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Abstract  Keywords 

In the present study, we give the proofs about important properties of Lambert 

azimuthal projection, for instance conformality, preserve area that important 

points for characterization. While there are some kind of Lambert projections in 

the literature (for instance standard, cylindrical), we utilize from the south polar 

aspect. In our proofs, we use the south polar aspect, and finally we give some 

visualizations of the inverse of projection as an example.    
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1. INTRODUCTION 
 

Möbius transformations are very useful tool for understanding patterns in Euclidean space. Especially 

in extended complex plane many kind of curves can be modelled. Möbius transformations also in use 

tesellations and calculations of distances in hyperbolic geometry. Also it maps circles to circles and 

preserves cross-ratio, angles and symmetry [1]. Since the angles preserved, Möbius transformation is a 

conformal map. Moreover, one can compose the Möbius transformations by basic type transformations 

like translation, rotation, scaling and inversion. Möbius transformations are connected to non-Euclidean 

geometries (in some models of hyperbolic geometry (e.g. Poincare’s disk), isometries are represented 

by Möbius transforms) and these transformations are connected to Einstein’s theory of relativity (via 

Lorenz transforms) [1]. Closely related to spherical geometry is the geometry of Möbius transformations 

on the extended complex plane ℂ∞ = ℂ ∪ {∞}. This connection is provided by the stereographic 

projection map 𝜋: 𝑆2 → ℂ∞ [2]. Many geometricians have studied on Möbius transformation in order to 

tesellations and create patterns by using different kind of approaches [3,4]. On the other hand, the 

Lambert azimuthal equal-area projection is one of the normal cylindrical projection who defined by the 

Swiss mathematician and cartographer Johann Heinrich Lambert [5]. 

 

Let us imagine a tangent plane to the unit sphere with center 𝑂(0,0,0) at some point 𝑆 south pole (see, 

Figure 1). Let 𝑃 be any point on the sphere differ from antipodal of 𝑆 and 𝑑 be the Euclidean distance 

between 𝑆 and 𝑃 in three-dimensional space. Then, the Lambert azimuthal equal-area projection sends 

point 𝑃 to only one point 𝑃′ on the plane that is a distance 𝑑 from 𝑆. Hence, the Lambert projection 

maps point 𝑃 to 𝑃′ at equal distance to 𝑆, i.e. |𝑃𝑆| = |𝑃′𝑆|. In the general case 𝑃′ lies on open disk of 

radius 2 centered at the origin (0,0) in the plane. Moreover, it lies on circle of radius √2 centered at 
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(0,0) when 𝑃 lies on equator. Notice that, while the Lambert projection preserves the area, it is not 

conformal, i.e. angles are not preserved under the projection. For more details, we refer [6-8].  

In the present study, we use the polar aspect of Lambert azimuthal equal-area projection. We choose the 

projection center as 𝑆(0,0, −1) on unit sphere. In section 3, we give the proofs which characterize the 

important properties of the projection. In the last section, under the inverse Lambert projection, we give 

some visualizations rely on fixed points of the Möbius transformation. 

 

Figure 1: The Lambert azimuthal equal-area projection. 

 

2. PRELIMINARIES 

 

In this section, some basics related with the Möbius transformation are given.  

Definition 2.1 Any mapping of the form 

ℳ(𝑧) =
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
, 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ 

where 𝑎𝑑 − 𝑏𝑐 ≠ 0, is called a Möbius transformation. If 𝑐 = 0, ℳ(𝑧) is defined for all 𝑧 ∈ ℂ; if 𝑐 ≠ 0 

it is defined for all 𝑧 ≠ −𝑑/𝑐. We can avoid this dichotomy by extending ℳ to a map on the extended 

complex plane 𝐶∞ = 𝐶 ∪ {∞}, ℳ(∞) = ∞ if 𝑐 = 0, ℳ(−𝑑/𝑐) = ∞, ℳ(∞) = 𝑎/𝑐 if 𝑐 ≠ 0 [9]. 

If 𝑎𝑑 − 𝑏𝑐 = 0 then ℳ is constant. Note that ℳ is conformal, i.e., it preserves angles. 

The coefficients of ℳ are not unique. For any 𝜆 ≠ 0 real number ℳ(𝑧) =
(𝜆𝑎)𝑧+𝜆𝑏

(𝜆𝑐)𝑧+𝜆𝑑
. Let the Möbius 

transformation is not constant. Then, 𝜆 =
1

√𝑎𝑑−𝑏𝑐
 gives 

ℳ(𝑧) =
𝑎′𝑧 + 𝑏′

𝑐′𝑧 + 𝑑′
, 

such that 𝑎′𝑑′ − 𝑏′𝑐′ = 1. In this case, ℳ is in normalized form [9]. 

Lemma 2.2 Let ℳ be a Möbius transformation in normalized form, i.e., 𝑎𝑑 − 𝑏𝑐 = 1. Then the fixed 

points of ℳ are, 

𝜉1,2 =
(𝑎 − 𝑑) ∓ √(𝑎 + 𝑑)2 − 4

2𝑐
. 

In particular, |𝑓𝑖𝑥(ℳ)| = 1 if and only if 𝑎 + 𝑑 = ∓2. Otherwise, |𝑓𝑖𝑥(ℳ)| = 2 when ℳ ≠ 𝑖. ∞ ∈

𝑓𝑖𝑥(ℳ) if and only if 𝑐 = 0.  

Proof. Obviously, 𝑧 ∈ 𝑓𝑖𝑥(ℳ) if and only if  
𝑎𝑧+𝑏

𝑐𝑧+𝑑
= 𝑧 which yields the following: 

 𝑐𝑧2 + (𝑑 − 𝑎)𝑧 − 𝑏 = 0. (2.1) 
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Complex roots of the Eq. (2.1) as follows 

𝑧 =
(𝑎 − 𝑑) ∓ √(𝑎 − 𝑑)2 + 4𝑏𝑐

2𝑐
. 

Since (𝑎 − 𝑑)2 + 4𝑏𝑐 = (𝑎 + 𝑑)2 − 4, we get  

                                                    𝑧 =
(𝑎 − 𝑑) ∓ √(𝑎 + 𝑑)2 − 4

2𝑐
.                                                    (2.2) 

Hence 𝑧 ∈ 𝑓𝑖𝑥(ℳ) if and only if 𝑧 is written by Eq. (2.2). Remain of the proof is obvious.  

 

Let ∞ ∈ 𝑓𝑖𝑥(ℳ) or 𝑐 = 0. In this case, the Möbius transformation ℳ can be written by 

                                                           ℳ(𝑧) = 𝜔𝑧 + Ω,                                                                          (2.3) 

where 𝜔 = 𝑎/𝑑, Ω = 𝑏/𝑑. By the help of Eqs. (2.1) and (2.3), the following table can be given: 

Table 1. Möbius transformation and its fixed points depends on coefficients. 

 
𝛀 𝝎 𝓜(𝒛) 𝒇𝒊𝒙(𝓜) 

Ω ≠ 0 𝜔 = 1 ℳ(𝑧) = 𝑧 + Ω translation on ℂ {∞} 

Ω = 0 |𝜔| = 1 ℳ(𝑧) = 𝑒𝑖𝜃𝑧 rotation on ℂ {0, ∞} 

Ω = 0 𝜔 = 𝑟 ∈ ℝ ℳ(𝑧) = 𝑟𝑧 expansion on ℂ {0, ∞} 

Ω = 0 𝜔 = 𝑟𝑒𝑖𝜃 ∈ ℂ ℳ(z) = 𝑟𝑒𝑖𝜃𝑧 spiralization on ℂ {0, ∞} 

 

 

3. LAMBERT AZIMUTHAL EQUAL-AREA PROJECTION  

 

In this section, we give the proofs which characterize the Lambert azimuthal equal-area projection.  

Theorem 3.1 The Lambert azimuthal equal-area projection maps points (𝑥, 𝑦, 𝑧) of unit sphere to the 

points (𝑋, 𝑌) of plane  such that 

𝑋 = √
2

1 − 𝑧
𝑥, 𝑌 = √

2

1 − 𝑧
𝑦. 

On the other hand, the inverse of Lambert projection maps points (𝑋, 𝑌) of plane to the points (𝑥, 𝑦, 𝑧) 

of unit sphere with centre 𝑂(0,0,0) such that 

𝑥 = √1 −
𝑋2 + 𝑌2

4
𝑋, 𝑦 = √1 −

𝑋2 + 𝑌2

4
𝑌, 𝑧 = −1 +

𝑋2 + 𝑌2

2
, 

where 𝑋2 + 𝑌2 < 4 and 𝑧 ≠ 1.  

Proof. In order to calculations, we utilize from Figure 2 (see, [1, p.250]). Notice that the notations we 

use 𝑥, 𝑦, 𝑧 for coordinates of sphere, and capital letters 𝑋, 𝑌 for coordinates of plane. Let us consider the 

tangent plane 𝜋 of unit sphere 𝕊2(1) with center 𝑂(0,0,0) at point 𝑆 (south pole). Since the plane is 

tangent to sphere at 𝑆(0,0, −1), it is more useful to consider 𝜋 as 𝑧 = −1. Thus, all 𝑃′ ∈ 𝜋 points can 

be written as 𝑃′ = 𝑃′(𝑋, 𝑌, −1). Note that 𝑃 and 𝑃′ lie on the same arc with center 𝑆. Therefore, |𝑃𝑆| =
|𝑃′𝑆| which yields 

 𝑋2 + 𝑌2 = 𝑥2 + 𝑦2 + (𝑧 + 1)2. (3.1) 
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Moreover, 𝑃 ∈ 𝕊2(1), that is 

 𝑥2 + 𝑦2 + 𝑧2 = 1. (3.2) 

 

 
 

Figure 2: Lambert azimuthal equal-area projection 

By Eqs. (3.1) and (3.2) we obtain 𝑧 = −1 +
𝑋2+𝑌2

2
. On the other hand, well-known cosine theorem in 

𝑃𝑂𝑆
△

 gives |𝑃𝑆|2 = 2 − 2cos𝜃 = 4𝑠𝑖𝑛2 𝜃

2
. Thus, |𝑃′𝑆|2 = |𝑃𝑆|2 = 4𝑠𝑖𝑛2 𝜃

2
 and it follows 

                                                        cos
𝜃

2
= √1 −

𝑋2 + 𝑌2

4
,                                                          (3.3) 

where 0 < 𝜃 < 𝜋. Now we orthogonal project 𝑃 to [𝑆𝑃′] at corresponding point 𝐾(𝑥, 𝑦, −1) on this 

segment (see Figure 3). Since 𝑃𝑂𝑆
△

 is isosceles triangle and [𝑁𝑆] orthogonal to [𝑆𝑃′], we obtain 

𝑚(𝑃𝑆𝑃′̂) =
𝜃

2
. Hence, 

                                           cos
𝜃

2
=

|𝐾𝑆|

|𝑃𝑆|
=

√𝑥2 + 𝑦2

|𝑃𝑆|
.                                                                  (3.4) 

Since |𝑃𝑆| = |𝑃′𝑆| = √𝑋2 + 𝑌2, Eqs. (3.3) and (3.4) gives 

                                  𝑥2 + 𝑦2 = (𝑋2 + 𝑌2) (1 −
𝑋2 + 𝑌2

4
).                                                      

Now, we consider triangle 𝑃𝑆𝑃′
△

 (triangle with 𝑃, 𝑆, 𝑃′ vertexes). From cosine theorem it is written, 

|𝑃𝑃′|2 = |𝑃𝑆|2 + |𝑃′𝑆|2 − 2|𝑃𝑆||𝑃′𝑆|cos
𝜃

2
. If sub |𝑃𝑃′|2 = (𝑋 − 𝑥)2 + (𝑌 − 𝑦)2 + (𝑧 + 1)2, |𝑃𝑆| =

|𝑃′𝑆| = 2 𝑠𝑖𝑛
𝜃

2
, and 𝑧 + 1 =

𝑋2+𝑌2

2
 in equation of cosine theorem, it follows 

                      (𝑋 − 𝑥)2 + (𝑌 − 𝑦)2 + (
𝑋2 + 𝑌2

2
)

2

= 8 𝑠𝑖𝑛2
𝜃

2
(1 − cos

𝜃

2
).                        (3.5) 

From Eq. (3.3), it is easily seen 𝑋2 + 𝑌2 = 4 𝑠𝑖𝑛2 𝜃

2
. If we expand the left-hand side of Eq. (3.5) we 

obtain 
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𝑋2 − 2𝑥𝑋 + 𝑥2 + 𝑌2 − 2𝑦𝑌 + 𝑦2 +
(𝑋2 + 𝑌2)2

4
= 8 𝑠𝑖𝑛2

𝜃

2
(1 − cos

𝜃

2
) 

and 𝑋2 + 𝑌2 = 4 𝑠𝑖𝑛2 𝜃

2
 gives 

     4 𝑠𝑖𝑛2
𝜃

2
+ 4 𝑠𝑖𝑛4

𝜃

2
− 2𝑥𝑋 + 𝑥2 − 2𝑦𝑌 + 𝑦2 = 8 𝑠𝑖𝑛2

𝜃

2
(1 − cos

𝜃

2
).                         (3.6) 

Now we recall the projection point 𝐾. 
 

 
 

Figure 3: Orthogonal projection of 𝑃(𝑥, 𝑦, 𝑧) onto segment [𝑆𝑃′]. 
 

Since |𝑃𝑆| = 2 𝑠𝑖𝑛
𝜃

2
, it is obvious from Figure 3 that |𝐾𝑆| = 𝑠𝑖𝑛𝜃. Also, |𝐾𝑆| = √𝑥2 + 𝑦2. Then, we 

have 𝑥2 + 𝑦2 = 𝑠𝑖𝑛2𝜃. Let sub this identity in Eq. (3.6) we get 

4 𝑠𝑖𝑛2
𝜃

2
+ 4 𝑠𝑖𝑛4

𝜃

2
− 2𝑥𝑋 − 2𝑦𝑌 + 𝑠𝑖𝑛2𝜃 = 8𝑠𝑖𝑛2

𝜃

2
− 8𝑠𝑖𝑛2

𝜃

2
cos

𝜃

2
. 

By straightforward calculations we obtain 

2𝑥𝑋 + 2𝑦𝑌 = 4𝑠𝑖𝑛
𝜃

2
𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛2𝜃 − 4 𝑠𝑖𝑛2

𝜃

2
+ 4 𝑠𝑖𝑛4

𝜃

2
. 

Since −4 𝑠𝑖𝑛2 𝜃

2
+ 4 𝑠𝑖𝑛4 𝜃

2
= −𝑠𝑖𝑛2𝜃, the last equation gives 

                                        2𝑥𝑋 + 2𝑦𝑌 = 4𝑠𝑖𝑛
𝜃

2
𝑠𝑖𝑛𝜃 =

2𝑠𝑖𝑛2𝜃

𝑐𝑜𝑠
𝜃
2

.                                                    (3.7) 

By 𝑥2 + 𝑦2 = 𝑠𝑖𝑛2𝜃, and Eq. (3.7) it follows 

                                             𝑥𝑋 + 𝑦𝑌 =
𝑥2

𝑐𝑜𝑠
𝜃
2

+
𝑦2

𝑐𝑜𝑠
𝜃
2

.                                                                    (3.8) 

Eq. (3.8) is true if and only if  

                                          𝑋 =
𝑥

𝑐𝑜𝑠
𝜃

2

 and 𝑌 =
𝑦

𝑐𝑜𝑠
𝜃

2

.                                                                         (3.9) 

It follows from Eqs. (3.3), (3.9), and the identity 𝑧 = −1 +
𝑋2+𝑌2

2
 that 

𝑋 = √
2

1 − 𝑧
𝑥, 𝑌 = √

2

1 − 𝑧
𝑦. 
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Hence, we get the Lambert azimuthal equal-area projection. On the other hand, from Eqs. (3.3) and 

(3.9) we obtain 

𝑥 = √1 −
𝑋2 + 𝑌2

4
𝑋, 𝑦 = √1 −

𝑋2 + 𝑌2

4
𝑌,    𝑧 = −1 +

𝑋2 + 𝑌2

2
. 

Thus, we get the inverse projection, and this completes the proof. 

 

By the help of [8, p.27-28], the following Cauchy-Riemann like condition can be given: 

Lemma 3.2 A map projection of the sphere to be equal-area if and only if 

                                                     
𝜕𝑦

𝜕𝜑

𝜕𝑥

𝜕𝜆
−

𝜕𝑦

𝜕𝜆

𝜕𝑥

𝜕𝜑
= 𝑠𝑐𝑜𝑠𝜑,                                                            (3.10) 

where 𝑠 is constant. Here, 𝜑 represents latitude, 𝜆 represents longitude and 𝑥 and 𝑦 are the projected 

coordinates for a given (𝜑, 𝜆) pair. 

In spherical coordinates (𝜓, 𝜃) on the sphere with 𝜓 the colatitude (complement of the latitude) and 𝜃 

the longitude, and polar coordinates (𝑅, Θ) on the disk, the map and its inverse are given by [8]: 

                (𝑅, Θ) = (2𝑐𝑜𝑠
𝜓

2
, −𝜃)  and (𝜓, 𝜃) = (2𝑎𝑟𝑐𝑐𝑜𝑠

𝑅

2
, −Θ).                                        (3.11) 

By Eqs. (3.10) and (3.11), the following theorem can be given: 

Theorem 3.3 The Lambert azimuthal projection preserves the area. Furthermore, the constant 𝑠 = 1 in 

Eq. (3.10). 

Proof. Let the first deal with the notations by mentioned above. Here, we show the latitude by 𝜑 and 

longitude by 𝜆 in the Lambert projection. By Eq. (3.11), the polar coordinates correspond to 

(2𝑐𝑜𝑠
𝜓

2
, −𝜃) on the plane which gives us the cartesian coordinates as 

                                 𝑥 = 2𝑐𝑜𝑠
𝜓

2
cos (−𝜃) and 𝑦 = 2𝑐𝑜𝑠

𝜓

2
sin(−𝜃).                                        (3.12)  

Since 𝜓 is the colatitude, and 𝜆 = 𝜃, we have 

𝑥 = 2𝑐𝑜𝑠 (
𝜋

4
−

𝜑

2
) 𝑐𝑜𝑠 𝜆 ,       𝑦 = −2𝑐𝑜𝑠 (

𝜋

4
−

𝜑

2
) 𝑠𝑖𝑛 𝜆.                                         

If sub 𝑥 and 𝑦 in Eq. (3.10), after the simplifying some calculations, we obtain the following: 

     
𝜕𝑦

𝜕𝜑

𝜕𝑥

𝜕𝜆
−

𝜕𝑦

𝜕𝜆

𝜕𝑥

𝜕𝜑
= 𝑠𝑖𝑛 (

𝜋

2
− 𝜑) = 𝑐𝑜𝑠𝜑. 

Hence, the Lambert azimuthal projection satisfies Eq. (3.10) with constant 𝑠 = 1. Thus, the map 

preserves the area and is equal-area projection. 

Proposition 3.4 Let 𝑃1(𝑥1, 𝑦1, 𝑧1) and 𝑃2(𝑥2, 𝑦2, 𝑧2) be the points on unit sphere and the corresponding 

points under the Lambert azimuthal equal-area projection be 𝑃1′ and 𝑃2′ on the plane. Then the following 

reads: 

𝜃′′ = ∓𝜃′ + 2𝑘𝜋, 𝑘 ∈ ℤ, 

where 𝜃′ is angle between 𝑃1′ and 𝑃2′, and 𝜃′′ is angle between the orthogonal projection points 

𝑃1′′(𝑥1, 𝑦1, 0) and 𝑃2′′(𝑥2, 𝑦2, 0). 

Proof. By Theorem 3.1, it is easily seen that 
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                                                 𝑐𝑜𝑠𝜃′ =
𝑥1𝑥2 + 𝑦1𝑦2

√(𝑥1
2 + 𝑦1

2)(𝑥2
2 + 𝑦2

2)
.                                             (3.13) 

On the other hand, from the orthogonal projection points we have, 

                                            𝑐𝑜𝑠𝜃′′ =
𝑥1𝑥2 + 𝑦1𝑦2

√(𝑥1
2 + 𝑦1

2)(𝑥2
2 + 𝑦2

2)
.                                                 (3.14) 

From the Eqs. (3.13) and (3.14), we get the intended. 

Theorem 3.5 The Lambert azimuthal equal-area projection is not conformal. 

Proof. Let us consider two different points 𝑃1(𝑥1, 𝑦1, 𝑧1) and 𝑃2(𝑥2, 𝑦2, 𝑧2) on unit sphere with center 

𝑂, and assume that the Lambert azimuthal projection is conformal. At least one of 𝑧1 and 𝑧2 differ from 

zero. Since 𝑃1 and 𝑃2 are unit vectors, it follows: 

                                     𝑃1 • 𝑃2 = 𝑐𝑜𝑠𝜃 = 𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2,                                                   (3.15) 

where 𝜃 is angle between 𝑂𝑃1 and 𝑂𝑃2, and “• " is Euclidean inner product. On the other hand,  

                                       𝑐𝑜𝑠𝜃′ =
𝑥1𝑥2 + 𝑦1𝑦2

√(𝑥1
2 + 𝑦1

2)(𝑥2
2 + 𝑦2

2)
,                                                       (3.16) 

where 𝜃′ is angle between projected points 𝑆𝑃1′ and 𝑆𝑃2′, 𝑆 is the projection center. From Eqs. (3.15) 

and (3.16) it follows: 

                                   𝑐𝑜𝑠𝜃 = √(1 − 𝑧1
2)(1 − 𝑧2

2) 𝑐𝑜𝑠𝜃′ + 𝑧1𝑧2,                                            (3.17) 

where 𝑥1
2 + 𝑦1

2 + 𝑧1
2 = 𝑥2

2 + 𝑦2
2 + 𝑧2

2 = 1. From assumption and Eq. (3.18), 𝜃 = 𝜃′ and so 

𝑧1𝑧2 = 0 and (1 − 𝑧1
2)(1 − 𝑧2

2) = 1. 

The last condition implies 𝑧1 = 𝑧2 = 0 which is contradiction. This completes the proof. 

 

4. EXAMPLES 

 

In this section, by the help of Eq. (2.3) and inverse Lambert equal-area projection, we illustrate some 

samples of surface. 

Example 4.1 Recall Eq. (2.3). If Ω ≠ 0, 𝜔 = 1, then we can write Ω = Ωr + Ωi where Ωr and Ωi are 

real and imaginer part of Ω, respectively. If we take Ωr = Ωi = 1 then, inverse Lambert equal-area 

projection maps points (𝑋, 𝑌) ∈ 𝑀(𝑧) to the following points on unit sphere: 

 (𝑥, 𝑦, 𝑧) = (√1 −
(𝑋+1)2+(𝑌+1)2

4
(𝑋 + 1), √1 −

(𝑋+1)2+(𝑌+1)2

4
(𝑌 + 1), −1 +

(𝑋+1)2+(𝑌+1)2

2
). 

This transformation forms Figure 4.  

If we take Ωr = −1,    Ωi = 1 then, inverse Lambert equal-area projection maps points (𝑋, 𝑌) ∈ ℳ(𝑧) 

to the following points on unit sphere: 

 (𝑥, 𝑦, 𝑧) = (√1 −
(𝑋−1)2+(𝑌+1)2

4
(𝑋 − 1), √1 −

(𝑋−1)2+(𝑌+1)2

4
(𝑌 + 1), −1 +

(𝑋−1)2+(𝑌+1)2

2
). 

This transformaton forms Figure 5. 
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Figure 4: Lines on leaf surfaces of sphere 

 

Remark. Figure 4 and Figure 5 gives us a clue about that not only translations forms family of parallel 

of lines in plane but also it forms family of parallel circular arcs on the sphere, under the inverse Lambert 

azimuthal equal-area projection. 

 

 

 

 

 

 

 

Figure 5: Arcs on fluffy patches 

 

Example 4.2 Ω = 0, and |ω| = 1. Then, ℳ(𝑧) = 𝑒𝑖𝜃𝑧 or explicitly ℳ(𝑧) = 𝑟𝑒𝑖(𝜃1+𝜃2) where 𝜃 = 𝜃1,

𝑧 = 𝑟𝑒𝑖𝜃2. Thus, inverse Lambert projection maps points (𝑋, 𝑌) ∈ ℳ(𝑧) to the following points: 

 (𝑟, 𝜙) = (𝑟√1 −
𝑟2

4
𝑐𝑜𝑠𝜙, 𝑟√1 −

𝑟2

4
𝑠𝑖𝑛𝜙, −1 +

𝑟2

2
), (3.14) 

where 𝜙 = 𝜃1 + 𝜃2. Depend on (𝑟, 𝜙), Eq. (3.14) represents the parts of sphere. 

 

 

  
(𝑟, 𝜙): 0 ≤ 𝑟 ≤ 2, 0 ≤ 𝜙 ≤ 2𝜋 (𝑟, 𝜙): 0 ≤ 𝑟 ≤ 1, 0 ≤ 𝜙 ≤ 𝜋; 

 

Figure 6: Hemisphere and quarter part 
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Remark.  Figure 6 gives us a clue such that the rotations in the plane corresponds to circles on the 

sphere 𝕊2, under the inverse Lambert azimuthal equal-area projection.  

Example 4.3 Let us consider the points 𝑃1(
2

7
,

3

7
,

6

7
) and 𝑃2(−

3

√17
, −

2

√17
,

2

√17
) on unit sphere. It is 

easily seen that 𝑂𝑃1 • 𝑂𝑃2 = 0 where • is inner product of Euclidean space. Thus, 𝑂𝑃1 ⊥ 𝑂𝑃2. 
Lambert projection sends points 𝑃1 and 𝑃2 to  

𝑃1′(
2√14

7
,

3√14

7
) and 𝑃2′ (−3√

2

221
(17 + 2√17), −2√

2

221
(17 + 2√17)) 

respectively. It is obvious that 𝑃1′ is not orthogonal to 𝑃2′. That is, Lambert projection is not conformal. 

 

5. CONCLUSION 

 

In the recent literature, there is not enough paper about Lambert azimuthal equal-area projection. 

However, a few papers in cartography, especially in [7] and [8] some basic theorems about the projection 

are given. In this study, we give elementary and differential geometric proofs of theorems related with 

the projection. We discuss the projection by using south pole projection. Moreover, the fundamental 

properties of the projection are examined. On the other hand, by using Möbius transformation and the 

Lambert azimuthal equal-area projection, some patterns on the sphere are given. We hope that this paper 

will be useful for further studies about the projection. Also, it will fill a void in the literature. 
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