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ABSTRACT  

Agricultural practices and renewable energy consumption have a major impact on 

the absorption of heat-trapping greenhouse gases and are closely linked to climate 

change. The impact of agriculture on climate change is due to the GHGs such as 

methane, nitrous oxide and carbon dioxide carbon dioxide that are released into the 

atmosphere during the agricultural practices. Therefore, to avoid undesirable 

effects of agriculture on climate change, it is important to understand the 

relationship between agricultural activities and greenhouse gases. In this study, we 

analyze the long-term effects of agricultural efficiency, fertilizer use, and renewable 

energy consumption on total carbon emissions in Turkey. The analysis is performed 

in two steps. In the first step, the values of agricultural efficiency are calculated 

using the CEE method. In the second step, ARDL and NARDL models are used to 

estimate the long-term effects of agricultural efficiency, fertilizer use, renewable 

energy consumption, GDP and population on CO2 emissions. The results show that 

improving agricultural efficiency and increasing the share of renewable energy 

would reduce carbon emissions, while fertilizer use, GDP, and population have 

negative long-term effects on CO2. In addition, the results of the Wald test indicate 

asymmetric long-term effects of renewable energy, agricultural efficiency, and 

fertilizer use on climate change. 

 

Anahtar Kelimeler: 

İklim Değişikliği, 

Tarımsal Etkinlik, 

Yenilenebilir Enerji 

  

ÖZET  

Tarımsal uygulamalar ve yenilenebilir enerji tüketimi, ısıyı hapseden sera 

gazlarının emilimi üzerinde önemli bir etkiye sahiptir ve dolayısıyla iklim değişikliği 

ile yakından bağlantılıdır. Tarımın iklim değişikliği üzerindeki etkisi, tarımsal 

faaliyetler sırasında atmosfere salınan metan, azot oksit ve karbondioksit gibi 

gazlardan kaynaklanmaktadır. Dolayısıyla, tarımsal faaliyetlerin iklim değişikliği 

üzerindeki istenmeyen etkilerinden kaçınmak için tarımsal faaliyetlerin sera gazları 

üzerindeki etkisini ortaya koymak önemlidir. Bu çalışmada, Türkiye'de tarımsal 

etkinlik, gübre kullanımı ve yenilenebilir enerji tüketiminin toplam CO2 emisyonu 

üzerindeki uzun dönem etkileri analiz edilmektedir. Analiz iki aşamada 

gerçekleştirilmiştir. İlk aşamada CEE yöntemi kullanılarak Türkiye’nin tarımsal 

etkinlik değerleri hesaplanmıştır. İkinci aşamada ARDL ve NARDL modelleri 

yardımı ile tarımsal etkinlik, gübre kullanımı, yenilenebilir enerji tüketimi, GSYH ve 

nüfus gibi değişkenlerin CO2 üzerindeki uzun dönem etkileri tahmin edilmiştir. 

Sonuçlar, tarımsal etkinliğin iyileştirilmesinin ve yenilenebilir enerjinin payının 

artırılmasının sera gazı salınımı azaltacağını, gübre kullanımı, GSYH ve nüfusun 

ise sera gazı salınımı üzerinde olumsuz uzun vadeli etkileri olduğunu 

göstermektedir. Ek olarak, Wald testinin sonuçları yenilenebilir enerji, tarımsal 

etkinlik ve gübre kullanımının iklim değişikliği üzerindeki uzun vadeli etkilerinin 

asimetrik olduğunu göstermektedir. 
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1. INTRODUCTION 

The amount of greenhouse gases in the atmosphere has increased over the last century, primarily due to human 

activities. The main contributors to greenhouse gas emissions from human activities include fossil fuels, 

agricultural practices, and industrial activities (EPA 2023; Sun et al. 2022; Talaei, Gemechu, and Kumar 2020). 

Agriculture, in particular, is becoming the second largest emitter of greenhouse gases after fossil fuel consumption 

(Our World in Data 2023). Despite its historical importance and continued relevance, agriculture, which has been 

the main source of human livelihood since the Neolithic period, can disrupt the Earth's thermal balance through 

the release of gases such as carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) (Tongwane and 

Moeletsi 2018; Fróna, Szenderák, and Harangi-Rákos 2019). An increase in atmospheric concentrations of these 

gases is predicted to increase average temperatures, thereby triggering climate change. Within this paradigm, 

agriculture is responsible for 30% of total greenhouse gas emissions (IAEA 2023; World Bank 2023). This 

phenomenon is mainly due to the repeated cultivation of crops, the conversion of non-agricultural land into 

agricultural land, the unintentional fertilization of soils, the energy consumption of agricultural activities, the 

burning of savannas, the use of pesticides, and the generation of waste (FAO 2018; Tilman et al. 2011). In this 

context, it is crucial to control greenhouse gas emissions due to climate change, while efforts to increase 

agricultural and industrial production continue.  

Climate change is one of the greatest threats facing our planet today, and its far-reaching effects are being felt in 

a number of areas, including agriculture and biodiversity (Aydinalp and Cresser 2008; Oliver and Morecroft 2014; 

Closset, Dhehibi and Aw-Hassan 2015; Yohannes 2016; Ouraich et al. 2019). These threats are exacerbated by the 

increasing vulnerability of agriculture to climate change. However, it has been shown that the vulnerability 

between climate change and agriculture is interactive. While climate change poses a serious threat to agricultural 

productivity, agricultural activities also contribute to the acceleration of climate change through the emission of 

greenhouse gasses such as CO2, N2O and CH4 (Flessa et al. 2002; Cui, Zhao, and Shi 2018). In particular, CO2, 

N2O and CH4 have the strongest heat-trapping capacity, and the emission of these gasses is directly linked to 

agricultural practices (Scialabba and Müller-Lindenlauf 2010). Agricultural practices such as the use of synthetic 

fertilizers, drainage of organic soils, tillage methods and irrigation systems have been identified as significant 

contributors to N2O and CH4 emissions (Lal 2004). In addition, the production of synthetic fertilizers used to 

increase agricultural yields releases significant amounts of CO2 as the manufacturing process requires natural gas 

(Adger, Pettenella and Whitby 1997). In this context, artificial fertilizers have a direct impact on greenhouse gasses 

and thus on climate change, as they are an important component of agricultural production (Zhang et al. 2015; 

Sharma and Singhvi 2017). While increasing agricultural productivity seems to require the use of fertilizers, efforts 

to increase productivity have brought into the discussion a term on which there is no consensus: "efficiency". In 

the simplest sense, efficiency -as distinct from productivity- means more output per unit of input (Ogundari 2014; 

Lovins 2017; Deng and Gibson 2019). While productivity is a non-relative measure of one output obtained from 

multiple inputs, efficiency is a relative measure of multiple outputs obtained from multiple inputs. From one year 

to the next, productivity may increase while efficiency may decrease, since the quantity of output is not the only 

indicator of efficiency. Therefore, efficiency is a much broader concept that includes the notion of productivity 

(Patterson 1996; Çam, Karataş, and Lopcu 2022). When assessing efficiency in relation to climate change, a 

number of outputs, such as carbon emission and climate change, should be considered in addition to production 

output, because inputs used in agricultural production, such as fertilizer, energy consumption, release significant 

amounts of greenhouse gasses (Adger, Pettenella, and Whitby 1997; Vlontzos et al. 2014). This is where the 

disagreement over the concept of efficiency begins. While it is not a herculean task to define efficiency 

theoretically, calculating it as a metric is an arduous task. There are numerous variables that can be used under the 

concept of efficiency, but not all of them are identifiable or satisfy the factors we aim to explain. With this in mind, 

it is important to use the minimum number of factors that can accurately reflect efficiency in a mathematical 

formulation. In addition to the determination of the variables, the mathematical formulation used to calculate the 

efficiency values is also crucial. Unfortunately, due to the vagueness of the concept, there is no unique method for 

calculating efficiency. A number of methodological benchmarks based on multi-criteria decision making have 

been used to compute efficiency (Zhang and Chen 2022; Wang and Wang 2022), which appear to be plausible and 

highly representative of efficiency values. Therefore, the preferred method and the variables used to calculate 

efficiency are critical to obtain a representative metric of theoretical efficiency. Consequently, a benign method 

should be preferred to obtain reliable results with a minimum number of variables. Beyond the methodological 

debates, it is important to calculate agricultural efficiency due to harmful inputs used in agricultural activities, such 

as fertilizers and fosil fuel based energy consumption in order to determine impact of efficiency on greenhouse 

gases and thus climate change (Guo et al. 2022). 

This study employes the Cross-Efficiency Evaluation (CEE) method, which is based on the classical Data 

Envelopment Analysis (DEA), to calculate cross-efficiency scores for the Turkish agricultural sector. Based on 

the existing literature, we define a set of inputs and outputs that are relevant for the analysis. The selected inputs 

include the share of agricultural land, agricultural labor, and fertilizer consumption (Shanmugam and 
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Venkataramani 2006; Nandy and Singh 2020). Outputs include agricultural GDP (Manogna and Mishra 2022) and 

agricultural greenhouse gas emissions, especially nitrous oxide (N2O) and methane (CH4) (Chen, Miao and Zhu 

2021). Fertilizer and energy consumption as the main inputs in agricultural production emit significant amounts 

of CO2, N2O, and CH4. Both production of fertilizers, due to the natural gases involved, and use of fertilizers, due 

to the methane and nitrous oxide emitted, contribute to climate change (Ramírez and Worrell 2006). Therefore, 

we believe that examining the impact of agricultural efficiency and fertilizer use on carbon emissions will provide 

an undeniable guide to tackling the climate crisis. In this context, we have examined the impact of these variables 

on total carbon emissions for Turkey, where agriculture is an important sector, because Turkey has a great potential 

for agricultural greenhouse gas emissions. Considering the importance of the agricultural sector for the country, 

we have studied the impact of agricultural efficiency, fertilizer use, renewable energy consumption, and some 

control variables, including GDP and population (Zoundi 2017; Namahoro et al. 2021; Raihan and Tuspekova 

2022) on CO2 emissions to provide empirical evidence with the aim of reducing the harmful effects of agricultural 

activities. The analysis consists of two independent steps. In the first step, we calculated agricultural efficiency 

using the CEE method. The fertilizer per hectare, share of agricultural land and labor employed in agriculture were 

utilized as inputs of the model, while agricultural GDP and total agricultural greenhouse gases, including N2O, 

and CH4, were used as outputs. The second step was to examine the long-term and possible asymmetric effects of 

agricultural efficiency, fertilizer use, renewable energy consumption on Tukey's total CO2 emissions using ARDL 

(Autoregressive Distributed Lag) and NARDL (Nonlinear Autoregressive Distributed Lag) models. We strongly 

believe that this research will fill a significant gap in the scientific discourse on assessing the impact of agricultural 

efficiency on climate change. This assertion is based on the observation that numerous foundational studies have 

examined the impact of climate change on agriculture (Adams et al. 1998; Aydinalp and Cresser 2008; Chen, Chen 

and Xu 2016; Dumrul and Kilicaslan 2017; Arora 2019; Malhi, Kaur and Kaushik 2021), some studies have 

examined the interactions between agricultural practices and climate change (Uri 2001; Ojha et al. 2014; Yurtkuran 

2021). However, our main focus is to describe the impact of increased agricultural efficiency on climate change 

dynamics. Therefore, our research question is as follows: "Can prudent use of agricultural inputs mitigate the 

negative impacts of climate change by reducing greenhouse gas emissions?" In line with the research question, 

our hypothesis is that by increasing agricultural efficiency and using inputs more effectively, we can reduce 

greenhouse gas emissions from agriculture and mitigate the undesirable effects of climate change. 

2. CROSS-EFFICIENCY EVALUATION (CEE) METHOD   

The CEE method is a classical technique based on Data Envelopment Analysis (DEA) that calculates the efficiency 

of all DMUs in order to eliminate the problem of alternative solutions of the DEA method. The optimal weights 

calculated by classical DEA may have multiple solutions, especially for efficient DMUs, and these solutions may 

lead to unrealistic weights. Thus, the DMUs may take extreme values due to the unrealistic weights. The method 

developed by Sexton et al. (1986) to calculate the efficiency of DMUs using cross-scoring (Anderson, 

Hollingsworth and Inman 2002). The logic of cross-evaluation is to use the DEA as an intermediate step to 

calculate a peer evaluation instead of a self-evaluation. The peer evaluation refers to an average weight-based score 

calculated for each DMU using the optimal weights of the other DMUs. The advantages of the cross-efficiency 

method are that it can generate stable efficiency scores for DMUs and that it is a mathematical method that does 

not require expert judgement or prior assumptions to overcome undesirable solution problems, such as multiple or 

unrealistic solutions introduced by DEA (Örkcü and Örkcü 2015). Similar to the other multi-criteria decision 

making methods, the CEE method also calculates cross-efficiency scores using multi-inputs and multi-outputs. 

The CEE, in addition to efficiency calculation methods such as DEA, TOPSIS, etc. attempt to calculate optimal 

weights of mathematical formulas that maximize the ratio of outputs to inputs. The calculation of the cross-

efficiency scores of a DMU consists of two steps. In the first stage, the weights of each input and output are 

determined using the classical CCR model of Charnes et al. (1978).  The efficiency structure of the individual 

DMUs is as follows: 

𝐸𝑝 =
∑  𝑠
𝑟=1 𝑢𝑟𝑦𝑟𝑝

∑  𝑚
𝑖=1 𝑣𝑖𝑥𝑖𝑝

        (1) 

Here, 𝑦𝑟𝑗  (𝑟 = 1,… ,𝑚) and 𝑥𝑖𝑗  (𝑖 = 1,… , 𝑛) represent the output and input values of each DMU, respectively. 

𝐸𝑝 is the efficiency value of the pth DMU, 𝑢𝑟 is the weight of the output 𝑦𝑟, and 𝑣𝑖 is the weight of the input 𝑥𝑖. 

Using the above ratio, Charnes et al. (1978) developed the following model, called the CCR model 

max⁡(𝐸𝑝) =
∑  𝑠
𝑟=1 𝑢𝑟𝑦𝑟𝑝
∑  𝑚
𝑖=1 𝑣𝑖𝑥𝑖𝑝

 

s.t.                      (2) 

∑  𝑠
𝑟=1 𝑢𝑟𝑦𝑟𝑗
∑  𝑚
𝑖=1 𝑣𝑖𝑥𝑖𝑗

≤ 1 
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𝑣𝑖 , 𝑢𝑟 ≥ 0 

For  𝑗 = 1,… , 𝑛, 𝑖 = 1,… ,𝑚 and 𝑟 = 1,… , 𝑠. This mathematical form is a classical constrained optimization 

problem. With a few mathematical tricks, the problem can be transformed into a linear programming problem. 

 

𝑚𝑎𝑥𝜃𝑝 = ∑  𝑠
𝑟=1 𝑢𝑟𝑦𝑟𝑝        

s.t.                          (3) 

∑  𝑚
𝑖=1 𝑣𝑖𝑥𝑖𝑝 = 1       

∑  𝑠
𝑟=1 𝑢𝑟𝑦𝑟𝑗 − ∑  𝑚

𝑖=1 𝑣𝑖𝑥𝑖𝑗 ≤ 0       

𝑣𝑖 , 𝑢𝑟 ≥ 0 

𝑗 = 1,… , 𝑛, 𝑖 = 1,… ,𝑚 and 𝑟 = 1,… , 𝑠 

The mathematical formulation (3) is the output-oriented CCR model and is structured as a linear programming 

problem. The CCR model can yield values between 0 and 1, and a DMU is efficient if and only if its efficiency is 

equal to 1. In the second step, the cross-efficiency of the DMUs is obtained using the weights assigned to the 

DMUs by the CCR model. 

𝐸𝑑𝑗 =
∑  𝑠
𝑟=1 𝑢𝑟𝑑

∗ 𝑦𝑟𝑗

∑  𝑚
𝑖=1 𝑣𝑖𝑑

∗ 𝑥𝑖𝑗
      (4) 

𝑗 = 1,2, … , 𝑛       

Where (*) represents optimal weights in the CCR model. For DMUj (𝑗 = 1,… , 𝑛) 

 

E[𝐸𝑗] = 1/𝑛∑  𝑛
𝑑=1 𝐸𝑑𝑗      (5) 

 

the average of all 𝐸𝑑𝑗(𝑑 = 1,… , 𝑛) ⁡referred to as the cross-efficiency score for DMUj (Liang et al. 2008).  

 

3. ARDL AND NARDL MODELS 

In econometrics, the study of cointegration dynamics between a dependent variable and independent variables is 

often based on two well-established techniques: The Autoregressive Distributed Lag (ARDL) model and the 

Nonlinear Autoregressive Distributed Lag (NARDL) model. While both approaches have the advantage of 

capturing the lagged effects of the independent variables on the dependent variable, they offer different advantages 

in elucidating the nature of the relationship between the variables (Arı 2021; Turhan and Arı 2021). The ARDL 

model is characterized by its ability to identify long-run equilibrium relationships between variables even if they 

have different orders of integration, with the exception of I(2) stationarity (Menegaki 2019; Arı 2022). This 

property makes the ARDL model particularly valuable in situations where the underlying data generation process 

is not readily apparent, or where preliminary unit root tests are inconclusive. In contrast, the NARDL model relaxes 

the linearity assumption inherent in the ARDL model. This allows the NARDL model to capture potential 

asymmetries in the response of the dependent variable to positive and negative shocks in the independent variables. 

For example, the NARDL model could show that a positive change in an independent variable could have a 

stronger effect on the dependent variable than a negative change of the same magnitude (Shin et al. 2014). This 

added flexibility can be critical for researchers attempting to model complex relationships where the effects may 

not be symmetric. The choice between the ARDL and the NARDL model depends on the specific characteristics 

of the data and the research question. If the focus is on identifying a long-run equilibrium relationship and the data 

have stationarity properties consistent with the assumptions of the ARDL model, then the ARDL model may be 

an appropriate choice. However, if the focus is on examining potential nonlinearities or asymmetries in the 

relationship, then the NARDL model may provide a more complete representation of the underlying dynamics. As 

a result, this ability of the NARDL model is particularly valuable when analyzing systems in which increases and 

decreases in the independent variables have different effects. In addition, the NARDL approach can accommodate 

different orders of integration between the variables, including I(0), I(1) and cointegrated structures. 

 

The general form of the ARDL model can be expressed as follows:  

 
𝐶𝑂2,𝑡 = 𝑐 + 𝜎𝐶𝐸 + 𝛽𝑅𝐸𝑁𝑡 + 𝜃𝐹𝑅𝑡 + 𝜂𝐺𝐷𝑃𝑡 + ∅𝑃𝑂𝑃𝑡 + 𝑢𝑡   (6) 
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Where CO2 is Turkey's total carbon emissions, CE is agricultural efficiency calculated using the CEE method, 

REN is renewable energy consumption, FR is fertilizer consumption per hectare, GDP is gross domestic product, 

and POP is the total population of Turkey. In the above context, c stands for a constant, while β, θ, ∅, and η 

represent the coefficients associated with the explanatory variables. The ARDL model, coupled with the 

corresponding error correction form, allows for lagged effects. Following the methodology outlined by Pesaran, 

Shin, and Smith (2001), the conditional error correction form of the ARDL model used to analyze potential 

cointegration relationships is formulated as follows:  

∆𝐶𝑂2,𝑡 = 𝑐0 + 𝜋𝑛𝐶𝑂2,𝑡−1 +⁡⁡⁡𝜋𝑦𝐶𝐸𝑡−1 + 𝜋𝐺𝑅𝐸𝑁𝑡−1 + 𝜋𝐸𝐹𝑅𝑡−1 + 𝜋𝑋𝐺𝐷𝑃𝑡−1 + 𝜋𝑚𝑃𝑂𝑃𝑡−1 

                     ⁡+∑ ∅′ΔCO2,𝑡−𝑝
𝑝
𝑡=1 + ∑ 𝜔′Δ𝐶𝐸𝑡−𝑝1

𝑝1
𝑡=0 + ∑ 𝑣′ΔREN𝑡−𝑝2

𝑝2
𝑡=0 +∑ 𝜑′Δ𝐹𝑅𝑡−𝑝3

𝑝3
𝑡=0 ⁡⁡⁡⁡⁡⁡⁡⁡⁡    

                 ⁡⁡⁡⁡⁡⁡+∑ 𝜗′ΔGDP𝑡−𝑝4
𝑝4
𝑡=0 + ∑ 𝛿′ΔPOP𝑡−𝑝5

𝑝5
𝑡=0 + 𝑢𝑡            (7) 

In the above equation,⁡𝜋𝑛, 𝜋𝑦, 𝜋𝐺 , 𝜋𝐸,⁡𝜋𝑚, and 𝜋𝑋 are the long-run coefficients, and ∅′, 𝜔′, 𝑣′, 𝛿′, 𝜗′, and 𝜑′ are 

the short-run coefficients vectors. In the assessment of cointegration among variables, the examination involves 

the computation of an F-statistic (denoted as FPSS) within the framework of the null hypothesis asserting that "the 

long-run coefficients are simultaneously zero." The selection of the suitable model, whether constrained or 

unconstrained, is contingent upon the presence or absence of trend or constant components within the long-run 

relationship. Upon validation of the existence of a cointegration relationship, subsequent steps encompass the 

estimation of the long-run coefficients and the formulation of the error correction model (ECM). The nonlinear 

ARDL framework, as theorized by Shin, Yu, and Greenwood-Nimmo (2014), is employed to disentangle the 

positive and negative impacts of the series and to examine potential asymmetric effects. The regression model is 

structured such that CE, REN, and FR are permitted to exert asymmetric effects on CO2, and is expressed as 

follows: 

𝐶𝑂2,𝑡 = 𝑐 + 𝜂+𝐶𝐸𝑡
+ + 𝜂−𝐶𝐸𝑡

− + 𝛽+𝑅𝐸𝑁𝑡
+ + 𝛽−𝑅𝐸𝑁𝑡

− 

                                               +⁡𝜃+𝐹𝑅𝑡
+ + 𝜃−𝐹𝑅𝑡

− + ∅𝐺𝐷𝑃𝑡 + 𝜕𝑃𝑂𝑃𝑡 +⁡v𝑡 ⁡        (8) 

𝑅𝐸𝑁𝑡
+, 𝑅𝐸𝑁𝑡

−, 𝐶𝐸𝑡
+, 𝐶𝐸𝑡

−, and 𝐹𝑅𝑡
+, 𝐹𝑅𝑡

− are the asymmetric variables computed by partial sum processes for 

renewable energy, cross-efficiency series, and fertilizer consumed in agriculture, respectively. Finally, the 

asymmetric error correction model can be expressed as equation (9): 

             𝛥𝐶𝑂2,𝑡 = 𝜌𝐶𝑂2,𝑡−1 + 𝛼+𝑅𝐸𝑁𝑡−1
+ + 𝛼−𝑅𝐸𝑁𝑡−1

− + 𝜆+𝐶𝐸𝑡−1
+ + 𝜆−𝐶𝐸𝑡−1

− + ϛ+𝐹𝑅𝑡−1
+ + ϛ−𝐹𝑅𝑡−1

−  

+∑ 𝛾𝑗𝛥𝐶𝑂2,𝑡−𝑗
𝑝
𝑗=1 + ∑ 𝜏𝑗𝛥𝐺𝐷𝑃𝑡−𝑗

𝑝
𝑗=1 + ∑ 𝜋𝑗𝛥𝑃𝑂𝑃𝑡−𝑗

𝑝
𝑗=1   

                     +∑ (𝜗𝑗
+𝛥𝑅𝐸𝑁𝑡−𝑗

+𝑝1
𝑗=0 + 𝜗𝑗

−∆𝑅𝐸𝑁𝑡−𝑗
− ) + ∑ (𝛿𝑗

+𝛥𝐶𝐸𝑡−𝑗
+𝑝2

𝑗=0 + 𝛿𝑗
−∆𝐶𝐸𝑡−𝑗

− )  

                                 +∑ (𝜕𝑗
+𝛥𝐹𝑅𝑡−𝑗

+𝑝3
𝑗=0 + 𝜕𝑗

−∆𝐹𝑅𝑡−𝑗
− ) + 𝜖𝑡               (9) 

Here, 𝜌, 𝛼+, 𝛼−, 𝜆+, 𝜆−, ϛ+, and ϛ− are the long-run, while 𝛾𝑗,⁡𝜏𝑗,⁡𝜋𝑗, 𝜗𝑗
+, 𝜗𝑗

−, 𝛿𝑗
+, 𝛿𝑗

−, 𝜕𝑗
+, and 𝜕𝑗

− are the short-run 

asymmetric coefficients. The asymmetric cointegration test follows the same procedure as the bound test approach 

of Pesaran, Shin, and Smith (2001). Next, the long-run and short-run asymmetries of renewable energy 

consumption, cross-efficiency, and fertilizer consumption are tested using the Wald test. 

4. DATA SET AND MODEL 

The calculation of agricultural efficiency and the investigation of the relationship between CO2 and agricultural 

efficiency, renewable energy consumption, fertilizer use, population, and GDP were performed separately. 

Therefore, the analysis was carried out in two steps: Calculating agricultural efficiency with CEE and testing the 

symmetric and asymmetric coefficients with ARDL and NARDL models. Agricultural greenhouse gases, 

including N2O, and CH4, rural population as a percentage of total population, fertilizer consumption per hectare, 

percentage of land used for agriculture, and agricultural GDP were used in the CEE model to determine agricultural 

efficiency. Of the variables, rural population, the land used for agriculture, and fertilizer consumption were used 

as input variables, while agricultural GDP and total methane gases were used as output variables. As greenhouse 

gases are considered as outputs of agricultural activities and the objective is to reduce emissions, this variable was 

included in the model as 1/GRN.  
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Figure 1. Agricultural Efficiency Values Based on CEE Method 

 Figure 1 shows the agricultural efficiency values of Turkey for the period 1960-2019*. The most efficient year 

was 1967 with an efficiency value of 0.8989, while the least efficient year was 1960 with an efficiency value of 

0.6303. As discussed in the introduction, the efficiencies evaluated by the CEE method are based on multi-inputs 

and multi-outputs and thus differ from productivity. In a year in which productivity increased, efficiency may 

decrease due to its multi-dimensional structure considering multi-inputs and multi-outputs. Carbon emissions, 

GDP, share of renewable energy in total energy consumption, fertilizer consumption, total population, and 

agricultural efficiency obtained from the CEE model were used as variables of ARDL and NARDL models. Total 

carbon emission was the dependent variable of ARDL/NARDL, while others were explanatory variables.  The 

analysis was applied to the set of annual observations for the years 1960-2019. Table 1 lists the abbreviations, 

sources and definitions of the variables.  

Table 1. Abbreviation and Definition of Variables 

Variable Definition Source  

GDP Gross Domestic Production (constant 2015 US$) Development indicator of World Bank database 

FR Fertilizer Used in Agriculture (kg used per hectare) Our World in Data 

CE Agricultural Efficiency obtained by CEE method Efficiency values is calculated by authors 

POP Total Population Development indicator of World Bank database 

REN Rate of Renewable Energy Consumption International Atomic Energy Agency 

CO2  Carbon Emission (metric tons) Our World in Data 

GRN Greenhouse Gases from Agriculture (metric tons) United State Environmental Protection Agency 

AGDP Share of agricultural GDP in total GDP Development indicator of World Bank database 

LBR Rate of Rural Population in Total Population Development indicator of World Bank database 

LND Percentage of Land Used for Agriculture Development indicator of World Bank database 

Agricultural efficiency essentially reflects the ability to produce more desirable outputs with less input. In this 

framework, we used the CEE methodology to calculate agricultural efficiency scores. This methodology uses a 

composite measure expressed as a weighted sum of outputs divided by a weighted sum of inputs. In particular, the 

weights assigned to each output and input reflect their relative importance within the agricultural production 

system. In our specific case, we have defined two outputs: AGDP: This is the desired output and represents the 

total economic contribution of the agricultural sector. GHGs: This is an undesired output, as the main objective is 

to minimize greenhouse gas emissions associated with agricultural practices. To account for the undesirable nature 

of GRN within the CEE model, we have included its reciprocal, (1/GRN), as an output. This mathematical 

transformation ensures that a reduction in GRN results in an increase in (1/GRN) and thus reflects a more desirable 

outcome in terms of environmental sustainability. Consequently, using the CEE method, we obtained a set of 

agricultural efficiency scores. These scores reflect the relative performance of each agricultural production unit 

within the sample and illustrate its ability to maximize desired outputs (AGDP) while minimizing undesired 

outputs (GRN) for a given level of inputs. Furthermore, the calculated efficiency series was subsequently included 

as one of the independent variables in the ARDL and NARDL models. The inclusion of this variable allows us to 

explore the potential interplay between agricultural efficiency and other factors affecting the dynamics of 

agricultural production. Table 2 presents the descriptive statistics for all the variables used in the analysis. These 

 

* R software is used to calculate agricultural efficiencies of Turkey.   
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statistics provide an initial understanding of the distribution and characteristics of the data and form the basis for 

further statistical investigation. 

Table 2. Descriptive Statistics 

Variable  Mean  Maximum Minimum  Std. Dev.  

GDP 26.594 27.628 24.957 26.281 

FR 65.846       149.642   3.205 36.294 

CE   0.829   0.899   0.630   0.071 

POP 17.796 18.240 17.129 16.613 

REN 23.428 55.841   9.437 12.022 

CO2  18.938 19.868 16.635 18.621 

GRN   1.479   1.827   1.155   0.179 

AGDP 22.253 54.919   5.776 14.931 

LBR 45.164 68.485 24.370 14.235 

LND 50.368 53.562 47.447 1.537 

The transformed data was used to create the CEE model. LBR, LND and FR are among the commonly used inputs 

in the calculation of agricultural efficiency (Shanmugam and Venkataramani 2006; Nandy and Singh 2020), while 

AGDP is a widely used indicator of agricultural output (Manogna and Mishra 2022). The model then assessed the 

relative efficiency of each decision making unit (DMU) by comparing its resource utilisation in terms of output 

and environmental impact with the most efficient frontier set by the other DMUs. In essence, agricultural 

efficiency, as measured by the CEE approach, reflects the ability to achieve a desired level of agricultural output 

(AGDP) while using less resources (LBR, LND and FR) per unit of output. Lower values for the resource 

consumption variables and higher values for the output and environmental impact variables indicate higher 

agricultural efficiency. According to Table 2, the maximum share of renewable energy in total energy consumption 

was 55.84%, the average fertilizer use per hectare was 65.84 kg, and the highest efficiency had a value of about 

0.90, while the lowest efficiency value was 0.63 for the analyzed period. The maximum share of agriculture in 

GDP was 54.91% and the minimum share was 5.77%.  

The application of Autoregressive Distributed Lag and Nonlinear Autoregressive Distributed Lag models requires 

the determination of the stationarity properties of the variables involved. Stationarity refers to the statistical 

property that a time series has a constant mean, variance, and covariance over time. In this context, we use the Ng-

Peron unit root test to assess the homogeneity or order of integration of the variables. This test is particularly 

appropriate because it is robust to potential serial correlation and heteroskedasticity within the data. The ARDL 

and NARDL bounds tests have specific stationarity requirements. Ideally, the dependent variable should be 

integrated of order one, referred to as I(1), indicating the presence of a stochastic trend. The independent variables, 

on the other hand, can be integrated of either order zero (I(0)), which represents a stationary process, or order one 

(I(1)). This flexibility makes it possible to include both stationary and non-stationary independent variables in the 

models, thus capturing both short-run and long-run dynamics. Table 3 shows the results of the Ng-Peron unit root 

test for all variables used in the ARDL and NARDL estimations below. These results serve as a guide for model 

selection and ensure the validity of the estimated coefficients. 

Table 3. Ng-Peron Unit Root Test 

  Trend and Constant Constant Only 

Variables  MZa MZt MSB MPT MZa MZt MSB MPT 

CO2 -2.11 -0.89 0.42  35.84 2.29 3.73 1.63 220.61 

CE -3.02 -1.01 0.34  25.10 -1.82 -0.94 0.52    13.26 

REN 0.73 0.35 0.49  62.22 0.37 0.56 1.54 134.73 

FR -4.81 -1.34 0.28  17.75 2.87 3.08 1.07 108.52 

GDP -0.45 -0.18 0.40  41.52 3.83 6.70 1.75 318.78 

POP -2.65 -0.77 0.29  23.41 2.08 3.38 1.63 212.31 

∆CE -18.31 -3.02  0.16* 5.04 -8.63**  -2.05**  0.24* 2.95** 

∆CO2    -28.66***   -3.56***    0.12***  4.45**    -26.76***   -3.52***    0.13*** 1.35** 

∆REN    -27.76***   -3.58***    0.13***  4.13**   -24.24***   -3.29***    0.14***  1.65*** 

∆FR    -70.33***   -5.88*** 0.08   1.50***    -109.58***   -7.33***    0.07***  0.34*** 

∆GDP    -28.46***   -3.72***    0.13***   3.48***  -22.65***   -3.37***    0.15***  1.08*** 

∆POP -3.58     -1.31 0.37  24.99 -8.70** -1.98**   0.23** 3.21* 

Critical Values  

-23.80 -3.42 0.14 4.03 -13.80 -2.58 0.17 1.78 

-17.30 -2.91 0.17 5.48 -8.10 -1.98 0.23 3.17 

-14.20 -2.62 0.19 6.67 -5.70 -1.62 0.28 4.45 

(*), (**) and (***) are significance levels of 10%, 5% and 1%, respectively. ∆⁡represents the difference of variables. The 

unit root statistic without an asterisk means that the hypothesis is not rejected. 
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The Ng-Peron unit root test can be performed in two forms: the model with trend and constant and the model with 

constant only. According to the results in Table 3, the null hypothesis that the variables are nonstationary could 

not be rejected at the level for both of the models. The other hand, the null hypothesis was rejected for most 

differentiated variables in the model with trend and constant, while rejected for all first differentiated variables in 

the model with constant. Thus, the homogeneity assumptions underlying the ARDL/NARDL bounds test were met 

for all variables. This means that the explanatory variables exhibit zero or first-order homogeneity, while the 

dependent variable exhibits first-order homogeneity.    

Table 4. ARDL Bound Test  

VAR Lag Analysis (ARDL) ARDL Bound Test  

Lag AIC SC F Statistic Signif. I(0) I(1) 

0   05.584   5.874  10% 2.08 3.00 

1 -10.856  -8.252            10.72***  5% 2.39 3.38 

2 -14.257   -9.339*   1% 3.06 4.15 

3    -16.491* -9.257        

Breusch-Godfrey LM Test 

     (Autocorrelation)   Prob. 

   Breusch-Pagan-Godfrey 

      (Heteroskedasticity)  

 

       Prob.  

F-statistic 0.025 0.9758    F-statistic 1.54 0.1269 

Obs*R-sq. 0.075 0.9633    Obs*R-sq. 23.01 0.1486 

 

Breusch-Godfrey LM Test checks for the presence of autocorrelation in the errors (residuals) of a regression model. 

Autocorrelation means that the errors of one observation are correlated with the errors of the preceding or 

subsequent observations. The LM statistic is derived from an auxiliary regression in which the residuals of the 

original model are used as explanatory variables. A statistically significant LM statistic indicates the presence of 

autocorrelation in the errors of the model. When autocorrelation is present, the assumptions of the model are 

violated, which can lead to unreliable coefficient estimates and standard errors. Besides, the Breusch-Pagan-

Godfrey (BPG) test examines the presence of heteroskedasticity in the errors of a regression model. 

Heteroskedasticity refers to a situation where the variance of the errors is not constant across observations.  In the 

Breusch-Pagan-Godfrey, the residual values from the original model are used as independent variables. A 

statistically significant BPG statistic indicates the presence of heteroskedasticity. If heteroskedasticity is present, 

the efficiency of the model may be compromised, i.e. the estimates may not be as accurate as they could be. 

 

Table 4 contain the lag analysis of the VAR method, ARDL bound test results, and diagnostic test results.  The 

VAR analysis suggested two lags and three lags based on the SC criteria and the AIC criteria, respectively. Since 

we used the SC information criteria for both the bounds test and the estimation of the long-run coefficients, the 

lag was set to two. Accordingly, the F-statistic was calculated as 10.72, indicating rejection of the null hypothesis 

that there is a cointegration relationship between the variables, so it means that the variables move together in the 

long run. In statistics and econometrics, this means that "even if individual time series are not stationary, a 

combination of them is". The Breusch-Godfrey LM test for autocorrelation and the Breusch-Pagan-Godfrey test 

for heteroscedasticity implied the validity of the ARDL bounds test.  Since the probability values of the Breusch-

Godfrey LM and BPG tests are greater than the conventional significance levels in statistics and econometrics 

(1%, 5%, and 10%), the results of the VAR model and ARDL Bound Test are valid. Having established that there 

is a long-run relationship, the next step is to estimate the long-run coefficient of the ARDL model. 

Table 5. Long-Run Coefficients of ARDL and Error Correction Models  

Long-Run Coefficients of ARDL Model Error Correction Model Coefficients 

Dependent Variable: CO2 Dependent Variable: ∆CO2 

 Coef.      Std. Error   Prob.      Coef. Std. Error  Prob. 

  CE -0.640      -2.59 0.0127 ∆CE -0.195 -4.29 0.0001 

  REN -0.028      -8.71 0.0000    ∆CE(-1)  0.152 3.16 0.0028 

  FR 0.005       3.52 0.0010   ∆REN -0.024 -12.28 0.0000 

  GDP 0.209       2.23 0.0306 ∆FR  0.001 3.05 0.0038 

  POP 0.830       2.73 0.0090    ∆GDP  0.517 6.88 0.0000 

 Constant -3.508      -0.90 0.3746    ECM* -0.399 -5.59 0.0000 

Table 5 shows the long run, short run, and error correction coefficients of the ARDL model. In estimating the 

models in Table 5, the lag of the variables was allowed to vary.  All long-term coefficients were statistically 

significant at conventional levels of significance. The coefficients of CE and REN had negative signs, while the 

coefficients of FR, GDP and POP had positive signs. The negative sign indicates a positive effect on CO2 and thus 

on climate change. A 1% increase in CE would result in an average decrease in CO2 emissions of 0.64%. Among 

the estimated coefficients, the one for agricultural production efficiency (CE) stands out as the most negative. This 
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statistically significant result underscores the critical role of increased agricultural efficiency in mitigating climate 

change. A larger negative coefficient for CE means that an increase in agricultural efficiency leads to a greater 

reduction in carbon emissions. This result is consistent with our initial hypothesis that optimizing the use of inputs 

in the agricultural sector can significantly contribute to reducing GHG emissions. Simply put, producing the same 

amount of agricultural products with fewer resources results in a smaller environmental footprint. By minimizing 

resource waste and optimizing production processes, agricultural activities can be diverted from their traditional, 

emissions-intensive paths. Therefore, our analysis underscores the urgent need to implement strategies to promote 

efficient agricultural production. By encouraging the adoption of new strategies, policymakers and stakeholders 

can contribute to a more environmentally sustainable agricultural sector that ultimately reduces carbon emissions 

and mitigates the negative effects of climate change. Renewable energy has become a critical factor in global 

efforts to combat climate change. Consequently, increasing the use of renewable energy sources is a promising 

strategy to mitigate climate change, and our empirical analysis supports this notion. The estimated coefficient for 

REN shows that, on average, a 1% increase in renewable energy consumption leads to a 0.028% decrease in total 

carbon emissions. This negative coefficient indicates an inverse relationship between REN and carbon emissions, 

which is consistent with scientific evidence that renewable energy sources such as solar, wind, hydro, and 

geothermal generate electricity with minimal or no carbon emissions. By displacing fossil fuel generation, 

increased use of renewable energy can significantly reduce greenhouse gas emissions at the source. This reduction 

in emissions has a cumulative effect on mitigating the long-term effects of climate change, such as rising global 

temperatures, extreme weather events, and rising sea levels, but it is important to recognize that this is only one 

piece of the puzzle. While the positive impact of RENs is undeniable, a comprehensive approach to mitigating 

climate change requires a multi-faceted strategy. This strategy could include advances in energy storage 

technologies, improved energy efficiency measures across all sectors, and the development of carbon capture and 

storage technologies. In summary, our findings highlight the central role of renewable energy consumption in 

addressing climate change. By accelerating the transition to renewable energy, we can collectively contribute to a 

more sustainable future for our planet. 

The effects of the other independent variables on climate change show a positive relationship. The use of chemical 

fertilizers, GDP and total population all contribute statistically significantly to the increase in greenhouse gas 

emissions. The estimated regression coefficients show that the total population has the strongest positive influence 

on climate change. A 1% increase in population is associated with an elasticity of 0.83%, which means that for 

every 1% increase in population, carbon emissions increase by 0.83%. This positive relationship between 

population growth and climate change can be attributed to several factors. A larger population requires higher 

resource consumption in various sectors, which can lead to higher energy consumption and waste generation. In 

addition, population growth often requires an expansion of agricultural production, which may be associated with 

practices that contribute to greenhouse gas emissions, such as the use of chemical fertilizers. The positive 

coefficient for GDP suggests that economic activity also plays a role in exacerbating climate change. This can be 

explained by the fact that many economies continue to rely on fossil fuels as their primary source of energy. As 

economic output increases, so does the demand for energy, which can lead to an increase in greenhouse gas 

emissions associated with the burning of fossil fuels. In addition, economic growth can lead to increased 

consumption, which in turn contributes to resource depletion and the associated environmental impacts. It is 

important to note that while the impact of fertilizer use is statistically significant, it appears relatively small 

compared to population growth and GDP. Further research is needed to investigate the specific mechanisms by 

which fertilizer use contributes to greenhouse gas emissions and to identify potential mitigation strategies.  

Agriculture accounts for almost 30% of total greenhouse gas emissions. Therefore, efficient use of inputs in 

agricultural production is critical to avoid the undesirable effects of greenhouse gas emissions such as N2O and 

CH4. Using less fertilizer, land, and labor to produce more agricultural output, i.e., a higher efficiency value 

achieved through the CEE method, leads to a reduction in greenhouse gases. Since fertilizers are a major source 

of N2O and CH4, which have a tremendous heat-trapping capacity, reducing fertilizer use leads to a reduction in 

greenhouse gas emissions. REN is another important variable affecting climate change. Fossil fuels account for 

nearly 70% of total greenhouse gas emissions. In this sense, transitioning to clean energy or using more renewable 

energy would be a breakthrough in reversing the undesirable effects of climate change. In the context of climate 

change impacts, the results of the estimated ARDL model meet all a priori expectations for the variables REN, 

CE, and FR. The error correction coefficient (-0,399), calculated in Error Correction Model (ECM) signalized that 

39.9% of a shock to CO2 is corrected after one period. In other words, the effect of a shock on the dependent 

variable disappears after about two and a half years.  
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Table 6. VAR Analysis and Bound Test for NARDL Model 

Var Lag Analysis NARDL NARDL Bound Test 

 Lag AIC SC F-Stat.    Singif.  I(0) I(1) 

0    7.4246  7.7501 4.511***    10% 2.26 3.34 

1 -10.2586 -7.0036                5% 2.55 3.68 

2 -13.8354  -7.6508*                1% 3.15 4.43 

3  -16.5809* -7.4668       

Breusch-Godfrey LM 

(Autocorrelation)     Prob.  

Breusch-Pagan-Godfrey 

(Heteroscedasticity)  Prob. 

F-statistic     0.6261     0.5423 F-statistic   1.1503 0.3540 

Obs*R-squared     2.4820     0.2891 Obs*R-squared 27.4083 0.3358 

The NARDL model examines the long-run asymmetric impact of the explanatory variables on carbon emissions.  

Table 6 shows the results of the VAR analysis and the cointegration test, as well as the diagnostic test including 

autocorrelation and heteroscedasticity for the NARDL bound test. According to the VAR analysis, the information 

criteria SC and AIC recommend two and three lags as optimal. As in the ARDL model, we preferred the SC 

information criterion to test the cointegration relationship between the variables. The F-statistic of the NARDL 

cointegration test, calculated as 4.511, indicates a long-run relationship between the variables at the 1% 

significance level. Also, the Breusch-Godfrey LM test for autocorrelation and the Breusch-Pagan-Godfrey test for 

heteroscedasticity showed the validity of the NARDL cointegration test results because the null hypothesis of both 

test could not be rejected†.   

Table 7. Log-Run and Short-Run Coefficients Asymmetric Tests, NARDL and Error Correction Models 

Long-Run Coefficient of NARDL Error Correction Model of NARDL 

Dep. 

Variable: CO2 Coeff. 

Std. 

Error Prob. 

Dep.  

Variable: ∆CO2 Coeff. 

Std. 

Error Prob. 

     REN- -0.0124 0.0050 0.0195  (Ren+) -0.0158 0.0054 0.0067 

     REN+ -0.0308 0.0026 0.0000 (Ren-) -0.0392 0.0058 0.0000 

     CE- -0.4000 0.1321 0.0051 (CE- (-1)) -0.5086 0.1721 0.0061 

     CE+ -0.9647 0.1480 0.0000 (CE+ (-1)) -1.2267 0.1891 0.0000 

     FR-  0.0010 0.0003 0.0082 (FR- (-1))  0.0012 0.0007 0.0750 

     FR+  0.0054 0.0007 0.0000 (FR+ (-1))  0.0068 0.0013 0.0000 

     POP  1.0095 0.3163 0.0034 (POP(-1))  1.2837 0.4697 0.0106 

    GDP  0.6621 0.0794 0.0000 (GDP(-1))  0.8419 0.1241 0.0000 

Long-Run and Short-Run  

Asymmetry Tests 

∆ (Ren-) -0.0344 0.0025 0.0000 

∆ (Ren- (-1)) -0.0077 0.0024 0.0037 

    ∆ (Ren- (-2)) -0.0117 0.0023 0.0000 

 Wald Test ∆ (CE- (-1))  0.4921 0.0693 0.0000 

 WLR  WSR ∆ (CE- (-2))  0.3446 0.0718 0.0000 

   REN 
6.58  

Null 
∆ (CE+) -0.5222 0.0694 0.0000 

(0.0157)  ∆ (CE+ (-1))  0.3485 0.0671 0.0000 

CE 
14.22  11.27 ∆ (CE+(-2))  0.1590 0.0436 0.0010 

 (0.0007)  (0.0002) ∆ (FR+(-1)) -0.0025 0.0004 0.0000 

FR 
20.62  1.13 ∆ (FR+(-2))   0.0029 0.0005 0.0000 

 (0.0001)                            (0.2973) ∆ (FR-) -0.0006 0.0003 0.0825 

*  WLR is the long-run asymmetric test statistic of the 

Wald test, WSR is the short-run asymmetric test statistic 

of the Wald test. The significance level of each test 

statistic is given in parentheses. The dependent variable of 

NARDL is CO2, the dependent variable of Error 

Correction Model is D(CO2).   

*  ETC(-1) is error correction term. 

∆ (POP) 65.7608 6.0256 0.0000 

∆ (POP(-1))  -72.3947 6.2749 0.0000 

∆ (GDP)   0.7688 0.0513 0.0000 

∆ (GDP(-1))   0.2119 0.0542 0.0005 

Constant  -21.3641 1.6521 0.0000 

@Trend  -0.0405 0.0031 0.0000 

ETC(-1) -1.2716 0.0980 0.0000 

Table 7 contains the NARDL long-run coefficients and the error correction model. The coefficients sign of the 

NARDL model were consistent with those of the ARDL model. All long-run coefficients had statistically 

significant effects on CO2 in Turkey. Accordingly, REN and CE had positive effects on CO2, while FR, GDP and 

POP had negative effects. The Wald test for long-run asymmetric effects of REN (WLR) indicated that the effects 

of increasing and decreasing REN were not equal. A 1% increase in REN resulted in a -0.0308% decrease in CO2, 

 

† The null hypothesis of the Breusch-Godfrey LM test is “There is no serial correlation” and the null hypothesis of Breusch-Pagan-Godfrey 

test is “The residuals are distributed with equal variance”. 
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while a 1% decrease in REN resulted in only a -0.0124% decrease in CO2. In other words, the asymmetric effect 

of (REN+) on CO2 was 2.5 times greater than that of (REN-).  Therefore, increasing the share of renewable energy 

in total energy consumption would contribute more to eliminating the long-term undesirable effects of climate 

change. The short-term asymmetric effects of REN (WRS) could not be tested because the ∆(REN+) coefficient 

was not included in the error correction model. Both tests implying no difference between long- and short-run 

asymmetric effects of CE on CO2 were rejected at all significance levels. Accordingly, (CE-) and (CE+) had 

negative coefficients, but the coefficient of (CE+) was 2.4 times larger than that of (CE-). The result suggests that 

increasing agricultural efficiency or using agricultural inputs more efficiently would lead to greater reductions in 

CO2 emissions and thus reduce the harmful effects of climate change. Finally, the results of the Wald test showed 

the asymmetric effects of FR on CO2 only in the long-run. An increase in fertilizer use had a much greater effect 

on greenhouse gases than a decrease. The effect of (FR+) was about 5 times greater than that of (FR-). Furthermore, 

there was no difference between the short-term positive and negative effects of FR on climate change. Therefore, 

it was concluded that the use of fertilizers in agriculture could have more harmful effects on the climate in the 

long-term than in the short-term. According to the long-run coefficients of the NARDL model, GDP and POP had 

positive signs as expected, i.e., negative impacts on greenhouse gases. The main source of carbon emissions is 

human activities such as fossil fuel consumption, industrial production, and agriculture. An increase in population 

means more human activity and thus more greenhouse gas emissions, and more population means more GDP 

production. Therefore, these two variables would create a snowball effect on CO2. 

5. CONCLUSIONS AND DISCUSSIONS  

Agricultural inputs, such as chemical fertilizers, play an important role in increasing agricultural production. 

Increased production is often associated with increased emissions of greenhouse gasses, including CO2, CH4 and 

N2O. These emissions result from a variety of agricultural practices, including the use of fertilizers and changes in 

land use, even if they increase agricultural productivity. Therefore, rather than focusing solely on maximizing 

agriculcural production, agricultural efficiency is increasingly becoming the cornerstone of sustainable agricultural 

practices, as it has a direct impact on reducing agricultural GHG emissions. It is important to recognize that 

agriculture is not the only contributor to climate change. Heavy reliance on fossil fuels is another major source of 

carbon emissions. So, a multi-pronged approach is needed to effectively combat climate change.  In this context, 

to determine the impact of fertilizer use, renewable energy consumption, and agricultural efficiency that is 

determined by the cross-efficiency evaluation method on climate change, we analyze the long-term relationship 

between CO2 and explanatory variables by using the ARDL and NARDL models. This study uses a two-step 

framework to investigate the complex interactions between agricultural efficiency, renewable energy consumption, 

and climate change. The first step focuses on the calculation of agricultural efficiency. We utilize the CEE method, 

a DEA-based approach, to assess the relative efficiency of agricultural production units. This allows us to identify 

best practices and potential areas for improvement in the agricultural sector. In the second phase, we investigate 

the long-term relationships between renewable energy consumption, agricultural efficiency, and climate change, 

represented by total carbon emissions. To do this, we use two econometric techniques: the ARDL and NARDL 

models. These models are particularly well suited to analyze dynamic relationships and to account for possible 

non-linearities in the data. The empirical results of both ARDL and NARDL models confirm the existence of 

statistically significant long-run relationships between the independent variables and carbon emissions. The results 

show that agricultural efficiency and the share of renewable energy consumption have a positive impact on carbon 

emissions, indicating their potential to mitigate climate change. Conversely, factors such as fertilizer use, total 

population, and GDP have a negative relationship with carbon emissions. Interestingly, the coefficient for 

agricultural efficiency is significantly larger than that for renewable energy consumption and fertilizer use, 

indicating a potentially more important role for agricultural efficiency in mitigating climate change. Moreover, the 

coefficients of the NARDL model support the results of the ARDL model. Both models consistently show that 

increasing agricultural efficiency and renewable energy consumption helps mitigate the negative effects of carbon 

dioxide emissions, while factors such as fertilizer use, population growth, and economic expansion exert an 

opposite pressure on climate change. In summary, this study highlights the important role of agricultural efficiency 

in combating to climate change. While both renewable energy and reduced fertilizer use are promising, optimizing 

agricultural practices proves to be a far more effective strategy in this battle. The results presented here provide 

valuable insights for policy makers seeking to formulate effective strategies for sustainable agricultural 

development and climate change mitigation. Consequently, the need to mitigate climate change requires a 

multifaceted approach, and the agricultural sector is a critical area for action. In Turkey, increasing agricultural 

efficiency-the ability to produce more with less input-is emerging as a key strategy. This can be achieved through 

a combination of technological advances, improved resource management, and the adoption of sustainable 

agricultural practices. One promising avenue is the exploration of alternative agricultural practices, such as low-

emission regenerative or organic agriculture. These approaches are not only about increasing productivity, but also 

about environmental sustainability. Regenerative agriculture focuses on restoring soil health and ecosystem 

services, while organic agriculture avoids the use of synthetic fertilizers and pesticides. By implementing these 
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methods, Turkey can potentially achieve a decoupling effect in which agricultural production increases while 

greenhouse gas emissions decrease. Besides, government policies can play an important role in promoting the 

transition to more sustainable agricultural practices in Turkey. Financial instruments, such as subsidies for organic 

fertilizers or cost-sharing programs for the adoption of regenerative techniques, can provide incentives for farmers 

to shift from conventional, input-intensive methods to the use of renewable energy sources. In addition, educational 

initiatives and technical assistance programs can provide them with the knowledge and skills necessary for 

successful implementation. While increasing agricultural efficiency is critical, it must be done in a way that 

minimizes negative impacts on the environment. For example, the uncontrolled use of chemical fertilizers and the 

inefficient use of inputs may initially increase production, but contribute significantly to greenhouse gas emissions 

through processes such as the release of nitrous oxide. The introduction of stricter regulations or the promotion of 

more targeted fertilizer application techniques can help to mitigate these negative effects. In summary, sustainable 

agricultural development in Turkey can only be achieved through a multi-pronged approach. By prioritizing 

efficiency gains through technological advances and sustainable practices, combined with supportive government 

policies and environmental protection measures, Turkey can help moderate undesired effects of climate change 

while ensuring long-term food security. 
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