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NORM RETRIEVAL IN DYNAMICAL SAMPLING FORM
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Abstract. In this article, we study the construction of norm retrievable

frames that have a dynamical sampling structure. For a closed subspace W
of Rn, we show that when the collection of subspaces {AℓW}i∈I is norm re-

trievable in Rn for a unitary or Jordan operator A, then there always exists
a collection of norm retrievable frame vectors that have a dynamical sampling

structure in Rn.

1. Introduction

Given a signal x ∈ H in a separable Hilbert space with a given orthonormal
basis {ei}i∈I in H, Parseval’s identity allows us to reconstruct the signal x from
the measurements{⟨x, ei⟩}i∈I . The set of coefficients {⟨x, ei⟩}i∈I is unique. We
are unable to recreate the signal x from the remaining data if a measurement is
missing or damaged. We can see the need for a set of vectors that allows for
some loss resilience while also having a reconstruction property similar to Parseval’s
identity. A frame {xi}i∈I for H allows for redundancy while preserving a structure
so that reconstruction is possible. Now, the set of measurements {⟨x, xi⟩}i∈I is not
necessarily unique.

We can reconstruct the signal x from the measurements {⟨x, xi⟩} using the frame
vectors {xi}i∈I in H. But let’s say that the measurements’ phase was lost or
was impossible to determine. These restrictions may apply in a setting like a
tomography or crystallography. We are unable to create the exact signal x when
we just have the phaseless measurements {|⟨x, xi⟩|}. The idea of phase retrieval for
Hilbert space frames was first proposed by Casazza, Balan, and Edidin [11] in 2006
to extract the phase of a signal from a redundant linear system using the intensity
measurements {|⟨x, xi⟩|}. They showed that we require a minimum 2n− 1 vectors
to have phase retrieval in Rn. Phase retrieval is a stronger condition than being a
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frame. A set of vectors does not meet the requirements for phase retrieval if it is
not a frame. Norm retrieval is a different condition that is less strong than phase
retrieval. The notion of norm retrieval is described in [10], a collection of vectors
performs norm retrieval if two vectors in the Hilbert space have the same intensity
measurements, then they have the same norm. The phase retrieval conditions are
relaxed by the norm retrieval property. There exist norm retrievable sets that are
not phase retrievable, but every phase retrievable set is also a norm retrievable
set. Fewer vectors are needed for norm retrieval compared to phase retrieval. For
instance, orthonormal bases are not phase retrievable but they are norm retrievable
sets.

When Ω ⊆ {1, 2, ..., n} are the coarse sample points in H, the measurements
{⟨x, ei⟩ : i ∈ Ω} have insufficient information in general to recover the original signal
x. Given an operator A on H, suppose the signal x ∈ H evolves through the operator
A over time to become Aℓx at time ℓ. Now, we can have extra information {Aℓx(i) :
i ∈ Ω} about the signal x. In [6], Aldroubi and his collaborators recently showed
that x can be recovered from the measurements of {⟨Aℓx, ei⟩ : ℓ = 0, 1, . . . , L; i ∈
Ω} if and only if the time-space samples is a set of frame vectors.

In this article, We will look at how these two most recent advancements in frame
theory cross. We will attempt to demonstrate when norm retrieval is feasible under
the unitary and the Jordan operators using samples obtained from the dynamical
sampling structure. We consider the norm retrieval problem in the dynamical
sampling setting in the finite-dimensional real Hilbert space Rn.

2. Preliminaries

In this section, we provide some of the terminology and findings in frame the-
ory, phase retrieval, norm retrieval, and dynamical sampling that are essential to
understanding the conclusions we reach.

2.1. Frames.

Definition 1. [23] A set of vectors {xi}i∈I is said to be a frame in a Hilbert
space H if there exist constants A and B with 0 < A ≤ B < ∞ such that

A||x||2 ≤
∑
i∈I

|⟨x, xi⟩|2 ≤ B||x||2, for all x ∈ H. (1)

A and B are called upper and lower frame bounds of the frame {xi}i∈I , respec-
tively. If A = B, then {xi}i∈I is called a tight frame. The set of vectors {xi}i∈I

is called a Parseval frame if A = B = 1.
Let {ei}i∈I be the standart orthonormal basis in ℓ2(I). Given the set {xi}i∈I in

H, the operator Φ : H → ℓ2(I), which is generated from the set {xi}i∈I ,

Φ(x) =
∑
i∈I

⟨x, xi⟩ei for all x ∈ H (2)
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is called the analysis operator associated with the set {xi}i∈I .
The synthesis operator is the adjoint Φ∗ : ℓ2(I) → H of the analysis operator

Φ and is defined by

Φ∗ : ℓ2(I) → H, Φ∗((ci)i∈I) =
∑
i∈I

cixi. (3)

The operator S = Φ∗Φ : H → H is called the frame operator of the frame
{xi}i∈I and is defined by

S(x) = Φ∗Φ(x) =
∑
i∈I

⟨x, xi⟩xi. (4)

The operator S is a bounded, self adjoint, positive, and invertible operator that
satisfies the operator inequality AI ≤ S ≤ BI where A and B signify the upper and
lower frame limits and I denotes the identity operator on H. A frame is complete
if it meets the lowest frame criteria. On the other hand, the upper frame condition
requires a well-defined analysis operator.

Definition 2. [25] Given a frame {xi}i∈I in H, if there are scalars {ci}i∈I such
that {cixi}i∈I is a Parseval frame, then the frame {xi}i∈I for a Hilbert space H is
said to be scalable. If there is a value of δ > 0 , such that ci > δ for all i ∈ I, then
the set {xi}i∈I is known as a strictly scalable frame.

2.2. Phase Retrieval and Norm Retrieval. For the given set {xi}i∈I in H, the
reconstruction of x up to a constant phase from the absolute value of the inner
product of the coefficients measurements {⟨x, xi⟩}i∈I is called phase retrieval which
defined by Balan, Casazza, and Edidin in [11].

Applications, where measurements of a signal can only identify by amplitude
rather than the phase, are included in speech recognition [30], optics applications
like X-ray crystallography [20, 29], quantum state tomography [28], and electron
microscopy [27, 31]. Phase retrieval problem has been extensively studied in [10–
13,15–18,24].

Definition 3. [11] A collection of vectors {xi}Mi=1 in Rn is called phase retrieval
if for all x, y ∈ Rn which satisfies |⟨x, xi⟩| = |⟨y, xi⟩| for all i = 1, ..,M , then x = cy
where c = ±1 in Rn.

Definition 4. [10] A collection of vectors {xi}Mi=1 in Rn is called norm retrieval
if for all x, y ∈ Rn which satisfies |⟨x, xi⟩| = |⟨y, xi⟩| for all i = 1, ..,M , then
||x|| = ||y||.

Lemma 1. [17] In Rn, if the number of n vectors {xi}ni=1 do norm retrieval, they
have to be orthogonal to each other.

There is also the idea of phase and norm retrieval by projections, which is agree
with our earlier definitions when the projections are one-dimensional.
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Definition 5. [10] Let {Wi}Mi=1 be a collection of subspaces in Rn and define
{Pi}Mi=1 to be the orthogonal projections onto each of these subspaces. We say that
{Wi}Mi=1 (or {Pi}Mi=1) yields phase retrieval if for x, y ∈ Rn satisfying ||Pix|| = ||Piy||
for all i = 1, ...,M , then x = cy for some scalar c with c = ±1.

Definition 6. [10] Let {Wi}Mi=1 be a collection of subspaces in Rn and define
{Pi}Mi=1 to be the orthogonal projections onto each of these subspaces. We say that
{Wi}Mi=1 (or {Pi}Mi=1) yields norm retrieval if for x, y ∈ Rn satisfying ||Pix|| = ||Piy||
for all i = 1, ...,M , then ||x|| = ||y||.

Definition 7. [11] A frame {xi}Mi=1 in Rn satisfies the complement property if
for any index set I ⊂ {1, . . .M}, either span{xi}i∈I = Rn or span{xi}i∈Ic = Rn.

Theorem 1. [11] A frame {xi}Mi=1 in Rn yields phase retrieval if and only if it
has the complement property.

2.3. Dynamical Sampling. Given a bounded operator A, a vector b ∈ H and
ℓ ∈ N, we can get a collection of vectors {b, Ab,A2b, ...Aℓb} by applying the operator
A to the vector b. The dynamical sampling problem which defined by Aldroubi,
Davis, and Krishtal in [7] is looking for the conditions on the set of vectors {bi ∈
H : i ∈ Ω, |Ω| < dim(H)}, the operator A and ℓi ∈ N such that the collection of
vectors

{bi, Abi, ..., A
ℓibi}{i∈Ω,ℓi∈N}

is a frame in H. In 2012, Aldroubi and his collaborators created a mathematical
system for a dynamical sampling structure with results appearing in [5, 6]. The
dynamical sampling problem gets the attention of other researchers and has been
recently studied by [1–4,8, 9, 14,22,26].

Let A be a matrix that can be written as A∗ = B−1DB where D is a diagonal
and B is an invertible matrix. Let {λj}j∈J be distinct eigenvectors of D and
{Pj}j∈J denote the orthogonal projections in H onto the eigenspaces {Ej}j∈J of D
associated to the eigenvalues {λj}j∈J . Then we have the following result.

Theorem 2. [6, Thm: 2.2] Let Ω ⊆ {1, 2, . . . , n} and {bi : i ∈ Ω} be vectors
in Rn. Let D be a diagonal matrix and ri be the degree of the D-annihilator of
bi. Then {Djbi : i ∈ Ω; j = 0, 1, ..., li; li = ri − 1} is a frame of Rn if and only if
{Pj(bi) : i ∈ Ω} is a frame of Ej for all j ∈ J .

The authors of [6] extended the Theorem 2 to non-diagonalizable operators as
follows.

Theorem 3. [6, Thm 2.6] Let J be a matrix in Jordan form as in 9. Let Ω ⊆
{1, 2, . . . , n} and {bi : i ∈ Ω} be vectors in Rn, ri be the degree of the J-annihilator
of the vector bi and li = ri − 1 . Then the following propositions are equivalent.

(1) The set of vectors {Jjbi : i ∈ Ω, j = 0, 1, ..., li, } is a frame for Rn.
(2) For every s = 1, .., n, {Ps(bi) : i ∈ Ω} is a frame for Ws.
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3. Results

We first start with creating a standard dynamical sampling system in Rn using
a bounded linear operator A. Assume that the vector b ∈ Rn evolves through the
operator A to become the vector Aℓb at time ℓ ∈ N. Let Ω ⊆ {1, 2, ..., n} be the
sample points and define AℓW = span{Aℓbi ∈ Rn; i ∈ Ω}.

In [14], we show the construction of norm retrievable sets {Aℓbi}{ℓ=0,1,...M,i∈Ω}
that arise from a dynamical sampling system in a finite-dimensional real Hilbert
space Rn. In this paper, we show the relations between the norm retrievable set
of {Aℓbi}{ℓ=0,1,...M,i∈Ω} in Rn and the set of projections {Pℓ}{ℓ=0,1,...M} under
the unitary and Jordan operator, where Pℓ is the orthogonal projection onto the
subspace AℓW .

First, we show that the collection of vectors {Aℓbi}{ℓ=0,1,...M,i∈Ω} is norm re-
trievable in Rn if the identity operator on Rn is in the spanning set of the rank
one projection of the vectors {bi ∈ Rn : i ∈ Ω, |Ω| < n} as shown in the following
Theorem 4.

Theorem 4. Let A be a bounded linear operator on Rn and {bi ∈ Rn : i ∈ Ω, |Ω| <
n} be a collection of vectors in Rn. The collection of vectors {Aℓbi}{0≤ℓ≤M,i∈Ω}
accomplishes norm retrieval condition in Rn for some M ∈ N if there exists a
solution {Cℓ,i}{0≤ℓ≤M,i∈Ω} to the following system of linear equations

∑
ℓ,i

Cℓ,i|⟨ej , Aℓbi⟩|2 = 1 (5)

∑
ℓ,i

Cℓ,i⟨ej , Aℓbi⟩⟨ek, Aℓbi⟩ = 0 (6)

for all j, k = 1, 2, ..n with j ̸= k.

Proof. Assume that given the operator A on Rn and the collection of vectors {bi ∈
Rn : i ∈ Ω, |Ω| < n}, the measurements, |⟨x,Aℓbi⟩| = |⟨y,Aℓbi⟩| ∀ 0 ≤ ℓ ≤ M, i ∈
Ω for fixed x, y ∈ Rn, are known. Then we have

⟨x− y,Aℓbi⟩ = 0 or ⟨x+ y,Aℓbi⟩ = 0 ∀ℓ, i

and

⟨x− y, ⟨x+ y,Aℓbi⟩Aℓbi⟩ = ⟨x− y,Aℓbi(A
ℓbi)

∗(x+ y)⟩ = 0 ∀ℓ, i.

Given any scalar value Cℓ,i, we have Cℓ,i⟨x− y,Aℓbi(A
ℓbi)

∗(x+ y)⟩ = 0 ∀ℓ, i.

If I ∈ span{Aℓbi(A
ℓbi)

∗}{0≤ℓ≤M,i∈Ω}, then ⟨x− y, x+ y⟩ = 0 and ||x|| = ||y||.
Now, we show that I ∈ span{Aℓbi(A

ℓbi)
∗}{0≤ℓ≤M,i∈Ω} if and only if the equa-

tions (5) and (6) have a solution. Let {ej}nj=1 be the standard orthonormal bases

in Rn. Then, we can express any vector Aℓbi ∈ Rn as
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Aℓbi =


⟨e1, Aℓbi⟩
⟨e2, Aℓbi⟩

...
⟨en, Aℓbi⟩

 .

Hence, we have

Aℓbi(A
ℓbi)

∗ =


|⟨e1, Aℓbi⟩|2 ⟨e1, Aℓbi⟩⟨e2, Aℓbi⟩ · · · ⟨e1, Aℓbi⟩⟨en, Aℓbi⟩

⟨e2, Aℓbi⟩⟨e1, Aℓbi⟩ |⟨e2, Aℓbi⟩|2 · · · ⟨e2, Aℓbi⟩⟨en, Akbi⟩
...

...
...

⟨en, Aℓbi⟩⟨e1, Aℓbi⟩ ⟨en, Aℓbi⟩⟨e2, Aℓibi⟩ · · · |⟨en, Aℓbi⟩|2

 .

The linear equation systems in (5) and (6) have a solution if and only if the
identity operator I ∈ span{Aℓbi(A

ℓbi)
∗}{ℓ=0,1,...M ,i∈Ω}. If so, we also have the col-

lection of vectors {Aℓbi}{ℓ=0,1,...M, i∈Ω} which does norm retrieval in Rn as demon-
strated in the following example. □

Example 1. Let

A =

0 0 0
1 1 0
0 1 −2

 b =

10
0

 .

Then the set

F = {b, Ab,A2b, A3b} =


10
0

 01
0

 ,

01
1

  0
1
−1


contains an orthogonal basis. Hence, it does norm retrieval. Since the number of
vectors is less than 5, it does not do phase retrieval in R3. Note that the span of the
rank one operators generated by the vectors {b, Ab,A2b, A3b} contains the identity
operator.

bb∗ =

1 0 0
0 0 0
0 0 0

 , Ab(Ab)∗ =

0 0 0
0 1 0
0 0 0



A2b(A2b)∗ =

0 0 0
0 1 1
0 1 1

 , A3b(A3b)∗ =

0 0 0
0 1 −1
0 −1 1


and

I = bb∗ +
1

2
A2b(A2b)∗ +

1

2
A3b(A3b)∗.
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When A is an n × n diagonal operator, the authors in [3, Thm.3] showed that
the set of vectors {Aℓbi}0≤ℓ≤M,i∈Ω} is a scalable frame if and only if there exists
a positive solution {Cℓ,i}0≤ℓ≤M,i∈Ω} to the system of equations in (5) and (6).
Theorem 4 illustrates that if the solution {Cℓ,i}0≤ℓ≤M,i∈Ω} to the system of linear
equations in (5) and (6) is not a positive solution, there exist norm retrievable
frames {Aℓbi}0≤ℓ≤M,i∈Ω} which are not scalable frames.

Theorem 4 does not give the conditions on the operator A, the set of sample
points {bi ∈ Rn : i ∈ Ω, |Ω| < n} and the time increments ℓ but we show later sec-
tions how it works to obtain dynamical sampling frame which does norm retrieval.

Theorem 5. [10] Given a collection of vectors {xi}Mi=1 in a Hilbert space Hn. The
following statements are equivalent to each other.
(1) The set of vectors {xi}Mi=1 is phase retrievable in Hn

(2) The set of vectors {Axi}Mi=1 is phase retrievable for all invertible operator A on
Hn

(3) The set of vectors {Axi}Mi=1 is norm retrievable for all invertible operator A on
Hn.

Given the collection of vectors {bi ∈ Rn; i ∈ Ω, |Ω| < n} in Rn. Let W =
span{bi ∈ Rn; i ∈ Ω}. For every ℓ ∈ N, the subspaces, which are generated by
iteration of W under the operator A, can be defined as

AℓW = span{Aℓbi ∈ Rn; i ∈ Ω, |Ω| < n} ⊂ Rn.

Let {Pℓ} be the orthogonal projections from Rn onto AℓW for each ℓ ∈ N.
Theorem 5 states that if the collection of vectors {bi ∈ Rn; i ∈ Ω, |Ω| < n} is phase
retrievable in W , then the collection of vectors {Aℓbi ∈ Rn; i ∈ Ω, |Ω| < n} is phase
retrievable in AℓW for every ℓ ∈ N when A is an invertible operator on Rn. Assume
there exists an M ∈ N such that Rn = span{Aℓbi}{i∈Ω, ℓ=0,1,...M}. The collection

of vectors {Aℓbi}{i∈Ω} satisfies phase retrieval in AℓW for every ℓ = 0, 1, ...M but

it does not imply that {Aℓbi}{i∈Ω ℓ=0,1,...M} is phase retrievable in Rn.

Example 2. Define W = span{e1 =

10
0

 , e2 =

01
0

 , e1 + e2 =

11
0

}.
Let A be an invertible operator on R3 such that Ae1 = e2 andAe2 = e3. The

iteration of the subspace W under A can be shown as

AW = span{e2, e3, e2 + e3}.
The collection of vectors in {e1, e2, e1+e2} and {e2, e3, e2+e3} is phase retrievable in
W and AW , respectively. On the other hand, the collection of vectors {e1, e2, e3, e1+
e2, e2+e3} is not phase retrievable because when we get the partion {e1, e2, e1+e2}
and {e3, e2+e3} of the set {e1, e2, e3, e1+e2, e2+e3} , neither of these sets spans R3.
This implies that the collection of vectors {e1, e2, e3, e1+e2, e2+e3} does not satisfy
the complementary property (Definition 7) and fails the phase retrieval condition
in R3.
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Theorem 6. Let the set of vectors {bi ∈ Rn; i ∈ Ω, |Ω| < n} is phase retrievable
in W ⊂ Rn and A is an invertible operator on Rn. The collection of vectors
{Aℓbi}{i∈Ω ℓ=0,1,...M} is norm retrievable in Rn if the set of projections {Pℓ}Mℓ=0 is
norm retrievable in Rn for some M ∈ N, where Pℓ is the orthogonal projection onto
the subspace AℓW = span{{Aℓbi}i∈Ω}.

Proof. For x, y ∈ Rn, assume |⟨x,Aℓbi⟩| = |⟨y,Aℓbi⟩| for all i ∈ Ω, ℓ = 0, 1, ...M .
Let Pℓ be the orthogonal projection onto the subspace AℓW for each ℓ. Thus,

PℓA
ℓbi = Aℓbi and |⟨Pℓx, PℓA

ℓbi⟩| = |⟨Pℓy, PℓA
ℓbi⟩|, for all i ∈ Ω.

According to Theorem 5, the set of vectors {Aℓbi}i∈Ω is phase retrievable (and
consequently norm retrievable) in AℓW for all ℓ since A is an invertible operator
and the collection of vectors {bi ∈ Rn; i ∈ Ω, |Ω| < n} performs phase retrieval
in W . This states that ||Pℓx|| = ||Pℓy|| for all ℓ = 0, 1, ...M . By our supposition,
{Pℓ}Mℓ=0 is norm retrievable in Rn and we have ||x|| = ||y||.

□

3.1. Iteration of Subspaces Under the Unitary and Jordan Operator. We
can do norm retrieval more smoothly if our dynamical sampling operator is unitary.

Given the index set Ω ⊂ {1, 2, ..., n} and the orthonormal bases {ei}ni=1 of Rn.
Suppose U is a unitary operator on Rn. Let W = span{ei : i ∈ Ω, |Ω| < n} and
U ℓW = span{U ℓei : i ∈ Ω, |Ω| < n} for any ℓ ∈ N. Given any ℓ ∈ N, since U is
a unitary operator, it preserves the inner product. Thus, we have ⟨U ℓei, U

ℓek⟩ =
⟨ei, ek⟩ = 0 for all i ̸= k. Which says that {U ℓei}i∈Ω is an orthonormal basis for
U ℓW for each ℓ.

Lemma 2. Suppose W = span{ei : i ∈ Ω, |Ω| ≤ n} and U ℓW = span{U ℓei : i ∈
Ω, |Ω| < n} for ℓ ≥ 0, where U is a unitary operator on Rn and {ei}ni=1 is an
orthonormal bases of Rn. Let Pℓ be the orthogonal projection onto U ℓW for each ℓ.
If the collection of projections {Pℓ}Mℓ=0 is norm retrievable in Rn for some M ∈ N,
then the collection of vectors {U ℓei}{i∈Ω,ℓ=0,1,..M} is norm retrievable in Rn.

Proof. For x, y ∈ Rn, assume that |⟨x, U ℓei⟩| = |⟨y, U ℓei⟩| for any i ∈ Ω and ℓ =
0, 1, ..M . Since U ℓei ∈ U ℓW for any ℓ = 0, 1, ..M , we see that PℓU

ℓei = U ℓei and

|⟨x, U ℓei⟩| = |⟨y, U ℓei⟩| =⇒ |⟨x, PℓU
ℓei⟩| = |⟨y, PℓU

ℓei⟩|

=⇒ |⟨Pℓx, U
ℓei⟩| = |⟨Pℓy, U

ℓei⟩|.

For each fixed ℓ, since Pℓ is a projection on U ℓW and {U ℓei}i∈Ω is an orthonormal
basis in U ℓW , we have

||Pℓx|| =
∑
i∈Ω

| < Pℓx, U
ℓei > |2 =

∑
i∈Ω

| < Pℓy, U
ℓei > |2 = ||Pℓy|| (7)

By assumption, since the collection of projections {Pℓ}Mℓ=0 is norm retrievable in
Rn, we have ||x|| = ||y||.
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□

In Lemma 2, the collection of vectors {U ℓei : i ∈ Ω, |Ω| < n} in U ℓW is orthonor-
mal because U is a unitary operator. Obtaining orthonormal bases as sample sets
is a strong condition but we can reduce this presumption as the following lemma.

Corollary 1. Let U be a unitary operator on Rn. For a collection of vectors
{bi ∈ Rn : i ∈ Ω, |Ω| < n} in Rn, define W = span{bi ∈ Rn : i ∈ Ω, |Ω| <
n} andU ℓW = span{U ℓbi : i ∈ Ω, |Ω| <} for ℓ ∈ N. Let Pℓ be the orthogonal
projection onto U ℓW for ℓ ∈ N. If the collection of vectors {bi ∈ Rn : i ∈ Ω} is
norm retrievable in W and the set of projections {Pℓ}{ℓ=0,1,...M} is norm retrievable

in Rn for some M ∈ N, then the collection of vectors {U ℓbi}{i∈Ω,ℓ=0,1,...M} is norm
retrievable in Rn.

Proof. For x, y ∈ Rn, assume that |⟨x, U jbi⟩| = |⟨y, U jbi⟩| ∀i ∈ Ω, ℓ = 0, 1, ..M .
For each fixed ℓ, since the unitary operators preserve norm retrieval condition, the
collection of vectors {U ℓbi : i ∈ Ω, |Ω| < n} is norm retrievable in U ℓW . This says
that for any given x, y ∈ Rn and ℓ ∈ N, |⟨x, U jbi⟩| = |⟨y, U jbi⟩|, ∀i ∈ Ω implies that
||Pℓx|| = ||Pℓy||. Since we assumed that the set of projections {Pℓ}{ℓ=0,1,...M} is
norm retrievable in Rn, we have ||x|| = ||y||.

□

In Corollary 1 and Lemma 2, we assumed that the set of projections {Pℓ}{ℓ=0,1,...M}
is norm retrievable in Rn for some M ∈ N. In general, we do not know whether
such an M ∈ N exists or not. Now that we have a condition, we can guarantee
that the projection set {Pℓ}{ℓ=0,1,...M} performs norm retrieval on Rn. We need
the definition of fusion frames defined in [19].

Definition 8. [19] Let I be an index set and {vi}i∈I be a family of weights. That
is vi > 0 for all i ∈ I. Let {Wi}i∈I be a family of closed subspaces of a Hilbert space
H and PWi is the orthogonal projection onto the subspace Wi for each i ∈ I. Then
{(Wi, vi)}i∈I is a fusion frame for H, if there exists constants 0 < A ≤ B < ∞
such that

A||x||2 ≤
∑
i∈I

vi
2||PWi(x)||2 ≤ B||x||2, for all x ∈ H. (8)

A and B are called the fusion frame bounds. The family (Wi, vi) is called a Par-
seval fusion frame if A = B = 1 and a tight fusion frame if A = B.

Theorem 7. Let U be a unitary operator on Rn and {bi ∈ Rn : i ∈ Ω |Ω| < n}
be a set of orthonormal vectors in Rn. The set of vectors {U ℓbi : i ∈ Ω, ℓ =
0, 1, ...M} is a tight frame in Rn if and only if the set of orthogonal projections
{Pℓ}{ℓ=0,1,...M} is a tight fusion frame with weights vℓ = 1 for all ℓ, where Pℓ is the

orthogonal projection onto U ℓW for each ℓ.
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Proof. (=⇒) Suppose the set of vectors {U ℓbi : i ∈ Ω, ℓ = 0, 1, ...M} does tight
frame in Rn with frame bound A > 0. Then, given any x ∈ Rn, we can write

||x||2 =
1

A

∑
i∈Ω,ℓ=0,1,...,M

|⟨x, U ℓbi⟩|2.

Since {bi ∈ Rn : i ∈ Ω} is a set of orthonormal vectors in Rn and U is a unitary
operator on Rn, {U ℓbi : i ∈ Ω} is also orthonormal set of vectors in U ℓW for each ℓ.
Hence, the orthogonal projection Pℓ onto the subspace U ℓW = span{U ℓ bi : i ∈ Ω}
can be written as

Pℓ(x) =
∑
i∈Ω

⟨x, U ℓbi⟩U ℓbi.

Thus,

||x||2 =
1

A

∑
i∈Ω,ℓ=0,1,...,M

|⟨x, U ℓbi⟩|2 =
1

A

∑
ℓ=0,1,...,M

||Pℓ(x)||2

and the set of orthogonal projections {Pℓ}{ℓ=0,1,...,M} is a A -tight fusion frame
with weights vℓ = 1 .

(⇐=) These follow from the definition of a tight fusion frame with weights vℓ = 1
for all ℓ.

□

If {bi ∈ Rn : i ∈ Ω |Ω| < n} is a set of vectors that are orthogonal but not
orthonormal in Rn, then the set {U ℓbi : i ∈ Ω, ℓ = 0, 1, ...M} is not necessarily
a tight frame in Rn anymore. In this case, we have the following corollary that
follows from Theorem 5, Lemma 1 and Corollary 1.

Corollary 2. Let U be a unitary operator on Rn and {bi ∈ Rn : i ∈ Ω |Ω| < n}
consists of orthogonal vectors in Rn. The set of vectors {U ℓbi : i ∈ Ω, ℓ = 0, 1, ...M}
is norm retrievable in Rn if x ∈ span{Pℓ(x)}Mℓ=0, for any x ∈ Rn.

Now, we are interested in the linear operator A on Rn that has all real eigenvalues
and is unitarily similar to the Jordan form. We want to construct subspaces AℓW
in Rn which are not necessarily orthogonal to each other and show the relations
between the norm retrievable set of vectors {Aℓbi}{ℓ=0,1,...M,i∈Ω} in Rn and the
set of projections {Pℓ}{ℓ=0,1,...M}, where Pℓ is the orthogonal projection onto the

subset AℓW . To set up the following construction, we apply the notation from [6].
Suppose J ∈ Mn(R) is a Jordan matrix that has all real eigenvalues, then we

have
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J =


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Js

 . (9)

For each j = 1, 2, ..s, Jj = λjIj +Nj where Ij is an rj × rj identity matrix and
Nj is a rj × rj nilpotent block-matrix of the form

Nj =


Nj1 0 · · · 0
0 Nj2 · · · 0
...

...
. . .

...
0 0 · · · Nji

 . (10)

Each Nji is a rij × rij cyclic nilpotent matrix of the form

Nji =


0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0

 . (11)

with r1j ≥ r2j ≥ ... ≥ rij and r1j + r2j + ... + rij = rj . The matrix J has distinct
eigenvalues λj , j = 1, 2, ..s and r1 + r2 + ...+ rs = n.

Before we state our theorem related to the Jordan form, we would like to give
an illustrative example to interested readers.

Example 3. Let J = λI +N ∈ R4×4 and assume that

N =

[
N1 0
0 N2

]
where

Ni =

[
0 0
1 0

]
for i = 1, 2. Then, we have the subspaces

W = span{e1, e3}
JW = span{λe1 + e2, λe3 + e4}

J2W = span{λ2e1 + 2λe2, λ
2e3 + 2λe4}

Let Pℓ be the orthogonal projection onto the subspace JℓW for each ℓ = 0, 1, 2.
For fixed ℓ,

||Jℓe1||2 = λ2ℓ + ℓ2λ2(ℓ−1) = ||Jℓe3||2.
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Let cℓ = λ2ℓ + ℓ2λ2(ℓ−1) for ℓ = 0, 1, 2, then the orthogonal projection Pℓ onto
the subspace JℓW can be written as

Pℓ(x) =
1

cℓ

∑
i=1,3

⟨x, Jℓei⟩Jℓei and ||Pℓ(x)||2 =
1

cℓ

∑
i=1,3

|⟨x, Jℓei⟩|2.

If λ = 0, then P0+P1 = I and the set of vectors {Jℓei}i=1,3,ℓ=0,1,2 = {e1, e2, e3, e4}
is an orthonormal bases and it does norm retrieval in Rn. Assume λ ̸= 0.

For any x =


x1

x2

x3

x4

 ∈ Rn, c0P0(x) =


x1

0
x3

0



c1P1(x) =


λ2x1 + λx2

λx1 + x2

λ2x3 + λx4

λx3 + x4

 and c2P2(x) =


λ4x1 + 2λ3x2

2λ3x1 + 4λ2x2

λ4x3 + 2λ3x4

2λ3x3 + 4λ2x4

 .

This states that λ4+1
2λ2 c0P0−c1P1+

1
λ2 c2P2 = I and the set of projections {Pℓ}ℓ=0,1,2

does norm retrieval in Rn since the coefficients {cℓ}ℓ=0,1,2 are independent from
choice of x. This implies that the set of vectors {Jℓei}i=1,3,ℓ=0,1,2 does norm re-
trieval in Rn.

Theorem 8. Let J ∈ Mn(R) be a Jordan matrix in the form of Equation (9) that
has all real eigenvalues and Wj = span{ekji

: j = 1, 2, ..., s}, where s is the number
of distinct eigenvalues in J and ekji

is the standard orthonormal bases vector of Rn

corresponding to the first row of the cyclic nilpotent matrix Nji in (11). Let Pℓj be
the orthogonal projections onto the subsets JℓWj. Suppose the order rij of Nji is the

same for all i, j. Then the collection of vectors {Jℓekji
}{j=1,2,...,s,1≤i≤k(j),ℓ=0,1,...rij}

is norm retrievable in Rn, where k(j) is the number of cyclic nilpotent matrices Nji

in Nj if the set of projections is norm retrievable Rn.

Proof. By choice of ekji as a standard orthonormal basis vector corresponding to the

first row of Nji, the set of vectors {Jℓekji
}{j=1,2,...,s,1≤i≤k(j)} forms an orthogonal

bases in JℓWj for each ℓ. As shown in Example 3, for fixed ℓ, the norm of the vectors
Jℓekij

is the same for all i, j. Suppose ||Jℓekij
|| = cℓj for some cℓj ∈ R . Since

the set of vectors {Jℓekji
}{j=1,2,...,s,1≤i≤k(j)} forms an orthogonal basis in JℓWj for

each ℓ, the set of vectors { 1
cℓj

Jℓekji
}{j=1,2,...,s,1≤i≤k(j)} forms an orthonormal bases

in JℓWj for each ℓ. For fixed ℓ, the orthogonal projection Pℓj onto J lWj can be
defined by

Pℓj(x) =
∑
i,j

⟨x, 1

cℓj
Jℓekji

⟩ 1

cℓi
Jℓekji

.
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This implies {J lekij
} does norm retrieval in Rn if and only if I =

∑
ℓ

cℓ,iP
i
ℓ . Since

the constants cℓj is same for fixed ℓ, for any x ∈ Rn, we have

||Pℓj(x)||2 =
1

c2ℓj

∑
i,j

|⟨x, Jℓekji
⟩|2.

To show that the set of vectors {Jℓekji
}{j=1,2,...,s,1≤i≤k(j),ℓ=0,1,...rij} is norm retriev-

able in Rn, assume |⟨x, Jℓekji⟩| = |⟨y, Jℓekji⟩| for all ℓ, j, i for any given x, y ∈ Rn.
Since the constants cℓj are independent of the choice of x and y, we have

||Pℓj(x)||2 =
1

c2ℓj

∑
i,j

|⟨x, Jℓekji
⟩|2 =

1

c2ℓj

∑
i,j

|⟨y, Jℓekji
⟩|2 = ||Pℓj(y)||2.

We assumed that the set of orthogonal projections {P ℓekji
}{j=1,2,...,s,ℓ=0,1,...rij} is

norm retrievable in Rn. This implies that ||x|| = ||y|| and the collection of vectors
{Jℓekji

}{j=1,2,...,s,1≤i≤k(j),ℓ=0,1,...rij} is norm retrievable in Rn.

□
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