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Abstract
In this paper, we study nonself-adjoint Sturm-Liouville operator containing both the discontinuous
coefficient and discontinuity conditions at some point on the positive half-line. The eigenvalues and
the spectral singularities of this problem are examined and it is proved that this problem has a finite
number of spectral singularities and eigenvalues with finite multiplicities under two different additional
conditions. Furthermore, the principal functions corresponding to the eigenvalues and the spectral
singularities of this operator are determined.
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1. Introduction
The development of discontinuous boundary value problems has been great interest recently. It has an important

role and making progress in the different field of mathematics and engineering such as mechanics, mathematical
physics, geophysics (see [1–4]) and etc. Therefore, discontinuous Sturm-Liouville problems have attracted attention
and numerous studies have been done on this subject. The difference between this study from others is that the
nonself-adjoint discontinuous Sturm-Liouville problem which includes both a discontinuous coefficient and the
discontinuity conditions at the point on the positive half line is investigated. Namely, we take into account the
following nonself-adjoint problem created by the Sturm-Liouville equation with discontinuous coefficient

`(ϕ) = −ϕ′′ + q(ξ)ϕ = µ2ρ(ξ)ϕ, ξ ∈ (0, a) ∪ (a,∞), (1.1)

with the discontinuity conditions

ϕ(a− 0) = αϕ(a+ 0), ϕ′(a− 0) = α−1ϕ′(a+ 0) (1.2)
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and boundary condition
ϕ(0) = 0, (1.3)

where 0 < α 6= 1, µ is a complex parameter, ρ(ξ) is the piecewise continuous functions

ρ(ξ) =

{
β2, 0 < ξ < a,
1, a < ξ <∞

with 0 < β 6= 1, q(ξ) is a complex-valued function and satisfies the condition∫ ∞
0

ξ|q(ξ)|dξ <∞. (1.4)

The spectral theory of nonself-adjoint operator in the classical case (i.e., ρ(ξ) ≡ 1 and α = 1) was studied by Naimark
[5, 6]. He shows that some poles of the resolvent kernel are not the eigenvalues of the operator and belong to the
continuous spectrum; moreover, these poles are called spectral singularities and were first introduced by Schwartz
[7]. In the self-adjoint case, the operator has a finite number of eigenvalues under the condition (1.4) (see [8]);
however, in the nonself-adjoint case, the operator has a finite number of eigenvalues under the additional restriction.
For example, the condition

sup
0≤ξ<∞

{|q(ξ)| exp(εξ)} <∞, ε > 0

was introduced by Naimark (see [5]) and it is shown that the number of eigenvalues is finite under this condition.
Then, Pavlov weakened this additional condition as follows (see [9]):

sup
0≤ξ<∞

{
|q(ξ)| exp(ε

√
ξ)
}
<∞, ε > 0

and demonstrates that the operator has a finite number of eigenvalues. Moreover, Adıvar and Akbulut [10] obtain
that the operator has a finite number of the eigenvalues under the following additional condition:

sup
0≤ξ<∞

{
|q(ξ)| exp

(
εξδ
)}

<∞, ε > 0,
1

2
≤ δ < 1.

Note that for any 0 < δ < 1
2 , the condition does not provide that the number of eigenvalues is finite (see [11]). The

spectral singularities have an essential role in the spectral analysis of the nonself-adjoint operator and Lyantse
[12, 13] investigated the influence of the spectral singularities in the spectral expansion with respect to the principal
functions of the operator. The investigations on the spectrum, principal functions and the spectral expansion with
respect to the principal functions of the nonself-adjoint operator are very attractive and there are many works on the
nonself-adjoint operator under different boundary conditions (see [14–22] and the references therein). Moreover, the
nonself-adjoint operator with discontinuous coefficient is studied in [10], some spectral properties of the impulsive
Sturm-Liouville operator is worked in [23].

To purpose of this study is to investigate the spectrum and the principal functions of the nonself-adjoint
discontinuous problem (1.1)-(1.3). In examining this problem, we use new Jost solution of the equation (1.1) with
discontinuity condition (1.2). The presence of the discontinuous parameter ρ(ξ) and the discontinuity condition
(1.2) strongly influence the structure of the representation of the Jost solution, so the triangular property of the
Jost solution representation is lost and the kernel function has a discontinuity along the line s = β(a− ξ) + a for
ξ ∈ (0, a) (see [24]).

2. Preliminaries
Assume that the function e(ξ, µ) satisfies the equation (1.1), discontinuity conditions (1.2) and condition at

infinity
lim
ξ→∞

e−iµξe(ξ, µ) = 1.

Note that the function e(ξ, µ) is defined as a Jost solution of equation (1.1).
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Theorem 2.1. Let a complex-valued function q(ξ) satisfies equation (1.4). Then for all µ from the closed upper half-plane,
there exists the Jost solution e(ξ, µ) of equation (1.1) with discontinuity conditions (1.2), it is unique and representable in the
form

e(ξ, µ) = e0(ξ, µ) +

∫ ∞
τ(ξ)

k(ξ, s)eiµsds, (2.1)

where

e0(ξ, µ) =

{
eiµξ, ξ > a,

θ+eiµ(β(ξ−a)+a) + θ−eiµ(−β(ξ−a)+a), 0 < ξ < a,

with θ± = 1
2

(
α± 1

αβ

)
and θ+ + |θ−| > 1,

τ(ξ) =

{
ξ, ξ > a,

β(ξ − a) + a, 0 < ξ < a,

the kernel function k(ξ, .) ∈ L1(τ(ξ),∞) for each fixed ξ ∈ (0, a) ∪ (a,∞) and satisfies the inequality∫ ∞
τ(ξ)

|k(ξ, s)|ds ≤ ecσ1(ξ) − 1, σ1(ξ) =

∫ ∞
ξ

t|q(t)|dt, c = θ+ + |θ−|. (2.2)

Remark 2.1. The above theorem is proved in [24] when the q(ξ) is real valued function. In case the q(ξ) is complex
valued function, the theorem is proved in the same way.

Lemma 2.1. The following estimate holds:

|k(ξ, s)| ≤ c

2
σ

(
τ(ξ) + s

2

)
e(c+1)σ1(ξ), c = θ+ + |θ−|. (2.3)

Proof. The function k(ξ, s) is in the form for 0 < ξ < a:

k(ξ, s) = k0(ξ, s) +
1

2β

∫ a

ξ

q(ζ)

∫ s+β(ζ−ξ)

s−β(ζ−ξ)
k(ζ, u)dudζ +

θ+

2

∫ ∞
a

q(ζ)

∫ s+ζ+β(a−ξ)−a

s−ζ+β(ξ−a)+a
k(ζ, u)dudζ

−θ
−

2

∫ β(a−ξ)+a

a

q(ζ)

∫ s−ζ+β(a−ξ)+a

s+ζ+β(ξ−a)−a
k(ζ, u)dudζ +

θ−

2

∫ ∞
β(a−ξ)+a

q(ζ)

∫ s+ζ+β(ξ−a)−a

s−ζ+β(a−ξ)+a
k(ζ, u)dudζ,

where for β(ξ − a) + a < s < β(a− ξ) + a

k0(ξ, s) =
θ+

2β

∫ a

s+β(ξ+a)−a
2β

q(ζ)dζ +
θ−

2β

∫ a

β(ξ+a)+a−s
2β

q(ζ)dζ +
θ+

2

∫ ∞
a

q(ζ)dζ − θ−

2

∫ s+β(a−ξ)+a
2

a

q(ζ)dζ, (2.4)

and for β(a− ξ) + a < s <∞

k0(ξ, s) =
θ+

2

∫ ∞
s+β(ξ−a)+a

2

q(ζ)dζ +
θ−

2

∫ ∞
s+β(a−ξ)+a

2

q(ζ)dζ, (2.5)

and for the kernel k(ξ, s) has the form for ξ > a

k(ξ, s) = k0(ξ, s) +
1

2

∫ ∞
ξ

q(ζ)

∫ s+ζ−ξ

s−ζ+ξ
k(ζ, u)dudζ,

where

k0(ξ, s) =
1

2

∫ ∞
ξ+s
2

q(ζ)dζ.

When ξ > a, we face the classical case (see [6]) and we have

|k(ξ, s)| ≤ 1

2
eσ1(ξ)σ

(
ξ + s

2

)
.
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Now, let us examine the case 0 < ξ < a. Set

km(ξ, s) =
1

2β

∫ a

ξ

q(ζ)

∫ s+β(ζ−ξ)

s−β(ζ−ξ)
km−1(ζ, u)dudζ

+
θ+

2

∫ ∞
a

q(ζ)

∫ s+ζ+β(a−ξ)−a

s−ζ+β(ξ−a)+a
km−1(ζ, u)dudζ

−θ
−

2

∫ β(a−ξ)+a

a

q(ζ)

∫ s−ζ+β(a−ξ)+a

s+ζ+β(ξ−a)−a
km−1(ζ, u)dudζ

+
θ−

2

∫ ∞
β(a−ξ)+a

q(ζ)

∫ s+ζ+β(ξ−a)−a

s−ζ+β(a−ξ)+a
km−1(ζ, u)dudζ, m = 1, 2...

and k0(ξ, s) is determined by the formulas (2.4) and (2.5). Then, we obtain for 0 < ξ < a:

|k0(ξ, s)| ≤
c

2
σ

(
s+ β(ξ − a) + a

2

)
,

|km(ξ, s)|≤ c

2
σ

(
s+ β(ξ − a) + a

2

)
(c+ 1)m(σ1(ξ))

m

m!
.

This implies that the series
∑∞
m=0 km(ξ, s) converges and its sum k(ξ, s) satisfies the inequality

|k(ξ, s)|≤ c

2
σ

(
β(ξ − a) + a+ s

2

)
e(c+1)σ1(ξ), 0 < ξ < a.

Moreover, since for ξ > a

|k(ξ, s)|≤ 1

2
eσ1(ξ)σ

(
ξ + s

2

)
,

we obtain that for ξ ∈ (0, a) ∪ (a,∞) the inequality (2.3) is valid.

Now, we define ê(ξ, µ) as the solution of the equation (1.1) with discontinuity conditions (1.2) and satisfies

lim
ξ→∞

eiµξ ê(ξ, µ) = 1

and when q(ξ) ≡ 0 in equation (1.1), the solution has the form:

ê0(ξ, µ) =

{
e−iµξ, ξ > a,

θ+e−iµ(−β(a−ξ)+a) + θ−e−iµ(β(a−ξ)+a), 0 < ξ < a.
(2.6)

The Wronskian of the solutions e(ξ, µ) and ê(ξ, µ) is obtained as

w[e(ξ, µ), ê(ξ, µ)] = −2iµ, Imµ > 0.

3. The eigenvalues and spectral singularities

Denote the boundary value problem (1.1)-(1.3) by an operator L operating on the Hilbert space L2,ρ(0,∞).
The values λ = µ2 for which the operator L has a non-zero solution are said eigenvalues and the corresponding
nontrivial solutions are defined as eigenfunctions.

Consider ẽ(ξ, µ) = e(ξ,−µ) with Imµ ≤ 0 and the Wronskian of e(ξ, µ) and ẽ(ξ, µ) is in the form:

w[e(ξ, µ), ẽ(ξ, µ)] = −2iµ, Imµ = 0. (3.1)

Let us describe s(ξ, µ) as the solution of the equation (1.1) under the discontinuity conditions (1.2) and the initial
conditions

s(0, µ) = 0, s′(0, µ) = 1.

It is obtained that

s(ξ, µ) =
ê(0, µ)e(ξ, µ)− e(0, µ)ê(ξ, µ)

2iµ
, Imµ > 0. (3.2)

The following lemma is proved in the same way as in [6]:
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Lemma 3.1. 1. The nonself-adjoint operator L does not have positive eigenvalues.

2. The necessary and sufficient conditions that λ 6= 0 be an eigenvalue of L are that

e(0, µ) = 0, λ = µ2, Imµ > 0.

3. The set of eigenvalues of L is bounded, is no more than countable and its limit points can lie only on the half-axis λ ≥ 0.

All numbers λ of the form λ = µ2, Imµ > 0, e(0, µ) 6= 0 belongs to the resolvent set of L. Assume that λ = µ2

belongs to the resolvent set of L. Then, the resolvent operator Rµ2 =
(
L− µ2I

)−1 exists and has the following
representation:

Rµ2(L) =

∫ ∞
0

r(ξ, s;µ2)f(s)ds,

where

r(ξ, s;µ2) =


ê(0,µ)e(ξ,µ)e(s,µ)

2iµe(0,µ) − ê(ξ,µ)e(s,µ)
2iµ , ξ < s <∞,

ê(0,µ)e(ξ,µ)e(s,µ)
2iµe(0,µ) − e(ξ,µ)ê(s,µ)

2iµ , 0 < s < ξ.

Note that all number λ > 0 belongs to the continuous spectrum of L (see [6]).
The spectral singularities is defined as the poles of the kernel function of the resolvent operator and belong to

the continuous spectrum. The operator L which has the compact set of spectral singularities, has zero measure in
the sense of Lebesgue. This is provided from the boundary uniqueness theorem of analytic functions [25] (also, see
[10]).

Denote the eigenvalues and spectral singularities of the operator L, respectively, as follows:

σd(L) =
{
λ : λ = µ2, Imµ > 0, e(0, µ) = 0

}
,

σss(L) =
{
λ : λ = µ2, Imµ = 0, µ 6= 0, e(0, µ) = 0

}
.

Moreover, the multiplicity of the corresponding eigenvalue and spectral singularity of L is called the multiplicity of
the zero of e(0, µ).

3.1 The finiteness of eigenvalues and spectral singularities
Now, we will demonstrate that the nonself-adjoint operator L has a finite number of eigenvalues and spectral

singularities under the two different additional restrictions, respectively.
Additional restriction 1: ∫ ∞

0

eεξ|q(ξ)|dξ <∞, ε > 0, (3.3)

This condition is introduced by M. A. Naimark (see [6]).

Theorem 3.1. Assume that the condition (3.3) is valid. Then, the operator L has finite number of eigenvalues and spectral
singularities with finite multiplicity.

Proof. The condition (3.3) implies that

σ(ξ) =

∫ ∞
ξ

|q(t)|dt ≤ Cεe−εξ,

σ1(ξ) =

∫ ∞
ξ

t|q(t)|dt ≤ Cε′e−ε
′ξ,

where Cε > 0, Cε′ > 0 and 0 < ε′ < ε (see [6]). Using these relations and the estimate (2.3), we have

|k(ξ, s)| ≤ C exp

{
−ε
(
τ(ξ) + s

2

)}
, (3.4)

where C = c
2cεe

(c+1)dε , c = θ+ + |θ−|> 1, cε > 0 and dε > 0. It is obtained from (3.4) that the function e(0, µ) has
an analytic continuation from the real axis to the half plane Imµ > − ε

2 . Then, there is no limit points of the sets
of the eigenvalues σd(L) and the spectral singularities σss(L) on the positive real line. Since σd(L) and σss(L) are
bounded and e(0, µ) is holomorphic in the half plane Imµ > − ε

2 , the operator L has finite number of eigenvalues
and spectral singularities with finite multiplicity.
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Additional restriction 2:
sup

0≤ξ<∞

{
exp(εξδ)|q(ξ)|

}
<∞, ε > 0,

1

2
≤ δ < 1. (3.5)

To prove the finiteness of the eigenvalues and spectral singularities under the condition (3.5), firstly we define the
set of zeros of e(0, µ) in the closed upper half plane Imµ ≥ 0 :

M1 := {µ : µ ∈ C+, e(0, µ) = 0} , M2 := {µ : µ ∈ R, µ 6= 0, e(0, µ) = 0} ,

moreover, define the sets of all limit points of M1 and M2 as M3 and M4, respectively and the set of all zeros of
e(0, µ) with infinite multiplicity as M5. We have

M1 ∩M5 = ∅, M3 ⊂M2, M4 ⊂M2, M5 ⊂M2

from the uniqueness theorem of analytic functions (see [26]) and

M3 ⊂M5, M4 ⊂M5 (3.6)

from the continuity of all derivatives of the function e(0, µ) up to the real axis.

Lemma 3.2. Assume that the condition (3.5) is satisfied, then M5 = ∅.

Proof. To prove this lemma, we use the following theorem (see [9], also [10, 14]): Suppose that the function ψ is
holomorphic function on the upper half plane without real line and all of its derivatives are also continuous on the
real axis, and there exists T > 0 such that

|ψ(m)(z)| ≤ Km, m = 0, 1, ... z ∈ C+, |z| < 2T, (3.7)

and ∣∣∣∣∣
∫ −T
−∞

ln|ψ(ξ)|
1 + ξ2

dξ

∣∣∣∣∣ <∞,
∣∣∣∣∫ ∞
T

ln|ψ(ξ)|
1 + ξ2

dξ

∣∣∣∣ <∞. (3.8)

If the set Q with linear Lebesgue measure zero is the set of all zeros of the function ψ with infinite multiplicity and if∫ h

0

lnF (s)dµ(Qs) = −∞, (3.9)

then ψ(z) ≡ 0, where F (s) = infm
Kms

m

m! , m = 0, 1, ..., µ(Qs) is the linear Lebesgue measure of s-neighborhood of Q
and h is an arbitrary positive constant.

Now, it is obtained from the relation (2.3) and the condition (3.5) that

|k(ξ, s)|≤ C̃ exp

{
−ε
(
τ(ξ) + s

2

)δ}
, C̃ =

c

2
cεe

(c+1)cε , c = θ+ + |θ−| > 1.

Then, the function e(0, µ) is analytic in C+, all of its derivatives are continuous up to the real axis and we have∣∣∣∣dme(0, µ)dµm

∣∣∣∣ ≤ Km, µ ∈ C+, m = 1, 2, ..., (3.10)

where

Km = C̃(βa+ a)m
{
1 +

∫ ∞
0

sm exp

{
−ε
(s
2

)δ}
ds

}
, m = 1, 2, ...

Moreover, since the set of zeros of e(0, µ) is bounded, for sufficiently large T the function e(0, µ) satisfies the
condition (3.8). Thus, it follows from this fact and the relation (3.10) that e(0, µ) provides the conditions (3.7) and
(3.8). Since the function e(0, µ) 6= 0, from (3.9), we have∫ h

0

lnF (s)dµ(M5,s) > −∞, (3.11)
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where F (s) = infm
Kms

m

m! and µ(M5,s) is the Lebesgue measure of the s-neighborhood ofM5. The following estimate
holds:

Km ≤
(
C̃(βa+ a)m +Ddm

)
mmm!, (3.12)

where D = 4 C̃eδ ε
− 1
δ (m+ 1) and d = 4(βa+ a)ε−

1
δ . In fact, we can write

Km = C̃(βa+ a)m
{
1 +

∫ ∞
0

sm exp

{
−ε
(s
2

)δ}
ds

}
≤ C̃(βa+ a)m

{
1 +

2(m+1)

δ
ε−

(m+1)
δ (2m+ 2)m+1m!

}
≤ C̃(βa+ a)m

{
1 +

22(m+1)

δ
ε−

(m+1)
δ

(
1 +

1

m

)m
(m+ 1)mmm!

}
≤

(
C̃(βa+ a)m +Ddm

)
mmm!.

Putting the estimate (3.12) into F (s), we get

F (s) ≤ C̃ inf
m
{(βa+ a)mmmsm}+D inf

m
{dmmmsm}

≤ C̃ exp
{
−(βa+ a)−1s−1e−1

}
+D exp

{
−d−1s−1e−1

}
. (3.13)

Then, taking into account (3.11) and (3.13), we have∫ h

0

1

s
dµ(M5,s) <∞.

This inequality is valid for an arbitrary s if and only if dµ(M5,s) = 0 or M5 = ∅.

Theorem 3.2. If the condition (3.5) is satisfied, then the operator L has finite number of eigenvalues and spectral singularities
with finite multiplicity.

Proof. It follows from (3.6) and Lemma 3.2 that M3 = ∅ and M4 = ∅. For this reason, the bounded sets M1 and M2

do not have limit points. Thus, the finiteness of the sets of eigenvalues σd(L) and spectral singularities σss(L) are
found. Moreover, due to M5 = ∅, the eigenvalues and spectral singularities have finite multiplicities.

4. Principal functions

In this section, we examine the principal functions of the nonself-adjoint operator L. Now, assume that the
condition (3.5) is provided.

Denote µ1, µ2, ..., µ` by the zeros of e(0, µ) in C+ with multiplicities n1, n2, ..., n`, respectively (note that
µ2
1, µ

2
2, ..., µ

2
` are the eigenvalues of the operator L). We can write{

dm

dµm
W [e(ξ, µ), s(ξ, µ)]

}
µ=µj

=

{
dm

dµm
e(0, µ)

}
µ=µj

= 0 (4.1)

for m = 0, 1, ..., nj − 1, j = 1, `. In case of m = 0, we have

e(ξ, µj) = κ0(µj)s(ξ, µj), κ0(µj) 6= 0, j = 1, `. (4.2)

Lemma 4.1. The following relation{
∂m

∂µm
e(ξ, µ)

}
µ=µj

=

m∑
i=0

(
m
i

)
κm−i

{
∂i

∂µi
s(ξ, µ)

}
µ=µj

(4.3)

is valid for m = 0, nj − 1, j = 1, ` and here κ0, κ1..., κm depend on µj .
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Proof. To prove of this theorem, we use the mathematical induction. Consider m = 0. It follows from the relation
(4.2) that the proof is trivial. Now, suppose that the formula (4.3) holds for m0 such that 0 < m0 ≤ nj − 2. That is,{

∂m0

∂µm0
e(ξ, µ)

}
µ=µj

=

m0∑
i=0

(
m0

i

)
κm0−i

{
∂i

∂µi
s(ξ, µ)

}
µ=µj

. (4.4)

Then, we will show that the formula (4.3) is satisfied for m0 + 1. If ϕ(ξ, µ) is the solution of (1.1), then we find{
− d2

dξ2
+ q(ξ)− µ2ρ(ξ)

}
∂m

∂µm
ϕ(ξ, µ) = 2µmρ(ξ)

∂m−1

∂µm−1
ϕ(ξ, µ) +m(m− 1)ρ(ξ)

∂m−2

∂µm−2
ϕ(ξ, µ). (4.5)

Since the functions e(ξ, µ) and s(ξ, µ) are solutions of the equation (1.1), using (4.4) and (4.5), we calculate{
− d2

dξ2
+ q(ξ)− µ2

jρ(ξ)

}
hm0+1(ξ, µj) = 0,

where

hm0+1(ξ, µj) =

{
∂m0+1

∂µm0+1
e(ξ, µ)

}
µ=µj

−
m0+1∑
i=0

(
m0 + 1

i

)
κm0+1−i

{
∂i

∂µi
s(ξ, µ)

}
µ=µj

.

It follows from (4.1) that

W [hm0+1(ξ, µj), s(ξ, µj)] =

{
dm0+1

dµm0+1
W [e(ξ, µ), s(ξ, µ)]

}
µ=µj

= 0. (4.6)

Then, this shows that
hm0+1(ξ, µj) = κm0+1(µj)s(ξ, µj), j = 1, `.

Consequently, we obtain that the formula (4.3) is satisfied for m = m0 + 1.

Now, we define the functions

ψm(ξ, λj) =

{
∂m

∂µm
e(ξ, µ)

}
µ=µj

=

m∑
i=0

(
m
i

)
κm−i

{
∂i

∂µi
s(ξ, µ)

}
µ=µj

(4.7)

for m = 0, nj − 1, j = 1, ` and λj = µ2
j .

Theorem 4.1. ψm(ξ, λj) ∈ L2,ρ(0,∞), m = 0, nj − 1, j = 1, `.

Proof. Since

|k(ξ, s)|≤ C̃ exp

{
−ε
(
τ(ξ) + s

2

)δ}
, C̃ =

c

2
cεe

(c+1)cε , c = θ+ + |θ−| > 1,

using the integral representation (2.1), we have for 0 < ξ < a∣∣∣∣∣
{
∂m

∂µm
e(ξ, µ)

}
µ=µj

∣∣∣∣∣ ≤ ξmθ+e−Imµjξ + (β(a− ξ) + a)m|θ−|e−Imµj(β(a−ξ)+a)

+C̃

∫ ∞
β(ξ−a)+a

sn exp

{
−ε
(
β(ξ − a) + a+ s

2

)δ}
e−Imµjsds (4.8)

and for a < ξ <∞∣∣∣∣∣
{
∂m

∂µm
e(ξ, µ)

}
µ=µj

∣∣∣∣∣ ≤ ξme−Imµjξ + C̃

∫ ∞
ξ

sm exp

{
−ε
(
ξ + s

2

)δ}
e−Imµjsds. (4.9)

Since λj = µ2
j , j = 1, ` are eigenvalues of the operator L, it is obtained from (4.8) and (4.9) for Imµj > 0 that{

∂m

∂µm
e(ξ, µ)

}
µ=µj

∈ L2,ρ(0,∞), m = 0, nj − 1, j = 1, `.

Consequently, from (4.7) we have ψm(ξ, λj) ∈ L2,ρ(0,∞), m = 0, nj − 1, j = 1, `.



Nonself-Adjoint Discontinuous Sturm-Liouville Operator 127

Definition 4.1. The functions ψ0(ξ, λj), ψ1(ξ, λj),...,ψnj−1(ξ, λj) are called the principal functions associated with
eigenvalues λj = µ2

j , j = 1, ` of the operator L. The function ψ0(ξ, λj) is the eigenfunction, ψ1(ξ, λj), ψ2(ξ, λj),...,
ψnj−1(ξ, λj) are the associated functions of ψ0(ξ, λj) corresponding to eigenvalue λj .

Now, we define the spectral singularities of L: µ`+1, µ`+2, ..., µp are the zeros of the function e(0, µ) in R− {0}
with multiplicities n`+1, n`+2, ..., np, respectively. Then, using the similar way in Lemma 4.1, we obtain{

∂η

∂µη
e(ξ, µ)

}
µ=µr

=

η∑
j=0

(
η
j

)
τη−j(µr)

{
∂j

∂µj
s(ξ, µ)

}
µ=µr

(4.10)

for η = 0, nr − 1, r = `+ 1, `+ 2, ..., p. Denote the functions

ψη(ξ, λr) =

{
∂η

∂µη
e(ξ, µ)

}
µ=µr

=

η∑
j=0

(
η
j

)
τη−j(µr)

{
∂j

∂µj
s(ξ, µ)

}
µ=µr

(4.11)

for η = 0, nr − 1, r = `+ 1, `+ 2, ..., p and λj = µ2
j .

Theorem 4.2. The functions ψη(ξ, λr) do not belong to L2,ρ(0,∞), η = 0, nr − 1, r = `+ 1, `+ 2, ..., p.

Proof. Take into account the relations (4.8) and (4.9) for µ = µr, r = ` + 1, ` + 2, ..., p and since Imµr = 0 for the
spectral singularities, we have{

∂η

∂µη
e(ξ, µ)

}
µ=µr

/∈ L2,ρ(0,∞), η = 0, nr − 1, r = `+ 1, `+ 2, ..., p.

As a result, from the definition of the functions (4.11), we find ψη(ξ, λr) /∈ L2,ρ(0,∞), η = 0, nr − 1, r = `+ 1, `+
2, ..., p.

Now, we introduce the Hilbert spaces

Hζ,ρ =
{
f : ‖f‖ζ,ρ <∞

}
, H−ζ,ρ =

{
f : ‖f‖−ζ,ρ <∞

}
, ζ = 1, 2, ...

with the norms

‖f‖2ζ,ρ =
∫ ∞
0

(1 + τ(s))2ζ |f(s)|2ρ(s)ds, ‖f‖2−ζ,ρ =
∫ ∞
0

(1 + τ(s))−2ζ |f(s)|2ρ(s)ds,

respectively and evidently, H0,ρ = L2,ρ(0,∞).
Let n0 denotes the greatest of the multiplicities of the spectral singularities of L:

n0 = max {n`+1, n`+2, ..., np} .

We put
H+,ρ = H(n0+1),ρ, H− = H−(n0+1),ρ

Then, we have
H+,ρ ⊂ L2,ρ(0,∞) ⊂ H−,ρ

and for all f ∈ H+,ρ, ‖f‖+,ρ ≥ ‖f‖ρ ≥ ‖f‖−,ρ, where ‖.‖±,ρ = ‖.‖±(n0+1),ρ , ‖.‖ρ = ‖.‖0,ρ (see [6]). We are
particularly interested in the space H±,ρ because the space H−,ρ contains the principal functions for the spectral
singularities. Now, we will prove this claim by using following lemma.

Lemma 4.2. The following relation holds:

sup
0≤ξ<∞

|e(n)(ξ, µ)|
(1 + τ(ξ))n

<∞, e(n) =
(
d

dµ

)n
e, Imµ = 0, n = 0, 1, 2, ... (4.12)
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Proof. Using the integral representation (2.1), we obtain for Imµ = 0

|e(n)(ξ, µ)| ≤ ξnθ+ + (β(a− ξ) + a)n|θ−|+ C̃

∫ ∞
β(ξ−a)+a

sn exp

{
−ε
(
β(ξ − a) + a+ s

2

)δ}
ds, 0 < ξ < a (4.13)

and

|e(n)(ξ, µ)| ≤ ξn + C̃

∫ ∞
ξ

sn exp

{
−ε
(
ξ + s

2

)δ}
ds, a < ξ <∞. (4.14)

Then, taking into account (4.13) and (4.14), we find sup0≤ξ<∞
|e(n)(ξ,µ)|
(1+τ(ξ))n <∞ for Imµ = 0.

Theorem 4.3. ψη(ξ, λr) ∈ H−(η+1),ρ, η = 0, nr − 1, r = `+ 1, `+ 2, ..., p.

Proof. Using the relation (4.12), we have∥∥∥e(η)(ξ, µ)∥∥∥2
−(η+1),ρ

=

∫ ∞
0

| e(η)(ξ, µ)

(1 + τ(ξ))η+1
|2ρ(ξ)dξ <∞.

That is, the functions e(η)(ξ, µ) = ∂η

∂µη e(ξ, µ) ∈ H−(η+1) for Imµ = 0 and η = 0, 1, 2, ... . Then, we get{
∂η

∂µη
e(ξ, µ)

}
µ=µr

∈ H−(η+1),ρ

for Imµr = 0, η = 0, nr − 1 and r = ` + 1, ` + 2, ..., p. Consequently, it follows from the formula (4.11) that
ψη(ξ, λr) ∈ H−(η+1),ρ, η = 0, nr − 1, r = `+ 1, `+ 2, ..., p.

Definition 4.2. The functions ψ0(ξ, λr), ψ1(ξ, λr), ..., ψnr−1(ξ, λr) are defined as the principal functions associated
with the spectral singularities λr = µ2

r , r = `+ 1, `+ 2, ..., p of operator L. The function ψ0(ξ, λr) is the generalized
eigenfunction, ψ1(ξ, λr), ..., ψnr−1(ξ, λr) are the generalized associated functions of ψ0(ξ, λr) corresponding to
spectral singularity λr.

5. Conclusion
In this paper, we examine the spectrum and the principal functions of the nonself-adjoint discontinuous Sturm-

Liouville operator which contains the discontinuous coefficient and the discontinuity conditions at the point on the
positive half line. When examining the spectrum of the considered problem (1.1)-(1.3), we use the newly constructed
Jost solution of the equation (1.1) with discontinuity condition (1.3). This solution is completely different from the
classical Jost solution because of the presence of the discontinuous coefficient ρ(ξ) and discontinuity condition
(1.2). We point out that the triangular property of the Jost solution representation is lost and the kernel function
has a discontinuity along the line s = β(ξ − a) + a for ξ ∈ (0, a). Under two different additional conditions, it is
proved that the problem (1.1)-(1.3) has finite number of eigenvalues and spectral singularities with finite multiplicity.
Finally using the additional restriction (3.5) which is weaker than the restriction (3.3), we determine the principal
functions corresponding to the eigenvalues and the spectral singularities of the problem (1.1)-(1.3).
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