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Abstract
For any ring S and an S-module W , a submodule G of W is termed
coδ-coatomic if the quotient module W/G is δ-coatomic. In this study,
we introduce the term (⊕-)coδ-coatomically δ-supplemented module,
or shortly (⊕-)coδ-δ-supplemented module to describe a module W

where each coδ-coatomic submodule has a δ-supplement (that is a
direct summand) in W . Furthermore, a module W is identified as
coδ-coatomically δ-semiperfect, or shortly coδ-δ-semiperfect, provided
each δ-coatomic quotient module of W has a projective δ-cover. It
has been proved that over a δ-semiperfect ring S, the module SS is
⊕δ-co-coatomically supplemented if and only if SS is coδ-δ-semiperfect
if and only if SS is ⊕-coδ-δ-supplemented.
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Ahi Evran University, Department of
Mathematics, Kırşehir, Türkiye
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Öz
Herhangi bir S halkası ve bir W S-modülü için, W modülünün bir
G alt modülü, eğer W/G bölüm modülü δ-eşatom ise eşδ-eşatom
olarak adlandırılır. Bu çalışmada, (⊕-)eşδ-eşatom δ-tümlenmiş modül,
veya kısaca (⊕-)eşδ-δ-tümlenmiş modül terimini her eşδ-eşatom alt
modülü (direkt toplam terimi olan) bir δ-tümleyene sahip olan bir W
modülünü belirtmek için tanıtıyoruz. Ayrıca, W modülü, eğer her
bir δ-eşatom bölüm modülü, projektif bir δ-örtüye sahipse eşδ-eşatom
δ-yarı mükemmel veya kısaca eşδ-δ-yarı mükemmel olarak tanımlanır.
Bir δ-yarı mükemmel S halkası üzerinde, SS modülünün ⊕δ-eş-eşatom
tümlenmiş olmasının SS modülünün eşδ-δ-yarı mükemmel olmasına ve

SS modülünün ⊕-eşδ-δ-tümlenmiş olmasına denk olduğu kanıtlanmıştır.

Anahtar Kelimeler: eşδ-eşatom alt modül, eşδ-eşatom δ-tümlenmiş
modül, ⊕-eşδ-eşatom δ-tümlenmiş modül, eşδ-eşatom δ-yarı mükemmel
modül
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Introduction

All along the current manuscript, we regard that whole rings are associative having identity element and

whole modules are unital left S-modules. Let S be a ring of such nature and W be a module falling

into this category. The impressions G ≤ W and G ≤⊕ W signify that G functions as a submodule

of W and G functions as a direct summand of W , respectively. Referring to a submodule G of W

as small in W , denoted as G ≪ W , implies that W ̸= G + L for each proper submodule L of W .

The symbol Rad(W ) represents the intersection of whole maximal submodules of W or, equivalently,

the sum of whole small submodules of W . Dually, a submodule G of W is classified as essential

in W , denoted by G ⊴ W , provided G ∩ H ̸= 0 where 0 ̸= H ≤ W . A module W is termed

singular if W ∼= W ′/G for some module W ′ and G ⊴ W ′. The notion of a projective cover for a

module W refers to a pair comprising a module P and a homomorphism h : P → W , where P is

projective, and h is an epimorphism with Ker(h) ≪ P (refer to [1]). A module W is termed coatomic

if each proper submodule is included in a maximal submodule of W (see [2]). Examples of coatomic

modules encompass finitely generated, semisimple, and local modules. Initially introduced by Alizade

and Güngör in [3] the concept of co-coatomic submodules is articulated as follows. A submodule G of

W is denoted as co-coatomic when the quotient module W/G is coatomic.

As a particular instance derived from the concept of coatomic modules, the notion of δ-coatomic modules

is described in [4]. A module W is characterized as δ-coatomic provided, each submodule which is

different from W of W is encompassed within a maximal submodule H of W where W/H is singular

(refer to [4, Lemma 2.1]). In the context of [4], a ring S is denoted as left (right) δ-coatomic if the left

(right) S-module SS (SS) is δ-coatomic.

The subsequent proposition is a consequence of [4, Proposition 2.5], and we will invoke it consistently

in the course of this paper.

Proposition 1. Suppose that 0 → G→W → L→ 0 is an exact sequence consisting of modules.

1. When W is δ-coatomic, L is δ-coatomic.

2. When G and L are δ-coatomic, W is δ-coatomic.

In particular, for any δ-coatomic module W , G ≤⊕ W is δ-coatomic.

Consider submodules G and H of a module W . The term supplement is attributed to H in relation to

G within W if H is minimal while satisfying W = G + H . It is a well-established fact that H serves

as a supplement of G in W if and only if W = G + H and G ∩ H ≪ H . A module W is said to

be a supplemented module provided each submodule of W possesses a supplement in W . Examples of

supplemented modules include semisimple modules and hollow modules (refer to [1, Section 41]). In [3],

W is termed co-coatomically supplemented module when each co-coatomic submodule of W possesses

a supplement in W .

In [5], the authors put forth the concept that W is denoted as ⊕-co-coatomically supplemented module

provided any co-coatomic submodule possesses a supplement G with G ≤⊕ W . Furthermore, in the

same paper, W is characterized as co-coatomically semiperfect module provided any coatomic quotient

module of W admits a projective cover.
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Zhou described the concept of δ-small submodules, a generalization of small submodules that play a

pivotal role in the framework of supplemented modules, as presented in [6]. For a submodule G ≤ W ,

G is designated as δ-small in W and is denoted by G ≪δ W if W ̸= G + H holds for each proper

submodule H of W where W/H is singular. In accordance with the notation in [6, Lemma 1.5], δ(W )

signifies the sum of whole δ-small submodules of W .

We compile the fundamental features of submodules which are δ-small in the subsequent lemma, sourced

from [6, Lemma 1.2 and 1.3].

Lemma 1. Suppose that W is a module.

1. For any submodule G of W , G≪δ W if and only if whenever W = X +G there is a semisimple

projective submodule G′ of G with X ⊕G′ =W .

2. When G ≪δ W and h : W → L is a homomorphism, then h(G) ≪δ L. In particular, G ≪δ

W ≤ L, then G≪δ L.

3. When G1 ≪δ H1 ≤W and G2 ≪δ H2 ≤W , G1 +G2 ≪δ H1 +H2.

4. When W =
⊕

λ∈ΛWλ, δ(W ) =
⊕

λ∈Λ δ(Wλ).

5. When G ≤ H ≤W , G≪δ W and H ≤⊕ W , G≪δ H .

In [7], a module W is defined as δ-supplemented provided any submodule G of W possesses a δ-supple-

ment H in W , characterized by W = G +H and G ∩H ≪δ H . For more comprehensive details and

characterizations of δ-supplemented modules, additional information can be found in [8] and [7].

In [9], a moduleW is referred to as co-coatomically δ-supplemented (⊕δ-co-coatomically supplemented)

provided any co-coatomic submodule of W possesses a δ-supplement G with G ≤⊕ W . In the same

paper, a module W is identified as co-coatomically δ-semiperfect provided any co-coatomic quotient

module of W possesses a projective δ-cover. The authors thoroughly examined the structure of these

modules in the same paper and provided new characterizations of rings based on these modules.

In this note, we introduce a special case of co-coatomic submodules. Let G be a submodule of a module

W . We designate G as a coδ-coatomic submodule of W if the quotient module W/G is δ-coatomic. It is

evident that δ-coatomic modules are coatomic. Consequently, each submodule which is coδ-coatomic of

a module is also co-coatomic. According to [4, Corollary 2.9], since each semisimple singular module is

δ-coatomic, it follows that each submodule of semisimple singular modules is coδ-coatomic.

In the other part of this paper, we delve into the introduction and examination of the concept of coδ-coato-

mically δ-supplemented modules, shortly coδ-δ-supplemented modules, and ⊕-coδ-coatomically δ-supp-

lemented modules, shortly ⊕-coδ-δ-supplemented modules, as notions stronger than the previously

defined co-coatomically δ-supplemented modules and ⊕δ-co-coatomically supplemented modules. We

commence by presenting an example of a module that is coδ-δ-supplemented but not δ-supplemented. It

is demonstrated that the class of coδ-δ-supplemented modules is closed under quotient modules and

finite sums. We establish that a ring S is left δ-coatomic if and only if each simple S-module is

singular, and this equivalence extends to the statement that each coatomic S-module is δ-coatomic.

Consequently, it is deduced that over left δ-coatomic rings, co-coatomically δ-supplemented modules

and coδ-δ-supplemented modules coincide. Additionally, an example is provided of a ring S over which
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each coδ-δ-supplemented S-module is co-coatomically δ-supplemented. It is established that the quotient

module of a ⊕-coδ-δ-supplemented module by a fully invariant submodule is also ⊕-coδ-δ-supplemented.

Consequently, it is proven that for a ⊕-coδ-δ-supplemented module W , the quotient module W/δ(W ) is

⊕-coδ-δ-supplemented. Moreover, it is shown that the class of ⊕-coδ-δ-supplemented modules is closed

under finite direct sums.

In the last part of this article, we introduce the definitions of coδ-coatomically δ-semiperfect modules,

shortly coδ-δ-semiperfect modules, as a generalization of co-coatomically δ-semiperfect modules. It is

demonstrated that for a projective moduleW ,W is coδ-δ-semiperfect if and only ifW is ⊕-coδ-δ-supple-

mented. It is established that the class of coδ-δ-semiperfect modules is closed under quotient modules and

δ-covers. Furthermore, it is shown that the finite direct sum of projective coδ-δ-semiperfect modules is

coδ-δ-semiperfect if and only if each direct summand is coδ-δ-semiperfect. Additionally, it is proven that

for a δ-semiperfect ring S, SS is ⊕δ-co-coatomically supplemented if and only if SS is coδ-δ-semiperfect

if and only if SS is ⊕-coδ-δ-supplemented.

Coδ-Coatomically δ-Supplemented Modules

Definition 1. We term a moduleW coδ-coatomically δ-supplemented, shortly coδ-δ-supplemented provi-

ded each coδ-coatomic submodule ofW possesses a δ-supplement inW .W is named ⊕-coδ-coatomically

δ-supplemented, shortly ⊕-coδ-δ-supplemented provided each coδ-coatomic submodule of W has a

δ-supplement G with G ≤⊕ W .

It is evident that co-coatomically δ-supplemented modules are coδ-δ-supplemented, as coδ-coatomic

submodules are co-coatomic. In the subsequent discussion, we will provide an example of a ring for

which coδ-δ-supplemented modules are co-coatomically δ-supplemented. It is apparent that modules

which are δ-supplemented are also coδ-δ-supplemented. However, the example which will be given next

illustrates that a coδ-δ-supplemented module does not necessarily need to be δ-supplemented.

Example 1. Let’s consider the Z-module Q. Given that Q has only Q as a coδ-coatomic submodule, Q
qualifies as a coδ-δ-supplemented module. However, it’s important to note that Q is not a δ-supplemented

module.

Proposition 2. Suppose that W is a δ-coatomic module. In that case, W is coδ-δ-supplemented if and

only if W is δ-supplemented.

Proof. The sufficiency is evident. To prove the necessity, let G be any submodule of W . Since W

is δ-coatomic, then W/G is δ-coatomic by Proposition 1. Thus G has a δ-supplement in W , by the

assumption. Hence W is δ-supplemented.

Corollary 1. Suppose that W is a semisimple singular module. Then W is coδ-δ-supplemented if and

only if W is δ-supplemented.

Proof. Note that by [4, Corollary 2.9],W is δ-coatomic. Thus the result is derived from Proposition 2.

Corollary 2. For a module W , assume that δ(W ) ≪δ W and W satisfies either

1. W/δ(W ) is semisimple, or
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2. For each submodule G of W , there exists a submodule H of W such that W = G + H and

G ∩H ≪δ W .

Then W being coδ-δ-supplemented is equivalent to being δ-supplemented.

Proof. W is δ-coatomic module by [4, Theorem 2.2]. Thus the result is supported by Proposition 2.

Proposition 3. Coδ-δ-supplemented modules exhibit transfer properties through their quotient modules.

Proof. Suppose thatW is a coδ-δ-supplemented module andG ≤W . Then any coδ-coatomic submodule

of W/G is a submodule of the form L/G where L is coδ-coatomic submodule of W . By the hypothesis,

L has a δ-supplement in W , say X . According to [8, Proposition 2.3], we achieve that

(X +G)/G is a δ-supplement of L/G in W/G.

Corollary 3. The property of being coδ-δ-supplemented module is transferred by direct summands.

Proposition 4. Suppose that W is a coδ-δ-supplemented module. In that case, each coδ-coatomic

submodule of the module W/δ(W ) is a direct summand.

Proof. Suppose that G/δ(W ) is a coδ-coatomic submodule of W/δ(W ). Then G is coδ-coatomic

submodule of W . By the hypothesis, there exists a submodule H of W such that W = G + H and

G ∩H ≪δ H . Note that G ∩H ≤ δ(W ). Thus

W/δ(W ) = G/δ(W ) + (H + δ(W ))/δ(W ),

(G/δ(W )) ∩ ((H + δ(W ))/δ(W )) = ((G ∩H) + δ(W ))/δ(W ) = 0.

Hence W/δ(W ) = (G/δ(W ))⊕ (H + δ(W ))/δ(W ).

Corollary 4. Suppose thatW is a coδ-δ-supplemented module. In that case,W/δ(W ) is ⊕-coδ-δ-supple-

mented.

Next, we aim demonstrating that the sum of a finite number of coδ-δ-supplemented modules becomes a

coδ-δ-supplemented module. To begin with, we establish the following lemma as a preliminary step.

Lemma 2. Suppose that W is a module and G,H ≤ W . Assume that G is coδ-coatomic, H is

coδ-δ-supplemented and G + H possesses a δ-supplement in W . Then G possesses a δ-supplement

in W .

Proof. Let X be a δ-supplement of G+H in W . Note that

H/(H ∩ (G+X)) ∼= (G+H +X)/(G+X) =W/(G+X)

is δ-coatomic as a quotient module of the δ-coatomic module W/G. Thus there exists a submodule H ′

of H such that

H = H ′ + (H ∩ (G + X)) and H ′ ∩ (H ∩ (G + X)) = H ′ ∩ (G + X) ≪δ H
′. Therefore we

have W = G + H + X = G + (H ′ + H ∩ (G + X)) + X = G + H ′ + X and G ∩ (H ′ + X) ≤
H ′ ∩ (G +X) +X ∩ (G +H ′) ≤ H ′ ∩ (G +X) +X ∩ (G +H) ≪δ H

′ +X . Hence H ′ +X is a

δ-supplement of G in W .

Theorem 1. A finite sum of coδ-δ-supplemented modules remains coδ-δ-supplemented.
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Proof. It is sufficient to prove that the sum, say W , of coδ-δ-supplemented modules W1 and W2 is

coδ-δ-supplemented. For this, assume thatG is a coδ-coatomic submodule ofW . ThenW =W1+W2+

G. Note that (W/G)/((W2 + G)/G) ∼= W/(W2 + G) is δ-coatomic. Since W2 + G is coδ-coatomic

submodule of W and W1 is coδ-δ-supplemented, then W2 + G has a δ-supplement in W by Lemma

2. By using Lemma 2 once more again, we conclude that G has a δ-supplement in W because W2 is

coδ-δ-supplemented module andG is a coδ-coatomic submodule ofW . HenceW is coδ-δ-supplemented.

Consider modulesW and L. L is designated as finitelyW -generated in case there exists an epimorphism

f :W (Λ) → L where Λ is a finite set.

The subsequent corollary naturally follows from Proposition 3 and Theorem 1.

Corollary 5. In case W is coδ-δ-supplemented module, then any finitely W -generated module is a

coδ-δ-supplemented module.

Theorem 2. Let G be a coδ-δ-supplemented submodule of a module W such that W/G has no maximal

submodule. Then W is a coδ-δ-supplemented module.

Proof. Let L be a coδ-coatomic submodule of W . Then W/(G+L) is δ-coatomic as a quotient module

of the δ-coatomic moduleW/L . ThusW/(G+L) is coatomic. SinceW/G has no maximal submodule,

W/(G+L) also has no maximal submodule. Thus W = G+L. By Lemma 2, L has a δ-supplement in

W . Hence W is coδ-δ-supplemented module.

Corollary 6. Suppose that W is a module and W/Soc(W ) has no maximal submodule. Then W is

coδ-δ-supplemented module.

As a reminder from [10], a module W is termed δ-local in case δ(W ) ≪δ W and the submodule δ(W )

is maximal in W .

Proposition 5. Let W be a coδ-δ-supplemented module. If W contains a maximal submodule H with

singular W/H , then W contains a δ-local or projective semisimple submodule.

Proof. Assume that W is a coδ-δ-supplemented module and H is a maximal submodule of W such

that W/H is singular. Then H is coδ-coatomic submodule of W . By the assumption, there exists a

submodule X of W such that W = H +X and H ∩X ≪δ X . Therefore, X is δ-local or semisimple

projective by [11, Lemma 2.22].

Lemma 3. Suppose that W is a module and H is a maximal submodule that contains whole semisimple

singular submodules of W . If W/H is singular and X is a δ-supplement of H in W , then X is δ-local.

Proof. By the hypothesis, W = H + X and H ∩ X ≪δ X . Assume that H ∩ X is not an essential

submodule of X . Then there exists a submodule X ′ of X such that (H ∩ X) ∩ X ′ = 0, and so X =

(H ∩ X) ⊕ X ′. Thus X ′ ∼= X/(H ∩ X) ∼= W/H is simple singular, by the assumption. Also we get

W = H+X = H+(H∩X)⊕X ′ = H+X ′. It leads to the conclusion thatH does not containX ′. This

contradicts with the hypothesis. Hence H ∩X is an essential submodule of X , and so δ(X) ≤ H ∩X .

Hence δ(X) = H ∩X .

Proposition 6. The expressions below are equivalent for a δ-coatomic module W :
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1. W is coδ-δ-supplemented.

2. Each maximal submodule H of W with singular W/H has a δ-supplement in W .

3. W =W1 +W2 + ...+Wn where each Wλ is either simple or δ-local.

Proof. When W is semisimple singular, then these stated equivalences above are evidently valid. So, we

posit that W is not semisimple singular.

(1) =⇒ (2) It is evident.

(2) =⇒ (3) Let X be the sum of whole submodules which are δ-supplement of maximal submodules

H of W with singular W/H and Soc(W ) ≤ H . Then by Lemma 3, X is a sum of δ-local submodules

of W . Now assume that W ̸= Soc(W ) + X . Since W is δ-coatomic module, then there is a maximal

submodule G of W such that Soc(W ) +X ≤ G and W/G is singular. By the hypothesis, G possesses

a δ-supplement Y in W . Therefore, Y ≤ X ≤ G and G = W , but this is a contradiction. Hence,

W = Soc(W ) +X and the result holds.

(3) =⇒ (1) It is supported by [10, Lemma 3.3] that δ-local modules are δ-supplemented, and so

coδ-δ-supplemented. Moreover, it is evident that simple modules are coδ-δ-supplemented. Hence W

is coδ-δ-supplemented as a finite sum of coδ-δ-supplemented modules by Theorem 1.

Corollary 7. Suppose that W is a δ-coatomic module. In case W is δ-supplemented, W =W1 +W2 +

...+Wn where each Wλ is either simple or δ-local.

Proposition 7. Suppose that S is a ring. The expressions below are equivalent:

1. S is a left δ-coatomic ring.

2. Each simple S-module is singular.

3. Each coatomic S-module is δ-coatomic.

Proof. (1) =⇒ (2) It is supported by [4, Theorem 2.18].

(2) =⇒ (3) Let W be a coatomic module. Then each submodule which is proper of W is included in

a maximal submodule G. By the assumption, W/G is singular. Thus we conclude that each submodule

which is proper of W is included in a maximal submodule G where W/G is singular. This means that

W is δ-coatomic.

(3) =⇒ (1) By (3), the module SS is δ-coatomic. Hence S is a left δ-coatomic ring.

Corollary 8. Suppose that S is a δ-coatomic ring and W is an S-module. In that case, the expressions

below are equivalent:

1. W is co-coatomically δ-supplemented.

2. W is coδ-δ-supplemented.

Proof. (1) =⇒ (2) It is evident.

(2) =⇒ (1) Suppose that G is a co-coatomic submodule of W , that is, W/G is coatomic. Then W/G

is δ-coatomic by Proposition 7, as S is a left δ-coatomic ring, by the assumption. Thus G ≤ W is

coδ-coatomic. As W is coδ-δ-supplemented, G possesses a δ-supplement in W , as desired.
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Heed the information derived from [6] that, concerning the modules P and W , an epimorphism h : P →
W is denominated a δ-cover of W under the condition that Ker(h) ≪δ P . A δ-cover h : P → W

is labeled as a projective δ-cover provided that P is a projective module. A ring S is characterized as

δ-semiperfect in case each simple S-module possesses a projective δ-cover (refer to [6]).

Corollary 9. Suppose that S is a δ-semiperfect ring and W is an S-module. In that case, the expressions

below are equivalent:

1. W is co-coatomically δ-supplemented.

2. W is coδ-δ-supplemented.

Proof. Since δ-semiperfect rings are left δ-coatomic by [4, Proposition 2.15], then the result is supported

by Corollary 8.

Corollary 10. The expressions below are equivalent for a δ-semiperfect ring S:

1. SS is (⊕δ-co-coatomically supplemented) co-coatomically δ-supplemented.

2. SS is (⊕-coδ-δ-supplemented) coδ-δ-supplemented.

Presently, we provide an instance of a ring where each coδ-δ-supplemented S-module is simultaneously

co-coatomically δ-supplemented.

Example 2. Suppose that S is an incomplete discrete valuation ring and Q denotes its field of fractions.

Let p be the maximal ideal of S. Then p is essential in S. Hence the simple S-module S/p is singular.

Hence each simple S-module is singular. So S has no simple projective S-modules. Also as stated in

the [11, Example 2.2], δ-small submodules are small over the ring S. Therefore over this ring, modules

which are co-coatomically δ-supplemented are co-coatomically supplemented, and also coδ-δ-supple-

mented modules are co-coatomically δ-supplemented by Proposition 7. Moreover,Q⊕Q is coδ-δ-supple-

mented as it is supplemented by [12, Theorem 2.2].

Consider a module W . A submodule G within W is denoted as fully invariant if γ(G) ≤ G for any

endomorphism γ of W . In case each submodule of W is fully invariant, W is termed duo (refer to [13]).

Proposition 8. Suppose thatW is a ⊕-coδ-δ-supplemented module andG is a fully invariant submodule

of W . In that case, the quotient module W/G is ⊕-coδ-δ-supplemented.

Proof. Assume that L/G is a coδ-coatomic submodule of W/G. Then (W/G)/(L/G) ∼= (W/L)

is δ-coatomic, and hence L is a coδ-coatomic submodule of W . By the assumption, there exists a

decomposition W = X ⊕ X ′ of W such that W = L + X and L ∩ X ≪δ X . This leads to the

conclusion that (G + X)/G is a δ-supplement of L/G in W/G by [8, Proposition 2.3]. Therefore, we

conclude thatG = (G∩X)⊕(G∩X ′), sinceG is fully invariant by [13, Lemma 2.1]. This decomposition

implies that W/G = ((G+X)/G)⊕ ((G+X ′)/G). Hence W/G is ⊕-coδ-δ-supplemented.

Retrieve from [6, Lemma 1.5(2)] the fact that the submodule δ(W ) of a module W is fully invariant.

Corollary 11. Suppose that W is a ⊕-coδ-δ-supplemented module. In that case, W/δ(W ) is ⊕-coδ-δ-

supplemented.
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Corollary 12. Suppose that W is a ⊕-coδ-δ-supplemented duo module. In that case each quotient

module of W is ⊕-coδ-δ-supplemented.

Proposition 9. Each coδ-coatomic fully invariant direct summand of a ⊕-coδ-δ-supplemented module

is ⊕-coδ-δ-supplemented.

Proof. Suppose thatW is a ⊕-coδ-δ-supplemented module andG ≤⊕ W is coδ-coatomic fully invariant.

LetX be a coδ-coatomic submodule ofG. By the assumption, there exists a δ-coatomic submoduleG′ of

W such that W = G⊕G′. Thus we have that W/X = ((G⊕G′)/X)⊕G′ ∼= G/X ⊕G′ is δ-coatomic

since it is a direct sum of two δ-coatomic modules by [4, Proposition 2.6]. Therefore, by the assumption

there is a submodule T which is δ-supplement of X in W such that W = T ⊕ T ′. By the modular law,

we get that G = G∩ (X +T ) = X +(G∩T ). Note here that G = (G∩T )⊕ (G∩T ′) by [13, Lemma

2.1], sinceG is a fully invariant submodule ofW . So, G∩T ≤⊕ G. SinceX∩ (G∩T ) = X∩T ≪δ T ,

then X ∩ (G ∩ T ) ≪δ G ∩ T by Lemma 1-(5). Hence G is ⊕-coδ-δ-supplemented.

Proposition 10. Suppose that W is a ⊕-coδ-δ-supplemented module and G is a submodule of W .

Assume that for each X ≤⊕ W , (G+X)/G ≤⊕ W/G. Then W/G is a ⊕-coδ-δ-supplemented.

Proof. Assume that L/G is a coδ-coatomic submodule of W/G. Then L is a δ-coatomic submodule of

W . By the assumption, there exists a decomposition W = X ⊕ X ′ of W such that W = L + X and

L ∩X ≪δ X . Thus we get that W/G = (L/G) + ((G+X)/G). By the hypothesis, (G+X)/G ≤⊕

W/G. On the other hand, since L∩X ≪δ X , (L∩ (G+X))/G = (G+(L∩X))/G = π(L∩X) ≪δ

π(X) = (G+X)/G where π : W → W/G is a canonical projection by Lemma 1-(2). This completes

the proof.

As per the definition in [14], a module W is designated to possess the Summand Sum Property (SSP) in

case the sum W1 +W2 ≤⊕ W where W1,W2 ≤⊕ W .

Proposition 11. Suppose that W is a ⊕-coδ-δ-supplemented module. In case W possesses (SSP ), each

G ≤⊕ W is ⊕-coδ-δ-supplemented.

Proof. Assume that W1 ≤⊕ W such that W = W1 ⊕ W2. Regarding any X ≤⊕ W , we achieve

that W = (X +W1) ⊕ K for some submodule K of W , as W has (SSP ) by the assumption. Note

that W/W2 = ((X + W1)/W2) ⊕ ((K + W2)/W2). Here according to Proposition 10, W/W2 is

⊕-coδ-δ-supplemented module.

Referencing [15], it can be recalled that a module W is termed distributive if, for submodules G,H,L of

W , the equality G∩ (H +L) = (G∩H)+ (G∩L) or G+(H ∩L) = (G+H)∩ (G+L) is satisfied.

Proposition 12. Suppose that W is a ⊕-coδ-δ-supplemented module and G is a submodule of W . In

case W is distributive, W/G is ⊕-coδ-δ-supplemented.

Proof. The claim can be proved by using Proposition 10. For this, take K ≤⊕ W . Then we have the

decomposition W = K ⊕K ′ for some K ′ ≤ W . Thus W/G = ((G +K)/G) + ((G +K ′)/G). By

the assumption, since W is distributive, then G = G + (K ∩ K ′) = (G + K) ∩ (G + K ′). We infer

from here that W/G = ((G +K)/G) ⊕ ((G +K ′)/G). Thus W/G is ⊕-coδ-δ-supplemented module

by Proposition 10.
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Refer to [16] for the reminder that a module W is termed an (D3)-module in case the intersection of

direct summands, the sum of which yields W , is also a direct summand of W .

Proposition 13. Suppose thatW is a ⊕-coδ-δ-supplemented (D3)-module. In that case, each coδ-coatomic

K ≤⊕ W is ⊕-coδ-δ-supplemented.

Proof. Assume that K ≤⊕ W is coδ-coatomic and X is a coδ-coatomic submodule of K. Then there

exists a δ-coatomic submodule K ′ of M such that W = K ⊕K ′. Therefore, we deduce that W/X ∼=
(K/X) ⊕ K ′ is δ-coatomic as a direct sum of two δ-coatomic modules by [4, Proposition 2.6]. Since

W is ⊕-coδ-δ-supplemented, then there exists a δ-supplement T of X in W with T ≤⊕ W . It gives

the result that K = K ∩ (T + X) = (K ∩ T ) + X . Since W is a (D3)-module, K ∩ T ≤⊕ W ,

and thus K ∩ T ≤⊕ K. Also, X ∩ (K ∩ T ) = X ∩ T ≪δ K ∩ T by Lemma 1-(5). Hence K is

⊕-coδ-δ-supplemented.

In the sequel, we provide a helpful lemma to establish that any finite direct sum of modules that are

⊕-coδ-δ-supplemented remains ⊕-coδ-δ-supplemented.

Lemma 4. Let W be a module and G,H be submodules of W such that G is coδ-δ-supplemented, H is

coδ-coatomic andG+H possesses a δ-supplement T inW . ThenG∩(H+T ) possesses a δ-supplement

T ′ in G and T + T ′ is a δ-supplement of H in W .

Proof. Since T is a δ-supplement ofG+H inW , we have thatW = (G+H)+T and (G+H)∩T ≪δ T .

Moreover,

G/(G∩(H+T )) ∼= (G+H+T )/(H+T ) =W/(H+T ) ∼= (W/H)/((H+T )/H) is δ-coatomic as it

is quotient module of the δ-coatomic moduleW/H . Thus there exists a δ-supplementX ofG∩ (H+T )

in G, by the hypothesis. So, G = (G∩ (H + T )) +X and (G∩ (H + T ))∩X = (H + T )∩X ≪δ X .

Therefore, we have W = (G+H) + T = (G ∩ (H + T ) +X) +H) + T = H + T +X and

H ∩ (T +X) ≤ T ∩ (H +X) +X ∩ (T +H) ≤ T ∩ (H +G) +X ∩ (T +H) ≪δ T +X by Lemma

1-(3). Hence T +X is a δ-supplement of H in W where X is a δ-supplement of G ∩ (H + T ) in G.

Theorem 3. Any finite direct sum of ⊕-coδ-δ-supplemented modules is ⊕-coδ-δ-supplemented.

Proof. Assume that W1,W2, ...,Wn is a finite collection of ⊕-coδ-δ-supplemented modules and W =⊕n
λ=1Wλ. To show that W is ⊕-coδ-δ-supplemented, we will prove the claim in case n = 2 and the

proof is completed by induction. Let W be the direct sum of ⊕-coδ-δ-supplemented modules W1,W2

and G be a coδ-coatomic submodule of W . Then note that W =W1 +W2 +G and 0 is a δ-supplement

of W1 +W2 +G in W . Since

W2/(W2 ∩ (W1 +G)) ∼= (W1 +W2 +G)/(W1 +G) ∼= (W/G)/((W1 +G)/G)

is δ-coatomic as it is quotient module of the δ-coatomic module W/G, then W2 ∩ (W1 + G) ≤ W2 is

coδ-coatomic. Thus by the hypothesis, W2 possesses a K ≤⊕ W2 that is a δ-supplement of W2 ∩ (W1+

G) inW2. ThenK is a δ-supplement ofW1+G by Lemma 4. Now it is easy to see thatW1/W1∩(G+K)

is δ-coatomic, and thus W1 ∩ (G + K) possesses a δ-supplement T in W with T ≤⊕ W1. By using

Lemma 4 once again, K + T is a δ-supplement of G in W1 such that K ⊕ T ≤⊕ W . Hence W is

⊕-coδ-δ-supplemented module.
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Coδ-Coatomically δ-Semiperfect Modules

Definition 2. We term a module W coδ-coatomically δ-semiperfect, shortly coδ-δ-semiperfect, provided

each quotient module of W by a coδ-coatomic submodule, or equivalently each δ-coatomic quotient

module of W possesses a projective δ-cover.

Proposition 14. Suppose thatW is a projective module. In that case, W is coδ-δ-semiperfect if and only

if W is ⊕-coδ-δ-supplemented.

Proof. (=⇒) Assume that G is a coδ-coatomic submodule of W . There is a projective δ-cover h : P →
W/G, by the assumption. Then according to [6, Lemma 2.4] there are submodules W1,W2 of W such

that W = W1 ⊕W2 with W1 ≤ G and W2 ∩ G ≪δ W . Applying Lemma 1-(5), we conclude that

W2 ∩G≪δ W2. It leads to the conclusion that W2 is a δ-supplement of G.

(⇐=) Assume thatG is a coδ-coatomic submodule ofW . AsW is ⊕-coδ-δ-supplemented, thenW has a

decomposition W =W1⊕W2 such that W =W1+G and W1∩G≪δ W1. Note that W1 is projective.

Consider the canonical injection ι : W1 → W and the canonical projection π : W → W/G. By this

way, there exists an epimorphism πι :W1 →W/G with Ker(πι) =W1 ∩G≪δ W1.

Theorem 4. Suppose that W is a coδ-δ-semiperfect module. In that case, each homomorphic image of

W is coδ-δ-semiperfect.

Proof. Assume that h : W → L is a homomorphism and G is coδ-coatomic submodule of h(W ).

Consider the epimorphism ψ :W → h(W )/G defined by ψ(w) = h(w)+G for wholew ∈W . AsW is

coδ-δ-semiperfect, h(W )/G ∼= W/h−1(G) has a projective δ-cover. Hence h(W ) is coδ-δ-semiperfect

module.

Corollary 13. Each quotient module of a coδ-δ-semiperfect module is coδ-δ-semiperfect.

Corollary 14. Each projective quotient module of a coδ-δ-semiperfect module is ⊕-coδ-δ-supplemented

module.

Proof. The proof can be easily seen by Corollary 13 and Proposition 14.

Theorem 5. Each δ-cover of a coδ-δ-semiperfect module is coδ-δ-semiperfect.

Proof. Assume that W is coδ-δ-semiperfect module and f : L → W is a δ-cover of W . For the

δ-coatomic quotient module L/G of L, the homomorphism ψ : L/G→W/f(G) defined by ψ(l+G) =

f(l) + f(G) for all l ∈ L is an epimorphism. Also, we claim that Ker(ψ) ≪δ L/G. To prove

this, assume that Ker(ψ) + X/G = L/G where (L/G)/(X/G) is singular. Note that Ker(ψ) =

(G + Ker(f))/G. Thus we have that L = X + Ker(f) and (L/G)/(X/G) ∼= L/X is singular. As

Ker(f) ≪δ L, then X = L. This leads to the conclusion that Ker(ψ) ≪δ L/G. Since W/f(G) =

ψ(L/G) ∼= (L/G)/(G+Ker(f))/G is δ-coatomic, then by assumptionW/f(G) possesses a projective

δ-cover µ : P → W/f(G). As P is projective, there is a homomorphism α : P → L/G such that the
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following diagram

P

α

yy
µ

��
L/G

ψ
//W/f(G)

is commutative, that is, µ = ψα. Then L/G = α(P ) +Ker(ψ). Since Ker(ψ) ≪δ L/G, there exists a

semisimple projective submodule S of Ker(ψ) such that L/G = α(P ) + S by Lemma 1-(1). Now we

can define the homomorphism β : P ⊕ S → L/G via β(p, s) = α(p) + G. β is an epimorphism and

Ker(β) = Ker(α)⊕ 0. Since Ker(α) ≤ Ker(µ) ≪δ P , then Ker(α)⊕ 0 ≪δ P ⊕ S. Consequently,

P ⊕ S is a δ-cover of L/G.

Corollary 15. Suppose that G is a δ-small submodule of a module W and W/G is coδ-δ-semiperfect.

In that case, W is a coδ-δ-semiperfect module.

Corollary 16. Suppose that W is and that f : P → W is a projective δ-cover of W . In that case, the

expressions below are equivalent:

1. W is coδ-δ-semiperfect.

2. P is coδ-δ-semiperfect.

3. P is ⊕-coδ-δ-supplemented.

Proof. (1) =⇒ (2) It is derived from Theorem 5.

(2) =⇒ (1) It is supported by Corollary 13.

(2) ⇐⇒ (3) It is Proposition 14.

Theorem 6. Suppose that Wλ is a collection of projective modules where λ ∈ Λ and Λ is a finite index

set. In that case, W =
⊕

λ∈ΛWλ is coδ-δ-semiperfect module if and only if Wλ is coδ-δ-semiperfect

for each λ ∈ Λ.

Proof. (=⇒) Let W =
⊕

λ∈ΛWλ is coδ-δ-semiperfect module. Then by Corollary 13,

Wλ
∼=W/(

⊕
η∈Λ\{λ}Wη) is coδ-δ-semiperfect for each λ ∈ Λ.

(⇐=) LetWλ be a projective coδ-δ-semiperfect module for each λ ∈ Λ. ThusWλ is ⊕-coδ-δ-supplement-

ed by Proposition 14, for each λ ∈ Λ. Therefore, W is ⊕-coδ-δ-supplemented by Theorem 3. Applying

Proposition 14 once again, we deduce that W is coδ-δ-semiperfect.

Now the next result is obviously seen by Corollary 13 and Theorem 6.

Corollary 17. Suppose that W is a projective module. In case W is coδ-δ-semiperfect module, any

finitely W -generated module is coδ-δ-semiperfect.

Finally, we determine over which rings the R-module RR is equivalent to being ⊕δ-co-coatomically

supplemented, being coδ-δ-semiperfect and being ⊕-coδ-δ-supplemented.

Theorem 7. The expressions below are equivalent for a δ-semiperfect ring S:
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1. SS is ⊕δ-co-coatomically supplemented.

2. SS is coδ-δ-semiperfect.

3. SS is ⊕-coδ-δ-supplemented.

Proof. (1) ⇐⇒ (3) It is Corollary 10.

(2) ⇐⇒ (3) It is Proposition 14.
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