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Abstract
We give an infinite family of non-abelian strongly real Beauville p-groups for any odd
prime p by considering the lower central quotients of the free product of two cyclic groups
of order p.
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1. Introduction
A Beauville surface of unmixed type is a compact complex surface isomorphic to (C1 ×

C2)/G, where C1 and C2 are algebraic curves of genus at least 2 and G is a finite group
acting freely on C1 ×C2 and faithfully on the factors Ci such that Ci/G ∼= P1(C) and the
covering map Ci → Ci/G is ramified over three points for i = 1, 2. Then the group G is
said to be a Beauville group.

The condition for a finite group G to be a Beauville group can be formulated in purely
group-theoretical terms.

Definition 1.1. For a couple of elements x, y ∈ G, we define

Σ(x, y) =
∪
g∈G

(
〈x〉g ∪ 〈y〉g ∪ 〈xy〉g

)
,

that is, the union of all subgroups of G which are conjugate to 〈x〉, to 〈y〉 or to 〈xy〉. Then
G is a Beauville group if and only if the following conditions hold:

(i) G is a 2-generator group.
(ii) There exists a pair of generating sets {x1, y1} and {x2, y2} ofG such that Σ(x1, y1)∩

Σ(x2, y2) = 1.
Then {x1, y1} and {x2, y2} are said to form a Beauville structure for G.

Definition 1.2. Let G be a Beauville group. We say that G is strongly real if there
exists a Beauville structure {{x1, y1}, {x2, y2}} for G, an automorphism θ ∈ Aut(G), and
elements g1, g2 ∈ G such that

giθ(xi)g−1
i = x−1

i and giθ(yi)g−1
i = y−1

i

for i = 1, 2. Then the Beauville structure is called strongly real Beauville structure.
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In practice, it is convenient to take g1 = g2 = 1.
In 2000, Catanese [2] proved that a finite abelian group is a Beauville group if and only

if it is isomorphic to Cn ×Cn, where n > 1 and gcd(n, 6) = 1. Since for any abelian group
the function x 7−→ −x is an automorphism, the following result is immediate.

Lemma 1.3. Every abelian Beauville group is a strongly real Beauville group.

Thus, there are infinitely many abelian strongly real Beauville p-groups for p ≥ 5. If
the p-group is non-abelian, it is harder to construct a strongly real Beauville structure.

The earliest examples of non-abelian strongly real Beauville p-groups were given by
Fairbairn in [4], by constructing the following pair of 2-groups. The groups

G = 〈x, y | x8 = y8 = [x2, y2] = (xiyj)4 = 1 for i, j = 1, 2, 3〉,
and

G = 〈x, y | (xiyj)4 = 1 for i, j = 0, 1, 2, 3〉
are strongly real Beauville groups of order 213 and 214, respectively.

In [8], the author gave an infinite family of non-abelian strongly real Beauville p-groups
for every prime p by considering the quotients of triangle groups. At around the same time,
Fairbairn [5] gave another infinite family of non-abelian strongly real Beauville p-groups
for odd p, by using wreath products of cyclic p-groups.

In this paper, we give a new infinite family of non-abelian strongly real Beauville p-
groups for any odd prime p. To this purpose, we work with the lower central quotients
of the free product of two cyclic groups of order p. The main result of this paper is as
follows.

Theorem A. Let F = 〈x, y | xp, yp〉 be the free product of two cyclic groups of order p
for an odd prime p, and let i = k(p− 1) + 1 for k ≥ 1. Then the quotient F/γi+1(F ) is a
strongly real Beauville group.

Note that in [7], it was shown that all p-central quotients of the free product F = 〈x, y |
xp, yp〉 are Beauville groups. Observe that since F/F ′ has exponent p, the lower central
series and p-central series of F coincide.

Notation. If p is a prime and G is a finite p-group, then Gp
i = 〈gpi | g ∈ G〉 and

Ωi(G) = 〈g ∈ G | gpi = 1〉. The exponent of G, denoted by expG, is the maximum of the
orders of all elements of G.

2. Proof of the main theorem
In this section, we give the proof of Theorem A. We begin by recalling the definition of

p-central series.

Definition 2.1. For any group G, put

λn(G) = γ1(G)pn−1
γ2(G)pn−2

. . . γn(G)
for n ≥ 1. Thus λn(G) is a characteristic subgroup of G and

G = λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) ≥ . . .

is a normal series of G, which is called the p-central series of G. Then a quotient group
G/λn(G) is said to be a p-central quotient of G.

The subgroups λn(G) have the following properties:

Theorem 2.2 ([10], page 252). Let G be a group. Then
(i) λn(G) = [λn−1(G), G]λn−1(G)p for n > 1.
(ii) [λn(G), G] = γ2(G)pn−1

γ3(G)pn−2
. . . γn+1(G).
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Also observe that if the exponent of G/γ2(G) is p, then by the above theorem we have
λn(G) = γn(G) for all n ≥ 1.

We further have the following result regarding the subgroups λn(G).

Theorem 2.3 ([9], Lemma 9.20). If G/λ2(G) is generated by the images of g1, g2, . . . , gn,
then λ2(G)/λ3(G) is generated by the images of gpi for 1 ≤ i ≤ d and [gi, gj ] for 1 ≤ i <
j ≤ d. More generally, for k > 1, let S be a subset of G which generates G modulo λ2(G),
and let T generate λk(G) modulo λk+1(G). Then λk+1(G) is generated modulo λk+2(G)
by [s, t] for s ∈ S, t ∈ T and tp for t ∈ T .

Let F = 〈x, y | xp, yp〉 be the free product of two cyclic groups of order p. By Theo-
rem 2.2(i) and Theorem 2.3, each quotient λn(F )/λn+1(F ) is a finite elementary abelian
p-group. Thus, the p-central quotients F/λn(F ) are finite elementary abelian p-groups.

On the other hand, since F/F ′ has exponent p, the lower central series and p-central
series of F coincide, that is,

γn(F ) = λn(F ) (2.1)
for all n ≥ 1.

We next continue by stating a lemma regarding the existence of an automorphism of F
which sends the generators to their inverses. The proof is left to the reader.

Lemma 2.4. Let F = 〈x, y | xp, yp〉 be the free product of two cyclic groups of order p.
Then the map

θ : F −→ F

x 7−→ x−1

y 7−→ y−1,

is an automorphism of F .

Before we proceed, we will introduce some results regarding the Nottingham group
which will help us to determine some properties of F .

The Nottingham group N over the field Fp, for odd p, is the (topological) group of
normalized automorphisms of the ring Fp[[t]] of formal power series. For any positive
integer k, the automorphisms f ∈ N such that f(t) = t +

∑
i≥k+1 ait

i form an open
normal subgroup Nk of N of index pk−1. Observe that |Nk : Nk+1| = p for all k ≥ 1. We
have the commutator formula

[Nk,Nℓ] =
{
Nk+ℓ, if k 6≡ ℓ (mod p),
Nk+ℓ+1, if k ≡ ℓ (mod p)

(2.2)

(see [1], Theorem 2). Thus the lower central series of N is given by

γi(N) = Nr(i), where r(i) = i+ 1 +
⌊
i− 2
p− 1

⌋
. (2.3)

As a consequence, |γi(N) : γi+1(N)| ≤ p2. Furthermore, γi(N)/γi+1(N) ∼= Cp × Cp if and
only if i is of the form i = k(p− 1) + 1 for some k ≥ 0. In other words, in the lower central
series of N, the quotients Nkp+1/Nkp+3 are elementary abelian p-groups of order p2.

Recall that by Remark 3 in [1], N is topologically generated by the elements a ∈ N1∖N2
and b ∈ N2 ∖ N3 given by a(t) = t(1 − t)−1 and b(t) = t(1 − t2)−1/2, which are both of
order p.

In the following lemma, we need a result of Klopsch [11, formula (3.4)] regarding the
centralizers of elements of order p of N in some quotients N/Nk. More specifically, if
f ∈ Nk ∖Nk+1 is of order p, then for every ℓ = k + 1 + pn with n ∈ N, we have

CN/Nℓ
(fNℓ) = CN(f)Nℓ−k/Nℓ. (2.4)
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Lemma 2.5. Put G = N/Nkp+3 and Ni = Ni/Nkp+3 for 1 ≤ i ≤ kp+3. If α is the image
of a in G, then the set {[α, g] | g ∈ G} does not cover Nkp+1.

Proof. To prove the lemma, we will show that {[α, g] | g ∈ G} ∩Nkp+2 = 1. Assume that
[α, g] ∈ Nkp+2 for some g ∈ G. Since a ∈ N1 ∖N2 is of order p, it follows from (2.4) that

CN/Nkp+2(aNkp+2) = CN(a)Nkp+1/Nkp+2.

Thus we can write g = ch, with [α, c] = 1 and h ∈ Nkp+1. Then [α, g] = [α, h] ∈
[G,Nkp+1] = 1, since Nkp+1 is central in G. □
Lemma 2.6. Put H = F/γi+1(F ), where i = k(p − 1) + 1 for k ≥ 1 and Hi =
γi(F )/γi+1(F ). If u and v are the images of x and y in H, respectively, then the sets
{[u, h] | h ∈ H} and {[v, h] | h ∈ H} do not cover Hi.

Proof. Let G = N/Nkp+3, and let us call α and β the images of a and b in G, respectively.
Since α and β are of order p and γi+1(G) = 1, the map

ψ : H −→ G

u 7−→ α

v 7−→ β,

is well-defined and an epimorphism.
By Lemma 2.5, the set of commutators of α does not cover the subgroup γi(G) = Nkp+1.

It then follows that the set {[u, h] | h ∈ H} does not cover Hi. Since the roles of u and v
are symmetric, we also conclude that the set {[v, h] | h ∈ H} does not cover Hi, as desired.

□
To prove the main result, we need the following three lemmas.

Lemma 2.7. Let G = 〈a, b〉 be a finite minimally 2-generated p-group and o(a) = p, for
some prime p. Then ( ∪

g∈G
〈a〉g

) ∩ ( ∪
g∈G

〈b〉g
)

= 1.

Proof. We assume that x = (ai)g = (bj)h for some i, j ∈ Z and g, h ∈ G, and prove that
x = 1. In the quotient G = G/Φ(G) = 〈a〉 × 〈b〉, we have x ∈ 〈a〉 ∩ 〈b〉 = 1 implying that
x ∈ Φ(G). On the other hand, x ∈ 〈ag〉, where ag is of order p and ag /∈ Φ(G). It then
follows that x = 1. □
Lemma 2.8 ([6], Lemma 3.8). Let G be a finite p-group and let x ∈ G ∖ Φ(G) be an
element of order p. If t ∈ Φ(G) ∖ {[x, g] | g ∈ G} then( ∪

g∈G
〈x〉g

) ∩ ( ∪
g∈G

〈xt〉g
)

= 1.

Lemma 2.9 ([7], Lemma 3.1). Let ψ : G1 → G2 be a group homomorphism, let x1, y1 ∈ G1

and x2 = ψ(x1), y2 = ψ(y1). If o(x1) = o(x2) then the condition 〈xψ(g)
2 〉 ∩ 〈yψ(h)

2 〉 = 1
implies that 〈xg1〉 ∩ 〈yh1 〉 = 1 for g, h ∈ G1.

Let H = F/γi+1(F ) and let u and v be the images of x and y in H, respectively. In
order to prove the main theorem, we need to know the order of uv. We first recall a result
of Easterfield [3] regarding the exponent of Ωj(G). More precisely, if G is a finite p-group,
then for every j, k ≥ 1, the condition γk(p−1)+1(G) = 1 implies that

exp Ωj(G) ≤ pj+k−1. (2.5)

If we set k =
⌈

i
p−1

⌉
, we have γk(p−1)+1(H) ≤ γi+1(H) = 1. Then by (2.5), we get

expH ≤ pk, and hence o(uv) ≤ pk. Indeed, we will show that o(uv) = pk. To this
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purpose, we also need to introduce a result regarding p-groups of maximal class with some
specific properties.

Let G = 〈s〉⋉A where s is of order p and A ∼= Zp−1
p . The action of s on A is via θ, where

θ is defined by the companion matrix of the pth cyclotomic polynomial xp−1 + · · · +x+ 1.
Then G is the only infinite pro-p group of maximal class. Since sp = 1 and θp−1+· · ·+θ+1
annihilates A, this implies that for every a ∈ A,

(sa)p = spas
p−1+···+s+1 = 1.

Thus all elements in G∖A are of order p.
Let P be a finite quotient of G of order pi+1 for i ≥ 2. Let us call P1 the abelian

maximal subgroup of P and Pj = [P1, P, j−1. . . , P ] = γj(P ) for j ≥ 2. Then one can easily
check that expPj = p

⌈
i+1−j

p−1

⌉
and every element in Pj ∖ Pj+1 is of order p

⌈
i+1−j

p−1

⌉
.

Let s ∈ P ∖ P1 and s1 ∈ P1 ∖ γ2(P ). Since all elements in P ∖ P1 are of order p and
γi+1(P ) = 1, the map

ψ : H −→ P

u 7−→ s−1

v 7−→ ss1,

is well-defined and an epimorphism. Then we have o(uv) ≥ o(s1) = pk, and this, together
with expH = pk, implies that o(uv) = pk.

We are now ready to give the final proof.

Proof of the Main Theorem. Let H and Hi be as defined in Lemma 2.6. Let u and v
be the images of x and y in H, respectively. By Lemma 2.6, there exist w, z ∈ Hi such
that w 6∈ {[u, h] | h ∈ H} and z 6∈ {[v, h] | h ∈ H}. Observe that w and z are central
elements in H, and since Hi is elementary abelian, they have order p in H. We claim
that {u, v} and {(uw)−1, vz} form a Beauville structure in H. Let X = {u, v, uv} and
Y = {(uw)−1, vz, u−1vw−1z}.

Assume first that x̃ ∈ X is of order p, and let ỹ ∈ Y . If 〈x̃Φ(H)〉 6= 〈ỹΦ(H)〉 in H/Φ(H),
then by Lemma 2.7, 〈x̃〉g ∩ 〈ỹ〉h = 1 for every g, h ∈ H. Otherwise, we are in one of the
following two cases: x̃ = u and ỹ = (uw)−1, or x̃ = v and ỹ = vz. Then the condition
〈x̃〉g ∩ 〈ỹ〉h = 1 follows by Lemma 2.8.

We now assume that x̃ = uv. Again applying Lemma 2.7, we get 〈x̃〉g ∩ 〈ỹ〉h = 1 where
ỹ = (uw)−1 or ỹ = vz, which is of order p. Thus we are only left with the case when
x̃ = uv and ỹ = u−1vw−1z. Recall that the map ψ : H −→ P is an epimorphism such
that ψ(u) = s−1 and ψ(v) = ss1. Then ψ(u−1vw−1z) is an element outside P1, which is
of order p . Thus 〈ψ(u−1vw−1z)ψ(g)〉 ∩ 〈sψ(h)

1 〉 = 1 for all g, h ∈ H. Since o(uv) = o(s1),
the condition 〈x̃〉g ∩ 〈ỹ〉h = 1 for all g, h ∈ H follows by Lemma 2.9. This completes the
proof that H is a Beauville group.

We next show that the Beauville structure {{u, v}, {(uw)−1, vz}} is strongly real. By
Lemma 2.4, we know that the map θ is an automorphism of F . Since θ(γn(F )) =
γn(θ(F )) = γn(F ) for all n ≥ 1, the map θ induces an automorphism θ : H −→ H
such that θ(u) = u−1 and θ(v) = v−1. Now we only need to check if θ((uw)−1) = uw and
θ(vz) = (vz)−1. Note that

θ((uw)−1) = θ(w−1)u = uθ(w−1),

and
θ(vz) = v−1θ(z) = θ(z)v−1

where the last equalities follow from the fact that both w and z are central in H. Thus it
suffices to see that θ(w−1) = w and θ(z) = z−1.
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Note that Hi is generated by the commutators of length i in u and v. Now by using
commutator identities (see Proposition 1.1.6, [12]) and taking into account that i is odd
and Hi ≤ Z(H), one can show that

θ([xj1 , xj2 , . . . , xji ]) = [x−1
j1
, x−1

j2
, . . . , x−1

ji
] = [xj1 , xj2 , . . . , xji ]−1,

where each xjk is either u or v. Hence the automorphism θ sends the generators of Hi to
their inverses. Since Hi is abelian, this implies that for every t ∈ Hi we have θ(t) = t−1.
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