ R\{0}. In fact, if f(u) = e−iu, then formulae (2.1) and (2.2)
yield, by means of the well-known integral representations of the Bessel functions J0, N0,K0,

∞∫
0

e−i(ξx+η/x) dx
x

= 2Y (ξη)

∞∫
2
√
ξη

e−iu√
u2 − 4ξη

du+ Y (−ξη)

∞∫
−∞

e−iu√
u2 − 4ξη

du

= −πY (ξη)
[
N0(2

√
ξη) + iJ0(2

√
ξη)

]
+ 2Y (−ξη)K0(2

√
−ξη),

i.e.,

Fx

(
Y (x)x−1e−iη/x)(ξ) = Fxy

(
Y (x)δ(xy − 1)

)
(ξ, η)

= −πY (ξη)
[
N0(2

√
ξη) + iJ0(2

√
ξη)

]
+ 2Y (−ξη)K0(2

√
−ξη).

If we extend the integral formulae (2.1) and (2.2) to the negative axis by using the equation

−
∫ 0

−∞
f
(
ξx+

η

x

)dx
x

=

∫ ∞

0

f
(
−ξx− η

x

)dx
x
,

we arrive at the following proposition.

Proposition 2.1. Let f be a continuous function on R such that the integral
∫∞
−∞ f(u)du/(1+ |u|) is

convergent in the sense that

lim
M→−∞

lim
N→∞

∫ N

M

f(u)
du

1 + |u|
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converges. Set t−1/2
+ = Y (t)t−1/2 for t ∈ R \ {0}. Then the formula

(2.3)
∫ ∞

−∞
f
(
ξx+

η

x

)dx
|x|

= 2

∫ ∞

−∞
f(u)(u2 − 4ξη)

−1/2
+ du

holds for all ξ, η ∈ R \ {0}.

Proof. The application
R \ {0} −→ R : x 7−→ u = ξx+

η

x
has the range {u ∈ R; u2 ≥ 4ξη} and it covers this range twice. Furthermore,∣∣∣du

dx

∣∣∣ = ∣∣∣ξ − η

x2

∣∣∣ = 1

|x|

∣∣∣ξx− η

x

∣∣∣ = √
u2 − 4ξη

|x|
and hence formula (2.3) follows from substitution. We observe that the integral on the left-hand
side of formula (2.3) has to be interpreted as the limit

lim
M,N→∞

∫
M−1<|x|<N

f
(
ξx+

η

x

)dx
|x|

,

and this limit converges due to the conditional convergence of the integral
∫∞
−∞ f(u)du/(1 +

|u|). □

Let us remark that, vice versa, formula (2.3) implies the equations in (2.1) and (2.2). In fact,
if ξ, η are positive, then we simply set f(u) = 0 for u < 0; if ξη < 0, we first observe that
the integral

∫∞
0

f(ξx + η/x)dx/x depends only on the value of the product ξη as shown by
applying the substitutions x 7→ cx, c > 0, and x 7→ x−1, respectively, in this integral. Hence∫ 0

−∞
f
(
ξx+

η

x

)dx
|x|

=

∫ ∞

0

f
(
−ξx− η

x

)dx
x

=

∫ ∞

0

f
(
ξx+

η

x

)dx
x

holds for ξη < 0.
Let us next explain the connection of the integral on the left-hand side of formula (2.3) with

the measures δs(xy) supported by the hyperbolas xy = s in R2, s ∈ R \ {0}. As distributions,
these measures are defined as

(2.4)

⟨ϕ, δs(xy)⟩ =
d
ds

∫
R2

ϕ(x, y)Y (s− xy)dxdy

=
d
ds

∫ ∞

−∞

[
Y (x)

∫ s/x

−∞
ϕ(x, y)dy + Y (−x)

∫ ∞

s/x

ϕ(x, y)dy
]

dx

=

∫
R

ϕ
(
x,

s

x

)dx
|x|

, ϕ ∈ D(R2), s ∈ R \ {0}.

Incidentally, we observe that the absolute value in |x| is missing in the well-known textbook
[10], which has so many merits and so few flaws, see [10, Ch. III, Section 1.3, Ex. 3, Equ. (4),
p. 223]. Note that a different, ad hoc definition of the symbol δs(xy)—while, strictly logically,
being possible—is not in agreement with the usual definitions of the composition of functions
and of the pull-back of distributions. In fact, for a different determination of δs(xy) ∈ D′(R2

xy),
s ∈ R \ {0}, the equation

(2.5) δs(xy) = lim
ϵ↘0

1

2ϵ
Y (ϵ− |xy − s|), s ∈ R \ {0}

does not hold in D′(R2) as it should due to δs = limϵ↘0 Y (ϵ− |t− s|)/(2ϵ) in D′(R1
t ). (Equation

(2.5) also shows that δs(xy) must be a positive Radon measure, in contrast to the determination
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in [10].) Similarly, the definition Y ′ := −δ might, strictly logically, be correct, but it would not
make much sense either. We finally observe that δ0(xy) = δ(xy) cannot be defined unambigu-
ously since the mapping h(x, y) = xy is not submersive for xy = 0, i.e., on h−1(suppT ) for
T = δ ∈ D′(R1). Also, the limit in (2.5) diverges in D′(R2) if s = 0.

Note that we can apply the measure δs(xy) not only to test functions ϕ ∈ D(R2), but to each
continuous function ϕ(x, y) such that ϕ(x, y)(|x|+ |y|)ϵ is bounded on the hyperbola xy = s for
some positive ϵ. Therefore

(2.6) ⟨f(ξx+ ηy), δs(xy)⟩ =
∫ ∞

−∞
f
(
ξx+

ηs

x

)dx
|x|

holds, e.g., for f ∈ S(R) and ξ, η, s ∈ R \ {0}. Upon replacing η by ηs in Proposition 2.1,
formula (2.6) leads to the following proposition.

Proposition 2.2. We set, as before, t−1/2
+ = Y (t)t−1/2 for t ∈ R\{0} and assume that ξ, η ∈ R\{0}.

Then the equation

(2.7)
∫
R2

F (ξx+ ηy, xy)dxdy = 2

∫
R2

F (u, s)(u2 − 4ξηs)
−1/2
+ duds

holds for each measurable function F : R2 → C such that the integral on the right-hand side of (2.7) is
absolutely convergent.

Proof. We first note that the substitution

R2 −→ R2 : (x, y) 7−→ (u, s) = (ξx+ ηy, xy)

covers twice its range {(u, s); u2 ≥ 4ξηs} and has the Jacobian ξx− ηy = ±
√
u2 − 4ξηs. Hence

equation (2.7) holds for F ∈ D({(u, s); u2 ̸= 4ξηs}) and consequently, by density, also for all
measurable F making one (and hence both) of the integrals in (2.7) absolutely convergent. □

3. GENERALIZATION TO Rn+1. THE FORMULAE OF J.LERAY, J.FARAUT AND K. HARZALLAH

Let us generalize now Proposition 2.2 to n+ 1 dimensions by considering the Lorentz form
t2 − |x|2, t ∈ R, x ∈ Rn, instead of the form (x, y) 7→ xy on R2.

Proposition 3.3. Let τ ∈ R, ξ ∈ Rn+1 such that τ > |ξ| and set ρ =
√
τ2 − |ξ|2 and t

n/2−1
+ =

Y (t)tn/2−1 for t ∈ R. We assume that F : R2 → C is measurable and that the integral
∫
R2 |F (u, s)|[u2−

ρ2s]
n/2−1
+ duds is finite. Then

(3.8)
∫
Rn+1

F (τt+ ξx, t2 − |x|2)dtdx =
πn/2ρ1−n

Γ(n2 )

∫
R2

F (u, s)[u2 − ρ2s]
n/2−1
+ duds.

Proof. Upon using a Lorentz transformation (which automatically preserves volumes), we can
replace (τ, ξ) by (ρ, 0). We assume first that F belongs to C(R2) and has compact support.
Using polar coordinates x = rω, r > 0, ω ∈ Sn−1, the substitutions u = ρt and s = ρ−2u2 − r2,

ds = −2rdr, r = (ρ−2u2 − s)1/2, and Fubini’s theorem, we obtain∫
Rn+1

F (ρt, t2 − |x|2)dtdx =
2πn/2

ρΓ(n2 )

∫ ∞

−∞

[∫ ∞

0

F
(
u,

u2

ρ2
− r2

)
rn−1dr

]
du

=
πn/2

ρΓ(n2 )

∫ ∞

−∞

[∫ u2/ρ2

−∞
F (u, s)

(u2

ρ2
− s

)n/2−1

ds
]

du

=
πn/2ρ1−n

Γ(n2 )

∫
R2

F (u, s)[u2 − ρ2s]
n/2−1
+ duds.
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As in Proposition 2.2, the proof is completed by a density argument. □

From equation (3.8) in Proposition 3.3, we can easily deduce Leray’s formula for the Laplace
transform of Lorentz invariant functions on the cone C = {(t, x) ∈ Rn+1; t ≥ |x|}, see [14,
Equ. (19.11), p. 41], [13, Thm. 1, p. 53], [19].

Proposition 3.4. Let (τ, ξ) ∈ C and set ρ =
√
τ2 − |ξ|2. We assume that g : [0,∞) −→ C is

measurable such that
∫∞
0

|g(s)|K(n−1)/2(ρ
√
s)s(n−1)/4 ds is finite. Then

(3.9)
∫
C

e−(τt+ξx)g(t2 − |x|2)dtdx =

∫ ∞

0

K(n−1)/2(ρ
√
s)
(2π√s

ρ

)(n−1)/2

g(s)ds.

Proof. We set g(s) = 0 for s < 0 and F (u, s) = Y (u)e−ug(s). Then the function F (τt + ξx, t2 −
|x|2) coincides with e−(τt−ξx)g(t2−|x|2) on C and it vanishes on Rn+1 \C. Hence we can apply
Proposition 3.3, and [12, Equ. 313.23] implies∫

C

e−(τt+ξx)g(t2 − |x|2)dtdx =
πn/2ρ1−n

Γ(n2 )

∫ ∞

0

g(s)

[∫ ∞

ρ
√
s

e−u(u2 − ρ2s)n/2−1du
]

ds

=

∫ ∞

0

K(n−1)/2(ρ
√
s)
(2π√s

ρ

)(n−1)/2

g(s)ds.

This completes the proof. □

We remark that Leray’s formula is the analogue of Poisson–Bochner’s formula for the Fourier
transform of radially invariant distributions, see [18, Equ. (VII, 7; 22), p. 259].

Examples. We can derive Faraut–Harzallah’s formula for the Laplace transform of powers
of Lorentz distances [7, Prop. III.9, p. 43] from formula (3.9) above by setting g(s) = s(µ−n−1)/2,
µ ∈ C, Reµ > n− 1. This yields∫

C

e−(τt+ξx)(t2 − |x|2)(µ−n−1)/2 dtdx =
(2π

ρ

)(n−1)/2
∫ ∞

0

K(n−1)/2(ρ
√
s)s(2µ−n−3)/4 ds

= 2
(2π

ρ

)(n−1)/2
∫ ∞

0

K(n−1)/2(ρσ)σ
µ−(n+1)/2 dσ

=
2µ−1π(n−1)/2Γ(µ2 )Γ(

1+µ−n
2 )

(τ2 − |ξ|2)µ/2
, τ > |ξ|,

by [11, Equ. 6.561.16]. Let us remark that the special case of µ = n + 1 furnishes Exercise 1 in
[4, p. 174].

Let us also explain how Proposition 3.3 is connected with a formula in [3]. If we set n = 2
and apply formula (3.8), using a limit process, to the distribution F (u, s) = Y (u)f(u)δ1(s) for
f ∈ C(R) with compact support, then we obtain

(3.10)
∫ ∞

0

⟨f(τt+ ξx), δ(t2 − |x|2 − 1)⟩dt =
π

ρ

∫ ∞

ρ

f(u)du

for (τ, ξ) ∈ R3 with τ > |ξ| and ρ =
√
τ2 − |ξ|2.

Due to

Y (t)δ(t2 − |x|2 − 1) =
1

2
√
1 + |x|2

δ
(
t−

√
1 + |x|2

)
,

we infer that ∫
R2

f
(
τ
√

1 + |x|2 + ξx
) dx√

1 + |x|2
=

2π

ρ

∫ ∞

ρ

f(u)du.
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Finally, employing the parametrization x1 = coshα sinhβ, x2 = sinhα, t =
√

1 + |x|2 =
coshα coshβ of the upper shell t > 0 of the hyperboloid t2 = 1 + |x|2 and taking account
of dx = cosh2 α coshβ dαdβ, we arrive at∫

R2

f
(
τ coshα coshβ+ξ1 coshα sinhβ + ξ2 sinhα

)
coshαdαdβ

=
2π

ρ

∫ ∞

ρ

f(u)du, τ > |ξ|, ρ =
√
τ2 − |ξ|2,

which is formula 3.1.4.1 in [3].

4. ALGEBRAIC DOUBLE INTEGRALS AND “ELLIPTIC ARCTAN-INTEGRALS"

In [16], we employed the formula

(4.11) ∂3E(x1, 1, x3) = − 1

4π2

∫ x3

0

dλ
∫ ∞

−∞

dα
P (α,−λ− x1α, 1)

in order to represent the (uniquely determined) even and homogeneous fundamental solution
E of the homogeneous elliptic operator P (∂) of degree four and in three variables, see [16,
Prop. 5.2.7, p. 357, and p. 359, line two from below].

Using formula (4.11), we calculated E in the cases of P (∂) = ∂4
1 + ∂4

2 + ∂4
3 , see [16, Ex. 5.2.9,

p. 359], and of P (∂) = ∂4
1 + ∂4

2 + ∂4
3 + 2a∂2

1∂
2
2 , a > −1, see [16, Ex. 5.2.11, p. 362]. For the

operator P (∂) = ∂4
1 + ∂4

2 + ∂4
3 , the fundamental solution E was first obtained in [8, p. 350]; for

elliptic operators of the general form P (∂) =
∑3

j=1

∑3
k=1 cjk∂

2
j ∂

2
k, this was done in [20, Prop. 3,

p. 1198]. All these fundamental solutions can explicitly be represented by the complete elliptic
integral of the first kind.

In the following, let us repeat some steps in these calculations starting from formula (4.11).
We assume that x3 > 0. Substitution of the variables

α = t 4
√
µ, λ = 4

√
µ,

∂(α, λ)

∂(t, µ)
=

(
4
√
µ t

4µ
−3/4

0 1
4µ

−3/4

)
leads to

∂3E(x1, 1, x3) = − 1

16π2

∫ x4
3

0

dµ
√
µ

∫ ∞

−∞

dt
P (t 4

√
µ,−(1 + tx1) 4

√
µ, 1)

.

In the case of the operator P (∂) = ∂4
1 + ∂4

2 + ∂4
3 + 2a∂2

1∂
2
2 , a > −1, we obtain

P (t 4
√
µ,−(1 + tx1) 4

√
µ, 1) = Q(t)µ+ 1,

where Q(t) is a polynomial of degree four fulfilling Q(t) > 0 for t ∈ R. (In the notation, we
suppressed the dependence of the coefficients of Q on x1.) Inverting the order of integrations
and substituting u =

√
Q(t)µ results in

∂3E(x1, 1, x3) = − 1

8π2

∫ ∞

−∞

arctan
(
x2
3

√
Q(t)

)√
Q(t)

dt.

By these considerations, we want to motivate our treatment of integrals of the form

(4.12)
I :=

∫ ∞

−∞

arctan
(
γ
√
Q(t)

)√
Q(t)

dt =
1

2

∫ γ2

0

dµ
√
µ

∫ ∞

−∞

dt
Q(t)µ+ 1

=
1

2

∫ ∞

γ−2

dµ
√
µ

∫ ∞

−∞

dt
Q(t) + µ

, γ > 0.
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As will be seen in Corollary 4.2 below, I in formula (4.12) can be expressed as an elliptic integral
of the first kind and we shall call it therefore an “elliptic arctan-integral”.

Let us first explain the basic idea of the evaluation of I in the simpler case of the biquadratic
Q(t) = t4+pt2+r. We shall assume that r > 0 and p > −2

√
r, which are the conditions that the

polynomial Q is positive on the real axis. If, additionally, 0 < r ≤ p2/4 and if we set λ =
√
r,

we can write Q in the form Q(t) = (t2 + a2)(t2 + b2) with a > 0, b > 0 and hence ab = λ and
a+ b =

√
a2 + b2 + 2ab =

√
p+ 2λ. Therefore [12, Equ. 141.14] yields

(4.13)
∫ ∞

−∞

dt
t4 + pt2 + λ2

=
π

λ
√
p+ 2λ

,

and this equation persists for all λ > 0 and p > −2λ by analytic continuation.
Inserting formula (4.13) into (4.12) and substituting λ =

√
µ+ r, then implies

(4.14)

I =
1

2

∫ ∞

γ−2

dµ
√
µ

∫ ∞

−∞

dt
Q(t) + µ

=
π

2

∫ ∞

γ−2

dµ
√
µ
√
µ+ r

√
p+ 2

√
µ+ r

=
π√
2

∫ ∞

√
r+γ−2

dλ√
λ2 − r

√
λ+ p/2

.

By using formula 3.131.8 in [11], we can then represent I by an elliptic integral of the first kind,
i.e., by

F (φ, k) =

∫ φ

0

dα√
1− k2 sin2 α

, 0 ≤ k < 1, φ ∈ R.

This implies the following proposition.

Proposition 4.5. Let γ > 0, r > 0, p > −2
√
r and set Q(t) = t4 + pt2 + r. Then

(4.15)

∫ ∞

−∞

arctan
(
γ
√
Q(t)

)√
Q(t)

dt

=


π
4
√
r
F

(
arcsin

√
2
√
r

√
r +

√
r + γ−2

,

√√
r − p/2

2
√
r

)
: −2

√
r < p ≤ 2

√
r,

2π√
p+ 2

√
r
F

(
arcsin

√
p+ 2

√
r

p+ 2
√
r + γ−2

,

√
p− 2

√
r

p+ 2
√
r

)
: p ≥ 2

√
r.

Let us observe that the limit case γ → ∞ yields

∫ ∞

−∞

dt√
t4 + pt2 + r

=


2
4
√
r
K

(√√
r − p/2

2
√
r

)
: −2

√
r < p ≤ 2

√
r,

4√
p+ 2

√
r
K

(√
p− 2

√
r

p+ 2
√
r

)
: p ≥ 2

√
r.

(As usual the function K denotes the complete elliptic integral, i.e., K(k) = F (π2 , k), 0 ≤ k < 1.)

The upper formula is in accordance with [12, Equ. 222.2c] upon using the substitution x = t2.

More generally as in Proposition 4.5, we can replace the integrand µ−1/2 in formula (4.14)
by a function f(µ) and use formula (4.13) in order to represent the double integral∫ µ2

µ1

f(µ)dµ
∫ ∞

−∞

dt
t4 + pt2 + r + µ

, 0 < µ1 < µ2,
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by a simple one. If we substitute λ =
√
µ+ r as before and set z = p + 2λ, then we obtain the

following proposition.

Proposition 4.6. Let r > 0, p > −2
√
r, 0 < µ1 < µ2 and f ∈ L1([µ1, µ2]). Then

(4.16)
∫ µ2

µ1

f(µ)dµ
∫ ∞

−∞

dt
t4 + pt2 + r + µ

= π

∫ p+2
√
r+µ2

p+2
√
r+µ1

f
( (z − p)2

4
− r

) dz√
z
.

Proposition 4.6 can be generalized to general positive quartics Q(t) = t4 + pt2 + qt+ r. The
corresponding result, i.e., Equ. (5) in [20, p. 1197], is a special case of [20, Prop. 2, p. 1196] and
we just quote it in the next proposition.

Proposition 4.7. Let p, q, r ∈ R such that the quartic Q(t) = t4 + pt2 + qt+ r is positive for each real
t. Let 0 < µ1 < µ2 ≤ ∞ and f : (µ1, µ2) → C such that µ−3/4f(µ) ∈ L1((µ1, µ2)). Then

(4.17)
∫ µ2

µ1

f(µ)dµ
∫ ∞

−∞

dt
Q(t) + µ

= π

∫ z2

z1

f
(
µ(z)

) dz√
z
,

where

µ(z) =
(z − p)2

4
− r +

q2

4z

and z1,2 denote the largest real roots of µ(z) = µ1,2, respectively.

If we use the function f(µ) = µ−1/2 in Proposition 4.7, we come back to elliptic arctan-
integrals and we can generalize in this way Proposition 4.5.

Corollary 4.1. Let γ > 0 and p, q, r ∈ R such that the quartic Q(t) = t4 + pt2 + qt+ r is positive for
each real t. Then

(4.18) I =

∫ ∞

−∞

arctan
(
γ
√

Q(t)
)√

Q(t)
dt = π

∫ ∞

z1

dz√
(z − p)2z − 4rz + q2

,

where z1 is the largest real root of the cubic (z − p)2z − 4(r + γ−2)z + q2.

Note that the right-hand side of equation (4.18) is an elliptic integral in Weierstraß’ normal
form. In particular, if the quartic Q has the form

(4.19) Q(t) =
[
(t− t1)

2 + u2
1

][
(t− t2)

2 + u2
2

]
, t1, t2 ∈ R, u1 > 0, u2 > 0,

then we can represent the integral I by the elliptic integral F (φ, k) of the first kind.

Corollary 4.2. Let γ > 0 and Q be as in equation (4.19). Then

(4.20)

I =

∫ ∞

−∞

arctan
(
γ
√
Q(t)

)√
Q(t)

dt =
2π√

(t1 − t2)2 + (u1 + u2)2

× F

(
arcsin

√
(t1 − t2)2 + (u1 + u2)2

(t1 − t2)2 + z1
,

√
(t1 − t2)2 + (u1 − u2)2

(t1 − t2)2 + (u1 + u2)2

)
,

where z1 is the largest real root of the equation[
z + (t1 − t2)

2
][
z − (u1 − u2)

2
][
z − (u1 + u2)

2
]
= 4γ−2z.
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Proof. By translation the integral I depends only on the difference t1 − t2 and hence we can
assume that t2 = −t1. Then Q(t) = t4+pt2+ qt+ r, where p = −2t21+u2

1+u2
2, q = 2t1(u

2
1−u2

2),
r = (t21 + u2

1)(t
2
1 + u2

2). This implies that the cubic

(z − p)2z − 4rz + q2 = z3 + 2(2t21 − u2
1 − u2

2)z
2

+
[
(u2

1 − u2
2)

2 − 8t21(u
2
1 + u2

2)
]
z + 4t21(u

2
1 − u2

2)
2

=
[
z + 4t21

][
z − (u1 − u2)

2
][
z − (u1 + u2)

2
]

has the three real roots (u1 + u2)
2 > (u1 − u2)

2 > −(t1 − t2)
2. Hence, similarly as in the proof

of Proposition 4.1, formula 3.131.8 in [11] implies the result. □

We remark that Corollary 4.2 generalizes Proposition 4.5. In fact, if Q(t) = (t2+u2
1)(t

2+u2
2),

i.e., if t1 = t2 = 0 in (4.19), then p = u2
1 +u2

2, q = 0, r = u2
1u

2
2 and formula (4.20) yields the lower

formula on the right-hand side of (4.17). On the other hand, if Q(t) = [(t−t1)
2+u2

1][(t+t1)
2+u2

1],
i.e., if t2 = −t1 and u1 = u2 in (4.19), then p = 2(u2

1 − t21), q = 0, r = (t21 + u2
1)

2 and formula
(4.20) yields the upper formula on the right-hand side of (4.17).

As before, the limit γ → ∞ yields a complete elliptic integral since z1 → (u1+u2)
2 for γ → ∞.

Hence

(4.21)
∫ ∞

−∞

dt√
Q(t)

=
4√

(t1 − t2)2 + (u1 + u2)2
K

(√
(t1 − t2)2 + (u1 − u2)2

(t1 − t2)2 + (u1 + u2)2

)
.

Note that the representation of
∫
R

dt/
√
Q(t) in [12, Equ. 223.2e] is more complicated.

5. REPRESENTATION OF HYPERSURFACE AREAS BY VOLUME INTEGRALS

If the hypersurface M in Rn is given by M = f−1(1) for a homogeneous function f, then the
area of M can be represented by a volume integral:

Proposition 5.8. Let f : Rn \ {0} −→ (0,∞) be C1 and homogeneous of degree λ > 0 and set
M = f−1(1). Then the hypersurface area Σ(M) of M is given by

(5.22) Σ(M) =
λ+ n− 1

λ

∫
{x∈Rn; f(x)<1}

|∇f(x)|dx.

Proof. Let dσ denote the surface measure on M and ν = ∇f/|∇f | the outward unit normal.
Due to Euler’s equation, we have x · ∇f(x) = λf(x) = λ if x ∈ M and x · ∇|∇f |(x) = (λ −
1)|∇f |(x) for x ∈ Rn \ {0}. Hence

div(x|∇f |) = n|∇f |+ x · ∇|∇f | = (n+ λ− 1)|∇f |.

Therefore Gauß’ divergence theorem yields

Σ(M) =

∫
M

dσ =
1

λ

∫
M

x · ∇f dσ =
1

λ

∫
M

x|∇f | · ν dσ

=
1

λ

∫
f(x)<1

div(x|∇f |)dx =
λ+ n− 1

λ

∫
f(x)<1

|∇f(x)|dx.

□

We shall apply formula (5.22) in order to show that the area of an ellipsoidal hypersurface
in Rn can be represented by a hyperelliptic integral.
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Proposition 5.9. Let n ≥ 2 and ai, i = 1, . . . , n, be positive numbers and set

M =
{
x ∈ Rn;

n∑
i=1

x2
i

a2i
= 1

}
.

Then its hypersurface area is given by

(5.23) Σ(M) =
π(n−1)/2

Γ(n+1
2 )

(n−1∏
j=1

a2j

)∫ ∞

0

(n−1∑
j=1

1

s+ a2j

) √
s+ a2n ds√

s
∏n−1

j=1 (s+ a2j )
.

Proof. The function f(x) =
∑n

i=1 x
2
i /a

2
i is homogeneous of degree λ = 2 and |∇f | = 2(

∑n
i=1 x

2
i /a

4
i )

1/2.
Hence formula (5.22) in Proposition 5.8 implies, upon substituting yi = aixi, i = 1, . . . n,

Σ(M) = (n+ 1)

∫
f(x)<1

√√√√ n∑
i=1

x2
i

a4i
dx = (n+ 1)

( n∏
i=1

ai

)∫
|y|<1

√√√√ n∑
i=1

y2i
a2i

dy.

With the further substitution yn = t(
∑n−1

j=1 y2j /a
2
j )

1/2, we then obtain

(5.24) Σ(M) = 2(n+ 1)

( n∏
i=1

ai

)∫ ∞

0

√
1 +

t2

a2n
dt

∫
Et

n−1∑
j=1

y2j
a2j

dy′,

where the inner integral runs over the ellipsoid

Et =
{
y′ ∈ Rn−1;

n−1∑
j=1

y2j
A2

j

≤ 1
}
, Aj =

aj√
t2 + a2j

, j = 1, . . . , n− 1,

and represents a sum of moments of second order thereof.
The calculation of such moments is quite straight-forward. We present it here just for com-

pleteness. Evidently, it suffices to consider the summand y2n−1/a
2
n−1 in the inner integral on

the right-hand side of formula (5.24). Substituting yj = Ajuj , j = 1, . . . , n − 1, and setting
u′′ = (u1, . . . , un−2) we obtain∫

Et

y2n−1

a2n−1

dy′ =
A2

n−1

a2n−1

(n−1∏
j=1

Aj

)∫
|u′|<1

u2
n−1 du′

and ∫
|u′|<1

u2
n−1 du′ = 2

∫ 1

0

u2
n−1 dun−1

∫
|u′′|2<1−u2

n−1

du′′

=
2πn/2−1

Γ(n2 )

∫ 1

0

u2
n−1(1− u2

n−1)
n/2−1 dun−1

=
2πn/2−1

Γ(n2 )
· 1
2
B
(3
2
,
n

2

)
=

π(n−1)/2

2Γ(n+3
2 )

.

Altogether this yields

Σ(M) =
2π(n−1)/2

Γ(n+1
2 )

(n−1∏
j=1

a2j

)∫ ∞

0

(n−1∑
j=1

1

t2 + a2j

) √
t2 + a2n dt∏n−1

j=1

√
t2 + a2j

.

The final substitution s = t2 then leads to formula (5.23) and thus concludes the proof. □
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We remark that the integral in formula (5.23) is an elliptic integral for n = 2 and for n = 3,
but is hyperelliptic and not elliptic in dimensions n ≥ 4 if the diameters 2ai, i = 1, . . . , n, are
generic positive real numbers. The representation of the length of an ellipse (n = 2) and of the
surface area of an ellipsoid (n = 3), respectively, by elliptic integrals is known since the times
of Legendre, see [5, Problem 1, p. 265, Problem 15, p. 279].
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