IMPACT OF EXCHANGE RATE VOLATILITY ON TRADE: A LITERATURE SURVEY

Fındık Özlem ALPER*

ÖZET

Bu çalışmada, döviz kuru oynaklığının dış ticaret üzerine etkilerini inceleyen çalışmaların literatür taraması amaçlanmaktadır. Çalışmada 1983-2013 yılları arasında yapılan araştırmalar incelenmiştir. Konu öncelikle teorik çerçevede ele alınmış, ikinci aşamada belli bazı çalışmalar veri dönemi, incelediği ülkeler, ekonometrik yöntemler ve elde ettiği bulgular bakımından kronolojik olarak karşılaştırılmıştır. Araştırma sonucunda, döviz kuru oynaklığının dış ticaret akımları üzerindeki etkisinin halen çelişkili olduğu sonucuna varılmıştır.

Anahtar Kelimeler: Döviz kuru, ticaret akımları, döviz kuru oynaklığı.

ABSTRACT

In this study, literature review of effects of exchange rate volatility on trade is aimed. Researches between 1983-2013 are reviewed in the study. The subject is analyzing primarily at the theoretical level; in the second part surveys are compared from the view of sample period, analyzed countries, econometric methods and conclusions. Results revealed that impact of exchange rate volatility on international trade is ambiguous.

Key Words: Exchange rate, trade flows, exchange rate volatility.

Introduction

Throughout much of the twentieth century, governments have pursued a fixed system of exchange rate determination. However, the collapse of Bretton Woods exchange rate system saw a change as many of the major participants in the global trade arena made the transition to a floating regime whereby the rate at which currencies are traded is subject to the forces of supply and demand. With this growing trend toward floating exchange rates, attentions have been directed toward the welfare effects of exchange rate policy. The focus of this debate has largely centered on the issue of exchange rate volatility and its possible impact on the real economy. Volatile currencies following the collapse of Bretton Woods prompted questions about the consequences of exchange rate variability on trade. Central question is "High volatility of exchange rates has hampered the growth in the volume of international trade or not?" This debate is still going on because there is no consensus among economists to date on how exchange rate volatility influences trade volume from either a theoretical or empirical perspective. The issue is relatively more important in developing countries mostly due to a lack of the forward exchange market, which rules out the hedging options in these countries.

^{*} Arş.Gör., Çukurova Üniversitesi, İ.İ.B.F., İktisat Teorisi, ozknozlem@gmail.com

Exchange rate volatility could affect the trade flows in either direction. Risk averse traders may choose to trade less in order to avoid any price uncertainty associated with exchange rate changes. Revenue maximizing traders, on the other hand, may choose to trade more to avoid any decline in their future revenues, again due to price uncertainty. Using the standard tools of analysis models, owing to revenue maximizing traders, have been constructed which show how exchange rate volatility may not act as a hindrance to international trade.

There are several channels through which exchange rate volatility could affect trade flows. First, if traders are risk averse, they could reduce their activities due to exchange rate uncertainty in order to avoid any loss. Second, exchange rate uncertainty could directly affect the trade volume by making prices and profits uncertain. Even if forward markets do exist in some industrial countries, some studies indicate that forward markets are not very effective in completely eliminating exchange rate uncertainty (Akhtar and Hilton, 1984). Third if exchange rate volatility persists over a longer period of time, it could induce domestic producers to switch buying from foreign sources to domestic sources, reducing the volume of trade, especially traded inputs. Finally, exchange rate uncertainty could also affect direct foreign investment decisions which in turn could lower the volume of trade. To reduce the price fluctuation due to exchange rate volatility, production facilities would be located near final markets, leading to change in pattern of trade (Mohammadi et al., 2011).

Brief Review of The Theoretical and Empirical Literature

Following the seminal work of Hooper and Kohlhagen (1976), a large amount of research has been published in an attempt to discover a robust relationship between exchange rate variability and international trade. Early empirical research suggested that there was no statistically significant variability effect. The large majority of empirical studies on the impact of exchange rate variability on the volume of international trade are unable to establish a systematically significant link.

Since the appearance of IMF (1984) study of the effects of exchange rate volatility on trade, two survey papers of the literature on the topic have appeared: Cote (1994) and McKenzie (1999). These two surveys conclude that from a theoretical perspective there is no unambiguous response in the level of trade to an increase in exchange rate volatility, as differing results can arise from plausible alternative assumptions and modelling strategies. The same ambiguity pervades much of the empirical literature, which may reflect the lack of clear cut theoretical results as well as the difficulty in arriving at an appropriate proxy for exchange rate risk (Clark et al., 2004, p. 12).

It is useful to begin with the example of a rudimentary exporting firm to illustrate how real exchange rate volatility can affect the level of the firm's exports. The simplest case described by Clark (1973), for example, considers a competitive firm with no market power producing only one commodity which is sold entirely to one foreign market and does not import any intermediate inputs. The firm is paid in foreign currency and converts the proceeds of its exports at the current exchange rate which varies in an unpredictable fashion, as there are assumed to be no hedging possibilities. Moreover, because of costs in adjusting the scale of production, the firm makes its

production decision in advance of the realization of the exchange rate and therefore cannot alter its output in response to favorable or unfavorable shifts in the profitability of its exports arising from movements in the exchange rate. In this situation the variability in the firm's profits arises solely from the exchange rate and where the managers of the firm are adversely affected by the risk, greater volatility in the exchange rate leads to a reduction in output and hence in exports in order to reduce the exposure to risk (Clark et al., 2004, p. 13).

Hooper and Kohlhagen (1978) utilized a model for traded goods and derived equations for export prices and quantities in terms of the costs of production reflecting both domestic and imported inputs, other domestic prices, domestic income and capacity utilization. Exchange rate risk was measured by the average absolute difference between the current period spot exchange rate and forward rate last period. They examined the impact of exchange rate volatility on aggregate and bilateral trade flow data for all G-7 countries except Italy. In terms of the effect of volatility on trade flows, they found essentially no evidence of any negative effect.

Akhtar and Hilton (1984) examine the influence of exchange rate variability on the prices and volumes of US and West Germany exports and imports, over the sample periods 1974Q1-1981Q4 and 1974Q1-1982Q4. Akhtar and Hilton specify a two equation structural system, modeling export volumes as a function of foreign income; relative prices and a measure of nominal exchange rate variability. For the 1974Q1-1981Q4 period, Akhtar and Hilton found a statistically significant negative variability effect on West German export and import volumes and US export volumes, but no significant effect on US import volumes.

Canzoneri, et al. (1984), De Grauwe (1988) and Gros (1987) has been analyzed why trade may be adversely affected by exchange rate volatility. Their finding indicated to one assumption. Firm cannot alter factor inputs in order to adjust optimally to take account of movements in exchange rates. When this assumption is relaxed and firms can adjust one or more factors of production in response to movements in exchange rate, increased variability can in fact create profit opportunities. The effect of such volatility depends on the interaction of two forces at work (Clark et al., 2004, p. 4).

Broll and Eckwert (1999) study is starting at an example. In the study's example, an international firm decides upon production before the exchange rate uncertainty materializes. However the decision whether to sell in the domestic market or in the world market can be made contingent on the realization of the spot exchange rate. The specification of the firm's decision problem implies an extreme allocation of sales. The whole production will either be sold on domestic market or entirely be shifted to the foreign market. The economic intuition for the mechanism derived in this paper is the following: As the exchange rate volatility increases, so does the value of the option to export to the world market. Higher volatility increases the potential gains from international trade which makes production more profitable. However, a more volatile exchange rate implies a higher risk exposure for international firms. Rose (1999) employs the gravity approach and uses a very large data set involving 186 countries for the five years 1970, 1975, 1980, 1985 and 1990. His main objective in the paper is to measure the effect of currency unions on members' trade. His primary measure of volatility is the standard deviation of the first difference of the monthly logarithm of the bilateral nominal exchange rate. In his benchmark results using the pooled data, he finds

a small but significant negative effect: reducing volatility by one standard deviation around the mean would increase bilateral trade by about 13 percent. Aristotelous (2001) investigated the impact of exchange rate volatility and exchange rate regime on British exports to the United States in the context of a generalized gravity model. In the study gravity model was estimated using annual data for the sample period 1889-1999. The empirical findings support two main conclusions. Firstly, exchange rate volatility did not have an effect on the volume of British export to the U.S. Secondly, there is no evidence that any of the exchange rate regimes of the late 19th and 20th centuries had any impact on the volume of British exports to the U.S.

Byrne et al. (2008) used disaggregated price data as their trade deflator rather than the U.S. consumer price index and construction of new disaggregate sectors to examine the importance of exchange rate uncertainty. The main result is that pooling all industries together provides an evidence of a negative effect on trade from exchange rate volatility. But using econometric criteria in particular they find evidence that this effect may be different across industries. This would seem to suggest that sectoral differences do exist in explaining the different impact of volatility on trade and may be based on the characteristics of the markets in which they trade.

Bahmani and Wang (2009) employ import and export demand models in order to assess the impact of currency depreciation as well as exchange rate risk on the trade flows between the U.S and the Australia. The study use disaggregated data at commodity level from 107 industries that trade between two countries. The empirical results could be best summarized by saying that exchange rate uncertainty has short run effects on imports and exports of majority of the industries for which data was available. However, the short run effects last into long run only in the limited number of industries, though number of U.S importing industries affected in the long run were found to be almost twice as many as U.S exporting industries. Alternatively, exchange rate uncertainty affects Australia's exports to the U.S more than it affects imports.

Up to this point the discussion of the impact of volatility on trade has been within partial equilibrium framework, i.e., the only variable that changes is some measure of the variability of the exchange rate, and all other factors that may have an influence on the level of trade are assumed to remain unchanged. Thus it is important to take account in a general equilibrium framework the interaction of all the major macroeconomic variables to get a more complete picture of the relationship between exchange rate variability and trade. Such an analysis has been provided by Bacchetta and Van Wincoop (2000). They develop a simple, two country, general equilibrium model where uncertainty arises from monetary, fiscal and technology shocks and they compare the level of trade and welfare for fixed and floating exchange rate arrangements. They reach two main conclusions. First, there is no clear relationship between the level of trade and the type of exchange rate arrangement. Second, the level of trade does not provide a good index of the level of welfare in a country, and thus there is no one to one relationship between levels of trade and welfare in compering exchange rate systems.

Doganlar (2002) examines the impact of exchange rate volatility on the exports of five Asian countries; Turkey, S. Korea. Malaysia, Indonesia and Pakistan. The impact of volatility term on exports is examined by using Engle-Granger residual based cointegrating technique. The results indicate that the exchange rate volatility reduced real exports for these countries.

Arize et al. (2008), Poon et al. (2005), Baak (2008), Hayakawa and Kimura (2009), Zelekha and Efrat (2011), Mohammadi et al. (2011), Mougoue and Aggarwal (2011), Verheyen (2012), Srinivasan and Kalaivani (2012), Grier and Smallwood (2013) and lastly Poon and Hooy (2013) found a significant and negative impact of exchange rate volatility on international trade.

But Tenreyro (2007), Serenis and Serenis (2008), Baum and Caglayan (2010), Serenis and Serenis (2010), Bahmani-Oskooee and Harvey (2011), Nishimura and Hirayama (2013), Baek (2013) and Bahmani-Oskooee et al. (2013) found no effect or intermediate effects of volatility on international trade flows.

Author	Sample Period	Countries	Measure of Volatility	Estimation Technique	Result
Cushman (1983)	1965Q1- 1981Q4	UK, US, France, West Germany, Canada, Japan.	Four quarter moving average standard deviation of the percentage changes in the real exchange rate.	OLS	6 out of 16 cases show evidence of a negative relationship between real exchange rate variability and trade volumes.
IMF (1984)	1959Q1- 1982Q4	Canada, France, Italy, West Germany, Japan, UK and US.	Standard deviation of a seven country trade weighted average of quarterly real effective exchange rate.	OLS	Insignificant results and positively signed for world trade. 2 out of 42 bilateral trade flows significant and negatively signed.
Chan and Wong (1985)	1977Q1- 1984Q4	Hong Kong, US, UK and West Germany	Four quarter moving average standard deviation of percentage changes in the real bilateral rates.	OLS	No significant effect on export volumes for any of the countries analysed.

Abbott (1999) and Hall et al. (2010) are listed the exchange rate volatility impact on trade literature between 1983-2007 as follows;

Table.1 Studies of The Effects of Exchange Rate Volatility on Trade, 1983-2007.

(Table 1 continued)	Studies of	The Eff	ects of E	Exchange	Rate	Volatility on	Trade,
1983-2007.							

Gotur (1985)	1975Q1- 1983Q4	US, West Germany, France, Japan and UK.	Standard deviation of the effective exchange rate index weighted from the IMF multilateral exchange rate model	OLS	1 out of 10 trade volume equations have significant variability elasticities which are negatively signed.
Bailey, Tavlas and Ulan (1986)	1973Q1- 1983Q4	Canada, France, West Germany, Italy, japan, UK, US.	Absolute value of quarter to quarter changes in the nominal effective exchange rate.	Second order polynomial Distributed lag.	No significant effect for any of the countries analysed.
Kenen and Rodrik (1986)	1975Q1- 1984Q2	US, Canada, Belgium, France, Germany, Italy, the Netherlands, Sweden, Switzerland and UK.	Standard deviation of percentage changes in the real exchange rate over 12 and 24 month periods.	OLS	4 out of 11 cases are negatively signed and significant.
Bailey, Tavlas and Ulan (1987)	1962Q2- 1974Q4 and 1975Q1- 1985Q3	Canada, France, Germany, Italy, Japan, UK, US, Australia, the Netherlands and Switzerland.	The absolute quarterly percentage change in the effective exchange rate.	Polynomial distributed lag model.	Overall significant effect but not very strong. Direction of the variability effect inconclusive.

Brada	1973-	30	Month to	OLS	Significant negative
and	1977	developing	month		result overall.
Mendez		and	percentage		
(1988)		developed	changes in		
		countries	effective rates.		
De	1960Q1-	Belgium,	Variability of	SUR	Insignificant result
Grauwe	1969Q4	Canada,	the yearly	Model	during fixed rate
(1988)	and	France, West	percentage		period and significant
. ,	1973Q1-	Germany,	changes in the		effect during floating
	1984Q4	Italy, Japan,	bilateral		period for real
		the	nominal and		exchange rate
		Netherlands,	real exchange		variability. Nominal
		Switzerland,	rates.		exchange rate
		UK, US.			variability has an
					insignificant effect.
Lastrapes	1973M3	US	Moving sample	VAR	Significant but weak
and	-		standard		effect on trade.
Koray	1987M12		deviation of the		
(1990)			movements of		
. ,			the real		
			exchange rates.		

(Table 1 continued) S	Studies of T	The Effects	of Exchange	Rate V	olatility on	Trade,
1983-2007.						

Bahmani Oskooee (1991)	1973Q1- 1980Q4	Brazil, Greece, South Korea, Pakistan, Philippines, Thailand and Turkey.	Standard deviation of the percentage changes in the real effective exchange rate over the previous eight quarters.	OLS	Significant negative elasticities for Greece and Turkey. Significant positive elasticity for Brazil and Korea.
Chowdhury (1993)	1973Q1- 1990Q4	Canada, France, West Germany, Italy, Japan, UK, US	Moving sample monthly standard deviation.	Johansen cointegration Procedure and ECM.	Strong, significant negative effect.
Arize (1995)	1973Q2- 1991Q3	US	ARCH	Johansen cointegration Procedure and ECM.	Significant negative effect for all measures of variability.
Arize (1997)	1973Q2- 1992Q4	Denmark, Germany, Italy, Japan, Switzerland, UK, US.	ARCH	Johansen cointegration Procedure and ECM	Significant negative influence on export volumes for all countries analyzed.
Doroodian (1999)	Quarterly 1973- 1996	India, Malaysia, South Korea	GARCH	Time series estimation for each country.	Significant negative impact.

Arize et al. (2000)	Quarterly 1973- 1996	Ecuador, Indonesia, Korea, Malaysia, Malawi, Mauritius, Mexico, Morocco, Philippines, Sri Lanka, Taiwan, Thailand.	Eight quarter moving standard deviation.	Cointegration estimation for each country.	Significant negative impact.
Sauer and Bohara (2001)	Annual 1973- 1993	22 developed countries, 25 Latin American LDC, 25 African LDC, 12 Asian LDC, 7 other LDC.	ARCH	Panel estimation	Negative impact for Latin American and African countries.
Esquivel and Larrain (2002)	Annual 1973- 1998	Germany, Japan, USA, 40 LDC from Asia, Africa, Europe and Latin America.	Twelve month moving standard deviation.	Panel estimation.	Germany, Japan and USA exchange rate volatility has negative impact on LDC.
Arize, Malindretos and Kasibhatla (2003)	Quarterly 1973- 1996	Burkina Faso, Colombia, Costa Rica, Jordan, Kenya, Myanmar, Pakistan, S. Africa, Venezuella.	Eight quarter moving standard deviation.	Cointegration estimation for each country.	Significant negative impact of volatility for all countries.

Poon et	Quarterly	Indonesia,	Twelve	Cointegration	Volatility has
al. (2005)	1973-	Japan, South	quarter	for each	significant
	1997	Korea,	moving	country.	negative impact in
		Singapore,	standard		all countries
		Thailand.	deviation.		except Thailand.
					For Thailand
					significant
					positive impact.
Tenreyro	1970-	France,	Instrumental	GMM, OLS	Exchange rate
(2007)	1997	Germany, S.	Variable		variability has no
		Africa, UK,	Poisson		significant impact
		US.	Pseuda		on trade.
			Maximum		
			Likelihood		

(**Table 1 continued**) Studies of The Effects of Exchange Rate Volatility on Trade, 1983-2007.

The literature about effects of exchange rate volatility on trade between 2008-2013 are listed below;

Baak	1986Q1-	US, China	Standard	Cointegration,	The volatility of
(2008)	2006Q2		deviation of	Dynamic	exchange rates
			exchange	ECM.	turned out to
			rate.		negatively
					influence the
					Chinese exports
					to the US, but
					not to have any
					influences on
					the US exports
					to China.
Serenis	1973Q1-	Norway,	Standard	Engle-	Exchange rate
and	2006Q4	Poland,	deviation of	Granger	volatility has no
Serenis		Hungry,	the moving	Cointegration	major effects.
(2008)		Switzerland.	average.		-

Hayakawa, Kimura (2009)	1992- 2005	60 countries	Standard deviation of the first difference of the monthly natural logarithm of the bilateral real exchange rate.	OLS	Intra East Asian trade is discouraged by exchange rate volatility more seriously than trade in other regions. The negative effect of the volatility is greater than that of tariffs.
Baum, Caglayan (2010)	January 1980- December 1998	USA, UK, Canada, Germany, France, Italy, Japan, Finland, the Netherlands, Norway, Spain, Sweden, Switzerland	M-GARCH BEKK Model.	Engle- Granger Regression.	The impact of exchange rate volatility on trade flows is intermediate. Only a small number of models (30 out of 143) present significant relationship: significant and positive in 23 models and significantly negative in the remaining 7 models.

Serenis.	1973-	Austria.	Standard	Engle Granger	Exchange rate
Serenis	2005	Belgium.	deviation of	Cointegration	volatility does
(2010)		Denmark.	moving	ECM.	not have any
(/		France.	average of		major effects
		Finland, Italy,	the logarithm		on the sectoral
		Portugal.	of the real		level of
		Greece.	exchange		exports.
		Netherlands	rate.		· · ·
		UK, Sweden.			
Zelekha,	1997Q1	Israel, USA.	Instrumental	2SLS	Uncertainty
Efrat (2011)	-2010Q1		Variable.		has a negative
					and dominant
					effect on
					exports in both
					short run and
					the long run.
Mohammadi	1959-	Iran.	TARCH.	Johansen	Significant and
et al. (2011)	2009			Cointegration	negative
				Test.	impact of
					exchange rate
					uncertainty on
					Iran's imports.

Mougoue, Aggarwal (2011)	British Pound: 1 Nov. 1997- 21 Aug. 2009 Japanese Yen: 21 21 Nov. 1978- 21 Aug. 2009 Canadian Dollar: Dollar: 1 1978-2009	UK, Japan, Canada.	EGARCH	Linear and non-linear Granger causality test.	Trading volumes and return volatility are negatively correlated with trading volume.
Bahmani- Oskooee, Harvey (2011)	1971-2006	USA, Malaysia.	Standard deviation of the 12 monthly real bilateral exchange rate.	ECM, Bound Testing Approach, OLS.	The exchange rate volatility has neither short run nor long run effect on trade flows.
Verheyen (2012)	January 1995- August 2010.	Austria, Belgium, Spain, Finland, France, Germany, Greece, Ireland, Italy, the Netherland, Portugal.	Moving standard deviation of the changes in the nominal exchange rate, GARCH.	ARDL Bound Testing.	The results do indicate that it is most likely that exchange rate variability depresses exports.

Srinivasan, Kalaivani (2012)	1970-2011	India	Moving average standard deviation.	ARDL Bound Testing.	The exchange rate volatility has significant negative impact on real exports both in the short run and long run.
Grier, Smallwood (2013)	January 1973-April 2007	Canada, Denmark, Japan, Norway, Sweden, Switzerland, UK, US and 19 LDC.	M-GARCH	VAR	The real exchange rate uncertainty negatively impacts trade for several less developed countries.
Nishimura, Hirayama (2013)	Daily January 2002- December 2011	Japan, China.	ARCH, Standard deviation.	ARDL	The results indicate that Japan's exports to China are not affected by the exchange rate volatility, but China's exports to Japan are negatively influenced.

(**Table 2 continued**) Studies of The Effects of Exchange Rate Volatility on Trade, 2008-2013.

Baek (2013)	1991Q1- 2010Q4	Korea, Japan.	Standard deviation of the three monthly real exchange rate values within each quarter	ARDL, ECM.	Korea's exports and imports are relatively sensitive to the bilateral exchange rate in the short run but less responsive in the long run
Bahman i- Oskooe e et al. (2013)	Annual 1971- 2010	USA, Brazil.	Standard deviation of the 12 monthly real exchange rate values.	Bound Testing Cointegratio n, ECM.	The majority of the industries are not affected by volatility in the long run, large share of those that are affected responds positively to increased risk.
Poon, Hooy (2013)	1995- 2008	Organizatio n of the Islamic Conference Countries	Standard deviation of the monthly nominal exchange rate.	Panel regression.	Exchange rate volatility generally has significant negative effect on trade.

Conclusion

This paper provides an extensive survey of the literature on exchange rate volatility and trade, examining both the theory that underlies the work in this area and the results of empirical studies published between 1983-2013. Results of the studies are contradictory. Studies' sample periods, model specifications, countries and selected econometric methods vary widely. Especially analyses using aggregate data are in contradiction with analyses using disaggregate data. So one cannot argue that exchange rate volatility affect international trade positively or negatively.

REFERENCES

- Abbott, A.J.(1999). An investigation into the influence of exchange rate variability on *U.K. export volumes and prices*. Unpublished doctoral dissertation, University of Durham.
- Akhtar, M.A., & Hilton, R.S. (1984). Effects of exchange rate uncertanity on German and U.S. trade. *Federal Reserve Bank of New York*, Research Paper No. 8403.
- Aristotelous, K. (2001). Exchange rate volatility, exchange rate regime, and trade volüme: Evidence from the U.K.-U.S. export function. *Economic Letters*, 72, 87-94.
- Arize, A.C., Osang, T., Slottje, D.J. (2008). Exchange rate volatility in Latin America and its impact on foreign trade. *International Review of Economics and Finance*, 17, 33-44.
- Baak, S. (2008). The bilateral real exchange rates and trade between China and the U.S. *China Economic Review*, 19, 117-127.
- Bacchetta, P., & Van Wincoop, E. (2000). Does exchange rate stability increase trade and welfare? *The American Economic Review*, Vol. 90, No. 5, 1093-1109.
- Baek, J. (2013). Does the exchange rate matter to bilateral trade between Korea and Japan? Evidence from commodity trade data. *Economic Modelling*, 30, 856-862.
- Bahmani-Oskooee, M., & Wang, Y. (2009). Exchange rate sensitivity of Australia's trade flows: Evidence from industry data. *The Manchester School*, Vol. 77, No. 1, 1-16.
- Bahmani-Oskooee, M., Harvey, H. (2011). Exchange rate volatility and industry trade between the U.S. and Malaysia. *Research in International Business and Finance*, 25, 127-155.
- Bahmani-Oskooee, M., Harvey, H., Hegerty, S.W. (2013). The effects of exchange rate volatility on commodity trade between the U.S. and Brazil. *North American Journal of Economics and Finance*, 25, 70-93.
- Baum, C.F., & Caglayan, M. (2010). On the sensitivity of the volume and volatility of bilateral trade flows to exchange rate uncertanity. *Journal of International Money and Finance*, 29, 79-93.
- Broll, U., & Eckwert, B. (1999). Exchange rate volatility and international trade. *Southern Economic Journal*, 66(1), 178-185.
- Byrne, J.P., Darby, J., MacDonald, R. (2008). U.S. trade and exchange rate volatility: A real sectoral bilateral analysis. *Journal of Macroeconomics*, 30, 238-259.

- Clark, P.B., Tamirisa, N., Wei, S.J., Sadikov, A., Zeng, L. (2004). *A new look at exchange rate volatility and trade flows*. International Monetary Fund.
- Doganlar, M. (2002). Estimating the impact of exchange rate volatility on exports: Evidence from Asian countries. *Applied Economic Letters*, 9:13, 859-863.
- Grier, K.B., & Smallwood, A.D. (2013). Exchange rate shocks and trade: A multivariate GARCH-M approach. *Journal of International Money and Finance*, 37, 282-305.
- Hall, S., Hondroyiannis, G., Swamy, P.A.V.B., Tavlas, G., Ulan, M. (2010). Exchange rate volatility and export performance: Do emerging market economies resemble industrial countries or other developing countries? *Economic Modelling*, 27, 1514-1521.
- Hayakawa, K., & Kimura, F. (2009). The effect of exchange rate volatility on international trade in East Asia. *Journal of the Japanese and International Economies*, 23, 395-406.
- Hooper, P., & Kohlhagen, S.W. (1976). The effect of exchange rate uncertanity on the prices and volume of international trade. *International Finance Discussion Paper*.
- Mohammadi, T., Taghavi, M., Bandidarian, A. (2011). The effect of exchange rate uncertanity on import: TARCH approach. *International Journal of Business Research*, 1(4), 211-220.
- Mougoue, M., & Aggarwal, R. (2011). Trading volüme and exchnage rate volatility: Evidence fort he sequential arrival of information hypothesis. *Journal of Banking and Finance*, 35, 2690-2703.
- Nishimura, Y., & Hirayama, K. (2013). Does exchange rate volatility deter Japan China trade? Evidence from pre and post exchange rate reform in China. *Japan and the World Economy*, 25-26, 90-101.
- Poon, W.C., Choong, C.K., Habibullah, M.S. (2005). Exchange rate volatility and exports for selected east Asian countries. ASEAN Economic Bulletin, Vol. 22, No.2, 144-159.
- Poon, W.C., & Hooy, C.W. (2013). Exchange rate volatility, exchange rate regime, and trade in OIC countries. *Journal of Asia Pacific Business*, 14:3, 182-201.
- Rose, A.K. (1999). One Money, one market: Estimating the effect of common currencies on trade. *NBER Working Paper Series*, Working Paper. 7432.
- Serenis, D. & Serenis, P. (2008). The impact of exchange rate volatility on exports: Evidence four European countries. *International Conference on Applied Economics*.
- Serenis, D., & Serenis, P. (2010). Exchange rate volatility, the E.U. and sectoral exports: New empirical evidence from the chemical sector. *Research in World Economy*, Vol. 1, No. 1.
- Srinivasan, P., & Kalaivani, M. (2012). Exchange rate volatility and export growth in India: An empirical Investigation. *Munich Personal Repec Archive*, Paper No. 43828.
- Tenreyro, S. (2007). On the trade impact of nominal exchange rate volatility. *Journal of Development Economics*, 82, 485-508.

- Verheyen, F. (2012). Bilateral exports from Euro zone countries to the U.S: Does exchange rate variability play a role? *International Review of Economic and Finance*, 24, 97-108.
- Zelekha, Y., & Bar-Efrat, O. (2011). The link between exchange rate uncertanity and Israeli exports to the U.S: 2SLS and cointegration approaches. *Research in Economics*, 65, 100-109.