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ABSTRACT: Value-at-Risk (VaR) is a standard tool for measuring potential risk of economic losses 
in financial markets. In this study, we examine the convenience of the FIGARCH (1, d, 1) and 
FIAPARCH (1, d, 1) models in evaluating asymmetry features and long memory in the volatility of 
the Turkish Stock Market. Furthermore, we investigate the performances in-sample and out-of-sample 
Value-at-Risk (VaR) analyses based on Kupiec-LR test by using FIGARCH(1, d, 1) and FIAPARCH 
(1, d, 1) models with the normal, student-t and skewed student-t distributions. For these analyses, we 
take into account both short and long trading positions. The empirical results display that the 
FIAPARCH (1, d, 1) model with skewed student-t distribution is more accurate for in-sample and out-
of-sample Value-at-Risk (VaR) analysis for short and long trading positions. In addition, the 
FIAPARCH(1, d, 1) model with skewed student-t has better accuracy results in capturing stylized facts 
in the volatility of Turkish Stock Market. Consequently, evaluating of asymmetry and long memory 
property in volatility of the returns can ensure suitable Value-at-Risk (VaR) model selection for 
performance of risk management in the Turkish financial markets. The findings can be evaluated by 
portfolio managers, investors, regulators and financial risk managers. 
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1. Introduction 

Measuring risk has become a crucial issue for many portfolio managers and investors. In 
recent years, finance literature has focused on risk management. So, Value-at-Risk (VaR) analysis has 
been a matter of great concern for financial risk management. VaR analysis has been extensively used 
to measure the possible maximum amount of loss for an asset (or portfolio) in a specific period of time 
at a given confidence level by portfolio managers, regulators and practitioners. In other words, VaR 
has measured the maximum loss in value of a portfolio over a predetermined time perod for a given 
confidence level. The RiskMetrics model developed by the risk management group (the J.P. Morgan) 
in 1994, which is a benchmark for measuring the market volatility risk of asset portfolios under the 
assumption of normality, has become one popular method (Jorion, 2001). The main drawback of the 
RiskMetrics model is that model ignores the presence of fat-tailed and skewed characteristics in the 
return distributions. The other drawback is also that this model disregards many financial return series 
exhibit long memory property(Kang and Yoon, 2008). 

The empirical studies in finance literature emphasize some stylized facts such as excess 
volatility, volatility clustering, fat-tails of return distributions, long memory and asymmetry in the 
asset prices. In order to evaluate these properties in returns, symmetric or asymmetric Generalized 
Autoregressive Conditional Heteroscedasticity (GARCH)-type models are commonly used in the 
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literature. Especially, time varying volatility in returns and high frequency data have been modeled by 
the GARCH-type models which only capture the short-term dependencies. Furthermore, Fractionally 
Integrated Generalized Autoregressive Conditional Heteroscedasticity ( FIGARCH) model proposed 
by Baillie et al. (1996) investigates the long memory property in volatility of financial time series. 
Although the FIGARCH model can capture long-term dependencies in conditional variance, model 
assumes that positive (good-news) and negative (bad-news) shocks have same impacts on the 
volatility(Tse, 1998; Yoon and Kang, 2007). To evaluate both asymmetry and long memory in the 
conditional variance, Tse (1998) proposes a Fractionally Integrated Asymmetric Power ARCH 
(FIAPARCH) model. The researchs on market risks widely use the Value-at-Risk (VaR) approach 
based on the GARCH-type models and FIGARCH-type models.  

Recently, empirical studies in finance literature have focused on examining the volatility 
dynamics, risk management and Value-at-Risk analysis. For example; Yoon and Kang (2007) show 
that long memory models with skewed student-t distribution model produces more accurate VaR 
estimations than normal and student-t distribution models for the daily return series of Japanese 
financial data (Nikkei 225 index and JPY-USD exchange rate). Wu and Shieh (2007) examine the 
volatility of T-Bond futures returns by using two long memory models such as FIGARCH(1, d, 1) and 
HYGARCH (1, d, 1) with normal and skewed student-t distributions and calculate the Value-at-Risk 
by these models. Their findings display that the HYGARCH (1, d, 1) with skewed student-t 
innovations based on Kupiec LR test gives model accuracy Value-at-Risk estimations.  

Kang and Yoon (2008) examine the performance of RiskMetrics and two long memory Value-
at-Risk (VaR) models with the normal, student-t and skewed student-t distribution assumptions in 
Korean shares. They display that VaR analysis with the skewed student-t distribution innovation 
provides more accurate VaR estimations.  

Kasman (2009) investigates the long memory properties of Turkish Stock Index futures 
market using FIGARCH(1, d, 1) model and calculates the Value-at-Risk. He presents that FIGARCH 
(1, d, 1) models with skewed student-t distribution produces more better VaR estimations than normal 
distribution. Liu et al. (2009) examine the daily Value-at-Risk (VaR) for returns of the Taiwan Stock 
Exchange by using GARCH and GJR-GARCH models. They propose GJR-t/GARCH-HT model as a 
useful downside risk measure in volatile markets.  

Demireli (2010) is modeled Istanbul Stock Exchange (ISE) index returns by using various 
symmetric and asymmetric GARCH-type models. In addition, the accuracy of one-day-ahead Value-
at-Risk student-t and skewed student-t distributions. He finds that student-t FIAPARCH modeling the 
leverage and long memory properties in ISE index returns provides efficient VaR values. Bee and 
Miorelli (2010) present a backtesting exercise involving several VaR models for measuring market 
risk. They introduce three different stochastic processes for the losses such as GARCH-type models 
and EWMA-type model. Mighri at al. (2010) investigate the effects of asymmetric long memory 
volatility models on the accuracy of stock index return VaR estimates. They find that in-sample and 
out-of-sample VaR values computed using asymmetric long memory volatility models have better 
accuracy than the symmetric FIGARCH model.  

Yoon et al. (2011) investigate the performance of in-sample and out-of-sample Value-at-Risk 
(VaR) analyses using the FIAPARCH model with the normal, student-t and skewed student-t 
distribution innovations for Shanghai Stock Market. They display that skewed student-t VaR models 
of long and short trading positions in Shanghai stock market give most accurately VaR estimations.  

Stavroyiannis and Zarangas (2013)  present the efficiency of an econometric model where the 
volatility is modeled by a GARCH (1, 1) process, and the innovations follow a standardized form of 
the Pearson type-IV distribution. In addition, they explore the accuracy of model by a variety of 
Value-at-Risk methods. They display that proposed model is a valid and accurate model for Value-at-
Risk estimations. Abad et al. (2014) present a theoretical review of the existing literature on Value-at-
Risk (VaR) specifically focussing on the development of new approaches for its estimations.  

Chkili et al. (2014) investigate effects of asymmetry and long memory in modeling and 
forecasting the conditional variance and market risk of four widely traded commodities such as natural 
gas, gold, crude oil and silver. They find that in-sample and out-of-sample results indicate that 
FIAPARCH model is the best suited model for estimating the VaR forecasts. Demiralay and Ulusoy 
(2014) examine the Value-at-Risk estimations of four precious metals such as gold, silver, platinum 
and palladium with various long memory models under normal and student-t innovations distributions. 
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They find that the long memory volatility models under student-t distribution perform well in 
forecasting Value-at-Risk for both short and long positions. Jeremić and Terzić (2014) estimate 
normal and student-t VaR for different significance level for Belgrade stock exchange. They display 
that the normality assumption for higher significance levels can seriously underestimate VaR. 

The primary aim of this study is to reconsider the volatility persistence for daily return series 
of Turkish Stock Market, and to compare the performance of various VaR models with normal, 
student-t and skewed student-t distribution. In this regards, the study provides a major contribution 
about understanding the volatility features of the Turkish Stock Market returns which is an important 
determinant in measuring Value-at-Risk for portfolio managers, regulators and investors. The other 
contribution, the study compares the performance of Value-at-Risk estimations by using long memory 
models such as FIGARCH and FIAPARCH model. Firstly, we examine volatility persistence in the 
Turkish Stock Market by using these long memory models. Secondly, we analyze the asymmetric 
impacts of the positive and negative shocks on the volatility of returns. Third, we compare Value-at-
Risk estimations by using long memory volatility models such as FIGARCH and FIAPARCH 
according to the in-sample and out-of-sample performances in estimating market risk of return prices 
for both short and long trading positions. Finally, Value-at-Risk analyses offer the results of models 
with normal, student-t and skewed student-t distribution to evaluate asymmetry and fat-tail property 
for both short and long trading positions.  

The remainder of the study is organized as follows: The methodology is summarized in 
Section 2. Section 3 provides the statistical characteristics of data set used and reports the empirical 
results. Conclusions are presented in Section 4.  

 
2. Methodology 

2.1. Symmetric Long Memory Volatility Models: FIGARCH (p, d, q) Model 
Baillie et al. (1996) develop FIGARCH model which allows to model long memory property 

in volatility. The long memory is characterized by very slow decay in the autocorrelations of absolute 
and squared returns. According to Baillie et al. (1996) , the impacts of shocks (good-news/bad-news) 
on the volatility of returns are not finite. FIGARCH (p, d, q) model which is the extended version of 
squared errors in ARFIMA model notation is introduced as follows (Türkyılmaz and Balıbey, 2014):  

 t2
t

d v)]L(1[)L1)(L(       (1) 

where, L denotes the lag or backshift operator. t are serially uncorrelated errors having zero 
mean. 2

t  are squared errors of GARCH process. The process of  tv  is integrated for conditional 
variance 2

t  as variations. 2
t

2
ttv  . It is assumed that all roots of )]L(1[and)L(   stayed out 

of unit circle. The parameter d is the fractional integration parameter showing the degree of long 
memory or persistence of shocks to conditional variance. d parameter satisfies the condition 0d1. If 
0<d<1, the model indicates an intermediate range of long memory. It means that volatility shocks die 
hyperbolically. If d=0, then the process of FIGARCH (p,d,q) is reduced to the process of GARCH (p, 
q). If d=1, then the process of FIGARCH becomes an integrated process of GARCH (IGARCH). The 
Model (1) can be reformed as follows (Baillie et al., 1996): 
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t  is displayed with;  
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In addition, (1-L)d can be expressed by the Maclaurin series expansion and thus defined as: 
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function. Since 1dk)1k(/)dk(  if k is large, the coefficients in the above infinite 
polynomial decay hyperbolically (Mighri et al., 2010). 

FIGARCH(p, d, q) model assumes that the effects of positive and negative news (good-
news/bad-news) on the volatility are symmetric. So, Tse(1998) developed the FIAPARCH model.   

2.2. Asymmetric Long Memory Volatility Models: FIAPARCH (p, d, q) Model 

Tse (1998) extended the FIGARCH model by adding the function  )( tt  of the 
Asymmetric Power Autoregressive Conditional Heteroscedasticity (APARCH) model to evaluate 
asymmetry and long memory property in the conditional variance. The FIAPARCH (p, d, q) model 
proposed by Tse (1998) can be expressed as follows: 

     )()L1)(L()L(11w tt
d1

t ,   (6) 

where   , are the parameters of model.  is power parameter. Furthermore, 





1i
i

i ,L)L(  with 

(L) an infinite summation. d parameter is the long memory parameter and when 0<d<1, conditional 
variance has long memory property. It means that effect of a shock on the conditional variance decays 
at a hyperbolic rate(Demireli, 2010; Kang and Yoon, 2008; Mighri et al., 2010). When asymmetry 
parameter >0, negative shocks cause higher volatility than positive shocks, and visa versa. The 
FIAPARCH model is reduced the FIGARCH model, when =2 and  =0. Hence, it can be said that 
FIAPARCH model is superior to the FIGARCH model because it can evaluate both asymmetry and 
long memory in the volatility. 

2.3. Value-at-Risk (VaR) 
Value-at-Risk (VaR) is defined as the maximum loss over a given time horizon at a given 

confidence level. It is widely used to measuring potential risk of economic losses in financial markets. 
The price of an asset in time t is denoted as Pt. Let Rt=ln(Pt/Pt-1)*100 be daily returns. The data 

generating process of the returns is as follows(Mighri et al., 2010): 
Rt=t+t, t=1,…,T. 

Furthermore, returns can be heteroscedastic. A multiplicative process for t is as follows: 
Rt=t+tzt, t=1,…,T, where t=tzt. 

Mathematically, a k-day VaR on day t is expressed by(Demiralay and Ulusoy, 2014): 
  1)),k,t(VaRPP(P tkt  

Usually, portfolio managers, investors and traders focus on longer forecasting horizons. 
Value-at-Risk are computed on a 1-day 95% and 99% confidence level. It denotes that the loss is more 
than the reported Value-at-Risk of a portfolio in only 5% and 1% of the cases. Portfolio managers, 
traders and investors must evaluate not only long trading position, but also short trading positions. In 
case of long trading position (the left tail of distribution), the risk of a loss occurs when the traded 
asset price decreases. However, in case of short trading position (the right tail of distribution), the risk 
of a loss occurs when the traded asset price increases (Demiralay and Ulusoy, 2014; Yoon and Kang, 
2007). 

The VaR of  quantile for long and short trading positions are estimated as follows (Demireli, 
2010): Under the normal distribution assumption; 

VaRlong= tt ˆzˆ    
VaRshort= tt ˆzˆ    

Where t̂  and t̂ are conditional mean and conditional variance, respectively. z is the left or right 
quantile at % for the normal distribution. 
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 Under student-t distribution, 
VaRlong= t,t ˆstˆ    
VaRshort= t,t ˆstˆ    

where ,st is the left or right quantile at % for the student-t distribution. 
Under skewed student-t distribution, 
VaRlong= t,t ˆskstˆ    
VaRshort= t,t ˆskstˆ    
Where skst is the left or right quantile at % for the skewed student-t distribution with   

degrees of freedom and  asymmetry coefficient. If <1, the VaR value for long trading positions is 
bigger than that of short trading position, and vice versa (Kasman, 2009). To evaluate the performance 
of calculated VaR at pre-specified significance level of  ranging from 5% to 0.25%, a likelihood-
ratio test namely Kupiec LR was developed by Kupiec (1995) (Giot and Laurent, 2003; Tang and 
Shieh, 2006). Kupiec LR (1995) test relies on the failure rate. The failure rate is expressed as the ratio 
of the number of times (x) in which returns exceed the forecasted VaR to the sample size (T). Tested 
hypothesis are H0:f= versus H1:f, where f is failure rate. If the VaR model is correctly specified, 
the failure rate should be equal to the pre-specified significance level of . This test is called as 
Kupiec LR test. The test is defined as follows: 

    2
)1(

xxNxxN ~)f̂()f̂1(ln2)()1(ln2LR  
    (7) 

where f̂ is the failure rate. x is the number of observations the forecasted VaR. N is the sample size. 

LR test statistics is asymptotically distributed as 2
)1( . 

 
3. Data and Empirical Analysis 

3.1. Preliminary Analysis of Data 
This study considers time series data set of Turkish financial market (Borsa İstanbul Stock 

Exchange-BIST). The data consists of daily closing price, and covers the sample period from August 
24, 2010 to August 28, 2014. Our in-sample period runs from August 24, 2010 to July 18, 2013, while 
the out-of-sample period runs from July 19, 2013 to August 28, 2014. The daily price series are 
defined as the logarithmic difference of the daily closing index prices. The returns at time t are 
obtained by; 

100x)P/Pln(RBIST 1ttt  , t=1,2,…,T.      (8) 
where Pt is current index price and Pt-1 is the previous day’s index price. RBISTt is the return 

in percent. The descriptive graphs of the daily closing index price and return series are presented in 
Figure 1: (a) level of price, (b) returns, (c) histogram and descriptive statistics of RBISTt. 

Figure 1a presents the sample data covering the daily closing prices. From Figure 1b, it can be 
said that the conditional variances of returns display volatility clustering which change over time, and 
they are not independent. In other words, volatility clustering is clearly observable in the graphs. 
Figure 1c summarizes the descriptive statistics of the RBISTt series. As shown in Figure 1c, the 
Jarque-Bera statistics rejects the null hypothesis of normality. In addition, the measures of skewness 
and kurtosis display that the distribution of returns is leptocurtic and negatively skewed. Descriptive 
statistics for the returns are resummarized  in Table 1. 

According to the results in Table 1, as mentioned before, it can be said that RBIST return 
series show asymmetric properties and platycurtic and fat tail compared to the normal. Moreover, 
Ljung-Box statistics (Q and Q2) in various delays are estimated for independency test of return error 
and squared return error series. Return errors and squared return error series has not i.i.d. (independent 
and identically distributed) process because of RBIST return and squared return errors highly 
correlated up to 50th delay.  
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Figure 1. Descriptive Graphs for Sample Data 

      
(a) Level of Price    (b) Returns 

 
(c) histogram and descriptive statistics of RBISTt 

 
Table 1. Descriptive Statistics of Return Series 

 RBIST 
Mean: 0.03457 
Standard Deviation: 1.5087 
Skewness: -1.0394 
Kurtosis: 5.6259 
Minimum: -11.064 
Maximum: 4.9763 
J-B: 
Prob. 

1098.7 
(0.0000) 

ARCH (2): 13.279** 
ARCH (5): 9.4772** 
ARCH (10): 6.0068** 
Q(5): 15.2847 ** 
Q(10): 19.5965** 
Q(20): 31.5018** 
Q(50): 68.6886** 
Q2(5): 65.3826** 
Q2(10): 90.0444** 
Q2(20): 129.415** 
Q2(50): 147.626** 
Lo R/S Test Statistics for Return 1.25167 
Hurst-Mandelbrot R/S Test Statistics 
for Return 1.23829 
Lo R/S Test Statistics for Squared 
Return 2.09316** 
Hurst-Mandelbrot R/S Test Statistics 
for Squared Return 2.25126** 
** shows statistical significantly at level 5%. Lo R/S 
and Hurst-Mandelbrot R/S Test Statistics: 95%, (0.809-
1.862) 

 
Furthermore, statistical value of Ljung-Box statistics (Q2 ) in 50th delay, in high degrees 

displaying extensive effect of volatility clustering in RBIST stock market returns, is also statistically 
significant. From the Table 1, the results of ARCH-LM test in various lags imply the existence of 
significant ARCH effects in standardized errors.  
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At the 5% significance level, the null hypothesis of a short memory process is rejected 
if the modified Lo (R/S) and Hurst-Mandelbrot (R/S) statistic does not fall within the 
confidence interval [0.809, 1.862]. According to results in Table 1, test statistics indicate an 
evidence of long memory property in squared return series. Table 2 presents the Augmented 
Dickey Fuller(ADF), Phillips-Perron(PP) and Kwiatkowski-Phillips-Schmidt-Shin(KPSS) 
unit root test results. According to the results in Table 2, unit root tests are supported stationary for 
return series.  
 

Table 2. Unit Root Tests for Return Series 
Tests RBIST 

ADF -27.5823** 
PP -27.5776** 
KPSS 0.084165 
** indicates the refusal of unit root 
null hypothesis in the significance 
level at %5. (McKinnon Critical 
Value is  [-2.865], Kwiatkowski 
Critical Value is [0.463000])  

 
3.2. Long Memory Property and Asymmetry for RBIST 

In order to examine symmetric long memory property in volatility of return series of Turkish 
Stock Market, FIGARCH models are estimated for different lags (p, q) under assumption of 
Normal(N), Student-t(ST) and Skewed Student-t(SST) distributions. The different FIGARCH(p, d, q) 
models as p,q=0,1,2 for RBIST return series are estimated and compared in terms of Akaike (AIC) and 
Schwarz (SIC) Information Criteria. Table 3 presents estimation results of most appropriate model 
FIGARCH(1, d, 1) for RBIST. Similarly, asymmetric long memory property in volatility of return 
series of Turkish stock market is investigated by using FIAPARCH model. The results of most 
appropriate FIAPARCH(1, d, 1) model are also given in Table 3. 

According to Table 3, long memory d parameter for FIGARCH model is significantly 
different from zero for RBIST return series. It can be said that the volatility of return has long memory 
property. According to Ljung-Box test statistics (Q and Q2), return series demonstrate i.i.d. property. 
The results of Pearson Goodness of Fit Test indicate that different distributions are also appropriate for 
RBIST return series. Furthermore, tail parameter “v” is statistically significant for all of the 
distributions (ST, SST). Asymmetry parameter ln() supports negatively skewed distribution. Jarque-
Bera statistics is also an indicator referring standardized errors have distributions different from 
normal distribution.  

According to the results of FIAPARCH(1, d, 1) model in Table 3, long memory parameter d 
of the model is statistically significant at 5% level. The coefficient of the asymmetric response of 
volatility to news  is positive and statistically significant at 5% level. It means that unexpected 
negative shocks cause more volatility than unexpected positive shocks of the same magnitude. This 
asymmetric effect can give hints to investors about that decreasing price movements in returns are 
determinants of uncertainty in stock market. Furthermore, the power parameter  ranges in value from 
1.593830 to 2.224163. It means that a squared error term fits the conditional variance specification for 
returns. The tail parameters (v) of the FIAPARCH(1, d, 1) model with student-t and skewed student-t 
distributions are statistically significant at 5% level. In other words, standardized residuals have fat-
tail density. The results of FIAPARCH (1, d, 1) model with skewed student-t distribution present 
superior results in terms of AIC and SIC information criteria. Furthermore, Ljung-Box test statistics 
(Q and Q2) fail to reject the null hypothesis of no autocorrelation in standardized residuals and squared 
residuals. ARCH-LM tests point out no remaining also ARCH effects. 

Comparing the FIGARCH (1, d, 1) and FIAPARCH (1, d, 1) models, the skewed student-t 
FIAPARCH(1, d, 1) model is the best for modeling asymmetric long memory volatility process 
according to the lowest value of AIC and SIC information criteria, the insignificant values of Ljung-
Box statistics and ARCH-LM. 
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Table 3. The Results of FIGARCH and FIAPARCH Models 
p=1, q=1 FIGARCH FIAPARCH 

N ST SST N ST SST 

߱ 
2.826530** 
  (1.4107) 
[ 0.0455] 

2.174891**    
0.68903     
[0.0017] 

2.251318** 
( 0.63430) 
[ 0.0004] 

1.492453**    
(0.46785)    
[0.0015] 

0.148722    
(0.46508)   
[0.7492] 

1.302804**    
(0.22666)    
[0.0000] 

 ଴ߚ
0.185916** 
 (0.16438) 
 [0.02584] 

0.204296     
(0.23832)    
[0.3916] 

0.189201 
 (0.22180) 
 [0.3939] 

0.202380    
(0.16355)    
[0.2163] 

0.543144***    
(0.31706)   
[0.0871] 

-0.478224    
(0.31935)   
[0.1347] 

 ଵߚ
0.416610** 
( 0.15786) 
 [0.0085] 

0.418005     
(0.28336)     
[0.1406] 

0.390576** 
 (0.25834) 
 [0.0310] 

0.259255    
(0.17948)    
[0.1490] 

0.548537***    
(0.32008)   
[0.0870] 

-0.459006***    
(0.33961)   
[0.0769] 

(Aparch) - 
 
- - 

0.816995***    
(0.42489)    
[0.0549] 

0.807063**    
(0.20800)    
[0.0001] 

0.821142**    
(0.30321)    
[0.0069] 

(Aparch)  - 
 
- - 

1.593830**    
(0.43620)    
[0.0003] 

2.224163**    
(0.45009)    
[0.0000] 

1.784524**    
(0.37297)    
[0.0000] 

d 
0.363342** 
 (0.10048) 
 [0.0003] 

0.300050**    
(0.086578)    

[0.0006] 

0.277674** 
(0.073092) 
 [0.0002] 

0.185606**   
(0.071754)    

[0.0099] 

0.071950**   
(0.028200)    

[0.0109] 

0.113000**   
(0.025431)    

[0.0000] 

v - 
7.002334**     

(1.7814)     
[0.0001] 

6.838949** 
  (1.6481) 
 [0.0000] 

 
- 

7.982288**     
(2.4406)    
[0.0011] 

6.751100**     
(1.6688)    
[0.0001] 

ln() - 
 
- 

-0.196079** 
(0.051337) 

[0.0001] 

 
- 

 
- 

-0.207893**   
(0.060235)   

[0.0006] 
Log(L) -1286.564 -1261.722 -1254.192 -1269.699 -1250.646 -1244.537 

AIC 3.521321 3.456268 3.438450 3.480761 3.431504 3.417564 
SIC 3.546408 3.487626 3.476080 3.518391 3.475405 3.467738 

Skewness -0.83308 -0.91372 -0.94198 -0.55123 -0.67381 -0.68935 
Excess 

Kurtosis 4.6305 5.0210 5.1751 2.7123 3.5328 3.5848 

J-B 739.65 871.97 926.35 261.80   378.67 450.54 
Q(5) 9.22969 9.44594 9.43186 8.61528 9.35352 8.42067 
Q(10) 12.6196 12.7904 12.8019 12.0990 12.7619 12.0016 
Q(20) 19.6476 20.0704 20.2330 17.6256 18.9486 17.9394 
Q(50) 46.9495   48.1435 48.8652 44.0220 46.4767 45.7055 
Q2(5) 2.88542 3.79472 4.27254 2.14792 3.66417 2.92499 
Q2(10) 6.26612 6.82712 7.31207 8.76830 8.76886 7.78058 
Q2(20) 15.0478   14.9915 15.6113 25.8843 21.7482 25.3448 
Q2(50) 32.4776 30.0814 30.2504 53.3918 43.7432 46.7105 

ARCH(5) 0.56604 
[0.7261] 

0.74850 
[0.5873] 

0.83921 
[0.5220] 

0.42018 
[0.8348] 

0.70987 
[0.6161] 

0.56922 
[0.7237] 

ARCH(10) 0.63759 
[0.7821] 

0.68206 
[0.7417] 

0.72381 
[0.7024] 

0.92565 
[0.5087] 

0.90287 
[0.5300] 

0.82504 
[0.6045] 

P(40) 61.3793 39.2237 27.2183 56.9045 40.9700 31.5839 
P(50) 68.8417 52.1978 36.7817 60.2469 52.1978 50.5607 
P(60) 70.9018 71.3929 52.2387 90.8745 72.7026 60.0969 

**, *** indicate statistically significant 5% and 10% respectively. ( ) indicates standard error, [ ] indicates p-
values. P(40), P(50) ve P(60) indicate, Pearson Goodness of Fit for 40, 50, 60 cells. 

 
3.3. Long Memory and Asymmetry in Value-at-Risk(VaR) 

Portfolio managers, investors and regulators may deal with the suitable model to forecast the 
VaR of their asset portfolios. In this subsection, we produce the VaR estimates by using FIGARCH 
and FIAPARCH models with normal, student-t and skewed student-t distributions. 

In-sample VaR estimates and out-of-sample VaR calculations for both short and long trading 
positions are produced for various  levels ranging from 5% to 0.25%. The accuracy of FIGARCH 
and FIAPARCH models is examined by using the Kupiec LR test. The test compares the failure rate 
for both the right and the left tails to the prespecified VaR.  
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The best VaR model implies the model which the empirical failure rate is equal to the 
prespecified significance level . The investors and portfolio managers can accurately forecast their 
possible trading losses by using the best VaR model(Chkili et al., 2014). 

3.3.1. In-Sample Value-at-Risk (VaR) Analysis 
The in-sample VaR estimations for the Turkish Stock Market returns by using FIGARCH(1, d, 

1) and FIAPARCH(1, d, 1) models are summarized in Table 4 and Table 5. 
Table 4 displays failure rates, Kupiec-LR test statistics and p-Values for long and short trading 

positions according to three different distributions (normal, student-t and skewed student-t). If VaR 
model is estimated accurately, it should be explain the actual observations very well(Tang and Shieh, 
2006). 

 
Table 4. In-Sample VaR Calculated by FIGARCH Model for RBIST 

Short Positions Long Positions 
 Failure 

 Rate 
Kupiec LR P-value  Failure  

Rate 
Kupiec LR P-value 

VaR Results with Normal Distribution 
0.9500 0.96317 2.9320*** 0.086841 0.0500 0.049113 0.012203      0.91204 
0.9750 0.97817 0.31587       0.57410 0.0250 0.034106 2.2430       0.13422 
0.9900 0.99181 0.25984       0.61023 0.0100 0.015007 1.6088       0.20466 
0.9950 0.99318 0.43854       0.50783 0.0050 0.010914 3.8456**     0.049876 
0.9975 0.99591 0.62445       0.42940 0.0025 0.0081855 5.9217**     0.014955 
VaR Results with Student-t Distribution 
0.9500 0.95771      0.96529       0.32586 0.0500 0.054570      0.31342       0.57559 
0.9750 0.98363       2.5452       0.11063 0.0250 0.031378       1.1331       0.28711 
0.9900 0.99318      0.84210       0.35880 0.0100 0.012278      0.35833       0.54944 
0.9950 0.99864       2.7421***    0.097738 0.0050 0.0068213      0.43854       0.50783 
0.9975 0.99953         0.50042 0.00000 0.0025 0.0054570       1.9163       0.16626 
VaR Results with Skewed Student-t Distribution  
0.9500 0.94270      0.78673       0.37509 0.0500 0.045020      0.39531       0.52952 
0.9750 0.97544    0.0059461      0.93854 0.0250 0.021828      0.31587       0.57410 
0.9900 0.98636      0.88203       0.34765 0.0100 0.0068213      0.84210       0.35880 
0.9950 0.99318      0.43854       0.50783 0.0050 0.0054570     0.029882      0.86276 
0.9975 0.99864      0.45459       0.50017 0.0025 0.0013643      0.45459       0.50017 

(**and *** denote statistically significantly at 5% and 10% level, respectively) 
 
According to results in Table 4, the null hypothesis (f=) that failure rate equals to prescribes 

quantiles in the normal FIGARCH is rejected by the Kupiec LR test for  value of 0.0050 and 0.0025 
for long position, and is rejected for  values of 0.9500 for short position. Similarly, the null 
hypothesis (f=) in the student-t FIGARCH is rejected by the Kupiec LR test only for  value of 
0.9950 for short trading position. On the other hand, FIGARCH model with skewed student-t 
significantly improve on the in-sample VaR performance for both short and long trading positions. 
This result implies that FIGARCH VaR model with the skewed student-t provides more accurate 
crucial loss than FIGARCH model with normal and student-t distribution in the in-sample VaR 
analysis. According to Table 5, the FIGARCH models with the student-t and skewed student-t 
distribution produce lower Kupiec LR test values in contrast to normal distribution. 

Table 5 displays the in-sample VaR results calculated by the FIAPARCH model with normal, 
student-t and skewed student-t distributions. From Table 5, it can be said that the model with the 
normal and student-t distributions produce poor performance for long and short trading positions. For 
FIAPARCH model with normal distribution, the failure rates significantly exceed the prescribed 
quantiles for  values of 0.9500 and 0.9975 for short position, and for  values of 0.0100 and 0.0025 
for long positions. Similarly, for FIAPARCH model with student-t distribution, the null hypothesis 
(f=) is rejected by the Kupiec LR test only for  value of 0.9975 for short trading position. However,  
FIAPARCH model with skewed student-t fails to reject the null hypothesis (f=) by the Kupiec LR 
test for all the cases.  
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Table 5. In-Sample VaR Calculated by FIAPARCH Model for RBIST 
Short Positions Long Positions 
 Failure 

 Rate 
Kupiec LR P-value  Failure  

Rate 
Kupiec LR P-value 

VaR Results with Normal Distribution 
0.9500 0.96453       3.6096***    0.057448 0.0500 0.049113     0.012203      0.91204 
0.9750 0.98226       1.7633       0.18421 0.0250 0.027285      0.15257       0.69609 
0.9900 0.98363       2.5205       0.11238 0.0100 0.017735       3.6017***    0.057719 
0.9950 0.99045       2.4044       0.12099 0.0050 0.0095498       2.4044       0.12099 
0.9975 0.99318       3.7163***     0.053883 0.0025 0.0068213       3.7163***     0.053883 
VaR Results with Student-t Distribution 
0.9500 0.96180       2.3313       0.12680 0.0500 0.053206      0.15550       0.69333 
0.9750 0.98090       1.1383       0.28602 0.0250 0.030014      0.71108       0.39908 
0.9900 0.99045     0.015235      0.90177 0.0100 0.010914     0.060075      0.80638 
0.9950 0.99591      0.12931       0.71915 0.0050 0.0054570     0.029882      0.86276 
0.9975 0.99921 0.53276** 0.00000 0.0025 0.0013643      0.45459       0.50017 
VaR Results with Skewed Student-t Distribution 
0.9500 0.94816     0.051746      0.82005 0.0500 0.042292      0.96529       0.32586 
0.9750 0.97408     0.025202      0.87387 0.0250 0.020464      0.65896       0.41693 
0.9900 0.98499       1.6088       0.20466 0.0100 0.0054570       1.8298       0.17615 
0.9950 0.99181       1.2527       0.26305 0.0050 0.0013643       2.7421      0.19773 
0.9975 0.99591      0.62445       0.42940 0.0025 0.0013643      0.45459       0.50017 

(**and *** denote statistically significantly at 5% and 10% level, respectively) 
  

3.3.2. Out-of-Sample Value-at-Risk(VaR) Analysis 
In previous subsection, we compared the past performance of the Value-at-Risk by using two 

different long memory models. In this subsection, following the analysis procedure of Tang and Shieh 
(2006), we compute VaR values for period from July 19, 2013 to September 28, 2014. Out-of-sample 
VaR analysis provides information to investors, portfolio managers and financial instituations about 
the biggest loss they will experience (Kasman, 2009). The empirical results of the out-of sample VaR 
analyses for Turkish Stock Market returns by using FIGARCH and FIAPARCH models are presented 
in Table 6 and Table 7, respectively. 

Similar to in-sample VaR analysis, the null hypothesis is that failure rate equals to prescribed 
quantiles (f=) for both long and short trading positions. According to Table 6, the null hypothesis 
(f=) in normal distribution FIGARCH model is rejected when  is 0.0050 for long position, whereas 
the FIGARCH model with the student t and skewed student-t distribution fail to reject the null 
hypothesis (f=) for all cases. Hence, the out-of sample VaR analysis implies that FIGARCH models 
with student-t and skewed student-t distributions are better than normal distribution for asymmetry and 
tail-fatness in return distributions. 

Similar to in-sample VaR analysis, the null hypothesis is that failure rate equals to prescribed 
quantiles (f=) for both long and short trading positions. According to Table 6, the null hypothesis 
(f=) in normal distribution FIGARCH model is rejected when  is 0.0050 for long position, whereas 
the FIGARCH model with the student t and skewed student-t distribution fail to reject the null 
hypothesis (f=) for all cases. Hence, the out-of sample VaR analysis implies that FIGARCH models 
with student-t and skewed student-t distributions are better than normal distribution for asymmetry and 
tail-fatness in return distributions. 

As can be seen from Table 7, FIAPARCH models with normal, student-t and skewed student-t 
distributions for both long and short positions fail to reject null hypothesis (f=) for all cases. The 
empirical results indicate the FIGARCH and FIAPARCH models with skewed student-t distributions 
are suitable for the Turkish Stock Market returns. Generally, the findings prove the price series of 
Turkish Stock Market are skewed student-t distributed and fat-tailed according to asymmetry 
parameter ln() and tail parameters (v) of the models. Furthermore, the skewed student-t model 
performs accuracy estimations for the in-sample and out-of-sample VaR calculations based on Kupiec 
LR test than the other symmetric distributions. 
 



Value-at-Risk Analysis in the Presence of Asymmetry and Long Memory: The Case of Turkish Stock Market 

846 
 

Table 6. Out-of-Sample VaR Calculated by FIGARCH Model for RBIST 
Short Positions Long Positions 
 Failure Rate Kupiec LR P-value  Failure Rate Kupiec LR P-value 
VaR Results with Normal Distribution 
0.9500 0.95486       0.14790       0.70055 0.0500 0.048611      0.011800      0.91350 
0.9750 0.98264       0.77076       0.37998 0.0250 0.027778      0.088050      0.76667 
0.9900 0.98611       0.39244       0.53102 0.0100 0.017361       1.2923       0.25563 
0.9950 0.98958        1.2923       0.25562 0.0050 0.013889       3.0761***     0.079448 
0.9975 0.99306        1.5323       0.21577 0.0025 0.0069444       1.5323       0.21577 
VaR Results with Student-t Distribution 
0.9500 0.95486       0.14790       0.70055 0.0500 0.048611      0.011800      0.91350 
0.9750 0.98611        1.7340       0.18790 0.0250 0.027778      0.088050      0.76667 
0.9900 0.98958     0.0049825      0.94373 0.0100 0.013889       0.39244       0.53102 
0.9950 0.99653       0.15139       0.69721 0.0050 0.0034722      0.15139       0.69721 
Short Positions Long Positions 
VaR Results with Student-t Distribution 
 Failure Rate Kupiec LR P-value  Failure Rate Kupiec LR P-value 
0.9975 1.0000          .NaN       1.00000 0.0025 0.0034722     0.097281      0.75512 
VaR Results with Skewed Student-t Distribution 
0.9500 0.94792      0.025977      0.87196 0.0500 0.048611      0.011800      0.91350 
0.9750 0.98264       0.77076       0.37998 0.0250 0.027778      0.088050      0.76667 
0.9900 0.98958     0.0049825      0.94373 0.0100 0.010417     0.0049825      0.94373 
0.9950 0.99306       0.19511       0.65870 0.0050 0.0034722      0.15139       0.69721 
0.9975 1.0000          .NaN       1.00000 0.0025 1.00000         .NaN       1.00000 

(**and *** denote statistically significantly at 5% and 10% level, respectively and  
NaN represents the statistics is not available). 

 
Table 7. Out-of-Sample VaR Calculated by FIAPARCH Model for RBIST 

Short Positions Long Positions 
 Failure  

Rate 
Kupiec LR P-value  Failure  

Rate 
Kupiec LR P-value 

VaR Results with Normal Distribution 
0.9500 0.95833      0.44527       0.50459 0.0500 0.045139      0.14790       0.70055 
0.9750 0.97569    0.0057501      0.93955 0.0250 0.027778     0.088050      0.76667 
0.9900 0.98264       1.2923       0.25563 0.0100 0.013889      0.39244       0.53102 
0.9950 0.98958       1.2923       0.25562 0.0050 0.010417       1.2923       0.25562 
0.9975 0.99306       1.5323       0.21577 0.0025 0.0069444       1.5323       0.21577 
VaR Results with Student-t Distribution 
0.9500 0.95139     0.011800      0.91350 0.0500 0.052083     0.025977      0.87196 
0.9750 0.97917      0.21726       0.64113 0.0250 0.024306     0.0057501      0.93955 
0.9900 0.98958    0.0049825      0.94373 0.0100 0.010417     0.0049825      0.94373 
0.9950 0.99306      0.19511       0.65870 0.0050 0.0034722      0.15139       0.69721 
0.9975 0.99653     0.097281      0.75512 0.0025 0.0034722     0.097281      0.75512 
VaR Results with Skewed Student-t Distribution 
0.9500 0.95139     0.011800      0.91350 0.0500 0.052083     0.025977      0.87196 
0.9750 0.97917      0.21726       0.64113 0.0250 0.020833      0.21726       0.64113 
0.9900 0.98958    0.0049825      0.94373 0.0100 0.010417     0.0049825      0.94373 
0.9950 0.99306      0.19511       0.65870 0.0050 0.0034722      0.15139       0.69721 
0.9975 0.99653     0.097281      0.75512 0.0025 0.0034722     0.097281      0.75512 

 
4. Conclusions 
 Financial time series frequently exhibit stylized facts such as asymmetry, strong volatility, fat-
tail characteristics and long memory. Hence, financial econometrics literature focuses on distributional 
and statistical properties of financial return series. In this study, we have investigated stylized facts of 
the Turkish Stock Market returns. For modeling the volatility, asymmetric effects and long memory, 
the FIGARCH and the FIAPARCH models with normal, student-t and skewed student-t distributions 
have been employed. 
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 According to model results, long memory parameters d are statistically significant at 5% level 
indicating that volatility of Turkish Stock Market has persistence. Furthermore, the FIAPARCH model 
outperforms the FIGARCH model for modeling of asymmetric long memory volatility process in 
terms of AIC and SIC information criteria. It is well known that accurate volatility modeling is an 
important determinant of market risk management and portfolio management. So, we have examined 
the performance of the VaR models by using the FIGARCH(1,d,1) and FIAPARCH(1,d,1) models 
with the normal, student-t and skewed student-t distributions for both long and short positions. From 
the results of VaR analyzed based on Kupiec LR test in-sample and out-of-sample, we have generally 
concluded that the FIGARCH and FIAPARCH models distributed the skewed student-t outperform the 
other symmetric distributions. It can be concluded that the volatility models with skewed student-t 
distribution are more suitable for VaR calculations. 
 Consequently, long memory models perform more efficient results than the traditional short 
memory models for Value-at-Risk analysis. In summary, it can be said that Turkish Stock Market 
returns exhibit asymmetry, fat-tails and long memory property. Comparing the results of two long 
memory models, FIAPARCH(1,d,1) with skewed student-t distribution is preferable a model to 
analyze the Value-at-Risk for long and short trading positions. In this sense, the findings of study can 
be evaluated by financial risk managers, investors, regulators and academicians. 
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