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ABSTRACT

The aim of the article is to obtain the exact solutions of the linear fractional differential 
equations by the integral transforms. Exact solutions of the equations with power-law, expo-
nential-decay and Mittag-Leffler kernels have been  obtained by the Sumudu transform. We 
demonstrate some simulations to show the effect of the proposed transforms.
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INTRODUCTION

Physical events occurring in nature are tried to be 
expressed with mathematical models. Instead of classical 
derivatives, fractional derivative operators have been used 
in these models. Riemann-Liouville and Caputo fractional 
derivatives are the leading fractioanl derivatives. Due to 
some limitations of these fractional derivatives and having 
a singular nucleus, there are new fractional derivatives to 
overcome these disadvantages. Caputo-Fabrizio fractional 
derivative without a singular kernel and Atangana-Baleanu 
fractional derivative is given as a result of replacing the 
kernel of this fractional derivative operator with the more 
general Mittag-Leffler function [12,13]. The Mittag-Leffler 
function is an important function because it has many 
representation properties and types. In this article, linear 
differential equations containing Caputo, Caputo-Fabrizio 

and Atangana-Baleanu fractional derivatives are solved and 
their graphs are demonstrated [6].

One of the integral transformations, the Sumudu trans-
form will be used to solve equations involving fractional 
derivatives. The Sumudu transform is important because it 
transforms linear equations without changing the property 
of the function [8,14,24].

Preferably Caputo fractional derivative is chosen 
because the initial conditions are similar to the classical 
derivative. After applying the Sumudu transform to the 
samples, exact solutions will be obtained and comparative 
graphs will be demonstrated [7,17].

In the second part of the article, fractional derivative 
definitions will be given. In the third part, the Sumudu 
transformation and the inverse Sumudu transform will 
be given. In addition, the relations between the Sumudu 
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transform and the Mittag Leffler function will be given. 
In the fourth chapter, practical examples will be made and 
graphic drawings will be interpreted [9,10,11].

Preliminaries
In this section, definitions of Caputo, Caputo-Fabrizio 

and Atangana -Baleanu fractional derivative are given.
Definition 1 The Caputo fractional derivative is given 

as [11,24]:

Definition 2 In the sense of Caputo, the fractional 
derivative of Caputo-Fabrizio is presented by [15,17]:

 is the normalization function.
Definition 3 In the sense of Caputo, the fractional 

derivative of Atangana-Baleanu is given as [12]:

 is the normalization function.
The reason why we chose the Caputo fractional deriv-

ative in our study is that it has similar initial conditions 
to the initial conditions in classical analysis [16,24]. The 
Atangana-Baleanu and Caputo-Fabrizio fractional deriva-
tives also were taken in the Caputo sense [20,21].

Sumudu Transform
The Sumudu transform is the dual of the Laplace trans-

form, an important transform defined by Watugala in 1993. 
The definition and necessary properties of this integral 
transformation will be given over the set [7, 8]:

the Sumudu transform is defined by

The main features and advantages of the Sumudu 
transformation

The Sumudu transform, which has unit conservation, 
does not apply to any frequency domain. In addition, the 
Sumudu transform is a linear transformation and preserves 
the properties of linear equations [2,14, 18].  We consider 
the functions f(m) and g(m). The Sumudu transformations 
of these functions are defined as:

                                            

 The Sumudu transform is linear [14, 23]:

Sumudu transform  of  power series 
is obtained as   [14,22].

The Sumudu transformation converts combinations to 
permutations [14].

  Sumudu transform 
of f  * g convolution is given as [4, 15]:

Assume that . Then, 
we have [4, 14]:

Duality relation of Laplace and Sumudu transforms
Sumudu transform, which draws attention with its simi-

larity to Laplace transform, provides convenience in solving 
ordinary, partial and fractional differential equations. 

Theorem 1  Let . Then, we have Sumudu 
transform of  as:

We have

The relations of Laplace and Sumudu transformations 
can be seen in the equations given in the form. While 
talking about this relationship in the literature, the Sumudu 
transform is also called the dual of the Laplace transfrom.

An example of the Laplace and Sumudu transform
We consider the following fractional differential 

equation:
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We solve the above equation containing the Atangana-
Balenau fractional derivative with the initial conditions by 
applying the Laplace transform.

            Let’s apply the Laplace transform to both sides of 
the equation:

   According to the convolution theorem, we get;

    

We know                                     

Then, we get

If the inverse Laplace transform is applied, we will reach

We consider:

Let’s apply the Sumudu transform to both sides of the 
above equation:

According to the convolution theorem, we have;

  

We know                                                      

Then, we get

If the inverse Sumudu transform is applied, we will 
obtain

Lemma 1 The Sumudu transform of Caputo derivative 
for , can be obtained as [24]:

Proof. 
If the Sumudu transform is applied
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By the convolution theorem, we will get

Lemma 2 We have the Sumudu transform of the 
Caputo-Fabrizio fractional derivative for  as:

Proof. 
We have

If the Sumudu transform is applied to the above equa-
tion, we will reach

By the convolution theorem, we obtain

Lemma 3 We have Sumudu transform of the Atangana-
Baleanu fractional derivative for  as:

Proof.
We have

If the Sumudu transform is applied, then we will reach

By the convolution theorem, we get 

We define the inverse Sumudu transform as:

Since it is quite troublesome to calculate the inverse 
Sumudu transformation, the relations given for the trans-
formation will be used [3,7].

Let’s define the Mittag-Leffler function [24,25]. For 
 and  with one parameter, we have:

and with two parameters, we define

The relationship of the Mittag-Leffler function with the 
inverse Sumudu transform is given as [1,15]:

•     (1)

•   

  (2)

Examples
We consider the following examples in this section 

[23,27].
Example 4.1 We consider [19]
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If the Sumudu transform is applied, the following result 
will be obtained:

Example 4.2
We take into consideration the following problem:

If the Sumudu transform is applied, then the following 
result is obtained

If the sumudu transform is applied to the expression 
, we will obtain:

By the convolution theorem, we have

    

  (7)      

Substituting the results in the equation yields:

Example 4.3  

We consider the following problem:

If the Sumudu transform is applied, then the following 

result is obtained:

If the Sumudu transform is applied to the expression 

, then we will get:

By the convolution theorem, we get

If we substitute the result, we will obtain:
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If the property given in (3) is applied, the we will acquire:

Example 4.4 
We consider the following problem:

If the Sumudu transform is applied, we will get

Substituting the result in (7) into the equation yields:

If the properties in (1) and (3) are applied, then we will 
obtain

 

Examples with solutions and comparisons over graphs
The derivatives of the examples in this section are taken 

respectively by Caputo, Atangana-Baleanu and Caputo-
Fabrizio derivatives. Obtained solutions are interpreted on 
graphs by taking  and .

Example 4.1.1 We consider

If the Sumudu transform is applied, we will get

Substituting the result in (7) into the equation yields

Example 4.1.2
We consider

If the Sumudu transform is applied, the following result 
is obtained

If the Sumudu transform is applied to the expression 
, we will get

        

By the convolution theorem, we have

                                     

  (8)

If we substitute the result, we will get
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If the property given (4) is applied, then we will obtain

Example 4.1.3 

We consider

If the Sumudu transform is applied, then we will get

If the Sumudu transform is applied to the expression 

, we will obtain

By the convolution theorem, we have

  (9)

If we substitute the result, we will find

               

If the property given (6) is applied, then we will reach

           

The graphs of the results obtained in Example 4.1.1, 
4.1.2 and 4.1.3 are given as:

 

Figure 1. Analysis for ϖ = 0.90.
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Figure 2. Analysis for ϖ = 0.92.

Figure 3. Analysis for ϖ = 0.95.

Figure 4. Analysis for ϖ = 0.98.   Figure 7. Analysis for  Atangana-Baleanu derivative.

Figure 5. Analysis for  Caputo derivative.

Figure 6. Analysis for  Caputo-Fabrizio derivative.    
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• Graphical demonstrations are given for the different ϖ 
values of the examples containing the fractional deriv-
ative operator.

•  Figure 1 (ϖ = 0.90) gives a detailed demonstrations of 
the behavior of the fractional derivative operators. For 
Figure 2, ϖ = 0.92, for Figure 3 ϖ = 0.95 and for Figure 
4 ϖ = 0.98.

•  In the graphical demonstrations, it is observed which 
derivative operator is closer to the classical derivative 
operator.

•  As ϖ gets closer to 1, it is seen that the solution graphs 
get closer to each other and resemble the classical 
derivative.

•  Figure 5 contains the graphical representations of the 
solution ϖ = 0.65, ϖ = 0.75, ϖ = 0.85, ϖ = 1  in Example 
4.1.1, which includes the Caputo derivative operator. As 
the value of ϖ gets closer to 1, it is seen that the result 
gets closer to the classical derivative operator.

•  Figure 6 contains the graphical representations of the 
solution ϖ = 0.65, ϖ = 0.75, ϖ = 0.85, ϖ = 1 in Example 
4.1.2, which includes the Caputo-Fabrizio derivative 
operator. As the value of ϖ gets closer to 1, it is seen that 
the result gets closer to the classical derivative operator.

•  Figure 7 contains the graphical representations of the 
solution ϖ = 0.65, ϖ = 0.75, ϖ = 0.85, ϖ = 1 in Example 
4.1.3, which includes the  Atangana-Baleanu derivative 
operator. As the value of ϖ gets closer to 1, it is seen that 
the result gets closer to the classical derivative operator.

• When the graphical representations of Caputo, Caputo-
Fabrizio and Atangana-Baleanu fractional derivative 
operators are examined, it is seen that the Caputo and 
Caputo Fabrizio derivative operators behave more 
similarly.
Example 4.1.4 
We consider

If the Sumudu transform is applied, we will get

      

Substituting the result in (7) into the equation yields

If the property in (1) is applied, then we will reach:

Example 4.1.5  
We consider

If the Sumudu transform is applied, we will get

Substituting the result in (8) yields:

If the properties in (1) and (4) are applied, we will get 

 

Example 4.1.6
We consider
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If the Sumudu transform is applied, we will get

Substituting the result in (9) into the equation 

 yields:

If the property in (5) is applied, we will get

The graphs of the results obtained in Example 4.1.4, 
4.1.5 and 4.1.6 are given as:

Figure 10. Analysis for ϖ = 0.95

Figure 11. Analysis for ϖ = 0.98  Figure 8. Analysis for  ϖ = 0.90

     

Figure 9. Analysis for ϖ = 0.92    
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•  Graphical demonstrations are given for the different ϖ 
values of the examples containing the fractional deriva-
tive operator.

•  Figure 8 (ϖ = 0.90) gives a detailed demonstrations of 
the behavior of the fractional derivative operators for 
Figure 9 ϖ = 0.92,  for Figure 10 ϖ = 0.95 and for Figure 
11 ϖ = 0.98.

•  As ϖ gets closer to 1, it is seen that the solution graphs 
get closer to each other and resemble the classical 
derivative.

•  Figure 12 contains the graphical representations of the 
solution ϖ = 0.65, ϖ = 0.75, ϖ = 0.85, ϖ = 1  in Example 
4.1.4, which includes the Caputo derivative operator. As 
the value of ϖ gets closer to 1, it is seen that the result 
gets closer to the classical derivative operator.

•  Figure 13 contains the graphical representations of the 
solution ϖ = 0.65, ϖ = 0.75, ϖ = 0.85, ϖ = 1  in Example 
4.1.5, which includes the Caputo-Fabrizio derivative 
operator. As the value of ϖ gets closer to 1, it is seen that 
the result gets closer to the classical derivative operator.

•  Figure 14 contains the graphical representations of the 
solution ϖ = 0.65, ϖ = 0.75, ϖ = 0.85, ϖ = 1  in Example 
4.1.6, which includes the  Atangana-Baleanu derivative 
operator. As the value of ϖ gets closer to 1, it is seen that 
the result gets closer to the classical derivative operator.

• When the graphical representations of Caputo, Caputo-
Fabrizio and Atangana-Baleanu fractional derivative 
operators are examined, it is seen that the Caputo and 
Caputo Fabrizio derivative operators behave more 
similarly.

CONCLUSIONS

Sumudu transform is an effective transform for find-
ing analytical solutions of linear equations. In this arti-
cle, homogeneous and inhomogeneous linear equations 
including Caputo, Caputo-Fabrizio and Atangana-Baleanu 
fractional derivatives are investigated. By referring to 
the relationship between the Sumudu transform and the 
Mittag-Leffler function and making use of this relationship, 
the solutions of these equations have been obtained. When 
the solution graphs are examined, it is seen that Caputo and 
Caputo-Fabrizio give close solutions. It is also seen that 
they produce solutions similar to the classical derivative 
when the order of derivative gets closer to 1. 
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