
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 
BİTLİS EREN UNIVERSITY JOURNAL OF SCIENCE 

ISSN: 2147-3129/e-ISSN: 2147-3188 

VOLUME: 13 NO: 1 PAGE: 346-357 YEAR: 2024 

DOI:10.17798/bitlisfen.1412550 

346 
 

 Explicit Formulas for Optimum Parameters of Viscoelastic-type Tuned 

Mass Dampers 
 

Mehmet Ali KÖSEN 1, Gülçin TEKİN 1*  
 

1Yıldız Technical University, Department of Civil Engineering, 34220 Istanbul, Turkey 
( ORCID: 0009-0002-8823-7944)( ORCID: 0000-0003-0207-4305) 

  

 

Keywords: Viscoelastic Tuned 

Mass Damper, Displacement 

amplification factor, Fixed-point 

method, Vibration analysis, 

Optimum parameters. 

Abstract 

Tuned mass dampers (TMDs) are passive vibration control devices that are attached 

to a primary system to reduce the dynamic vibrations under exciting motion. The 

Voigt-type TMD, which is the most widely used one, is known as a standard model 

of dynamic vibration absorber (DVA). The purpose of this study is to improve the 

vibration control performance of passive control devices by using viscoelastic-type 

tuned mass dampers (V-TMDs). The study adopts the Zener model to represent the 

viscoelastic behavior of V-TMD. In this study, the fixed-point method is used to 

determine the optimum parameters of a V-TMD. The displacement amplification 

factor (DAF) of the coupled system is obtained in the frequency domain. The optimal 

parameters of the V-TMD system attached to an undamped single degree-of-freedom 

(SDOF) main system are obtained by minimizing the DAF (symbolized with 𝛽) 

under the effect of base excitation. The optimum parameters, such as damping ratio 

(ξ) and stiffness ratio (𝜅) of the coupled system are derived, and explicit expressions 

corresponding to the optimum parameters are presented for engineering design. 

Moreover, the change in DAF values for different mass ratios (µ) is also discussed. 

It is proven that V-TMD is very effective in reducing the amplitudes of vibration. 

The study also provides valuable insights for engineering practitioners who want to 

design and implement V-TMDs for vibration control applications because accurate 

expressions, which are simple and easy to use, are derived in order to obtain optimum 

parameters, and step-by-step procedures are explained. 
 

 
1. Introduction 

 

Vibration control is an important engineering field to 

improve the performance and safety of structural 

systems. To reduce the dynamic vibrations of the 

structure, several techniques are available. The 

concept of using tuned mass dampers (TMDs) is one 

of the several techniques, and it is a recent one. TMDs 

are secondary oscillators that are attached to the 

primary structure by parallel springs and viscous 

dampers. The main purpose is to transfer the 

vibrational energy of the primary oscillator to the 

secondary oscillator to increase the damping capacity 

of a structural system. It is usually assumed that the 

parameters of the primary oscillator are known. 

Therefore, the mathematical problem of tuning the 
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mass damper is to select the parameters appropriately 

through proper calibration of the damping ratio and 

tuning frequency. 

 In the nineteenth century, the concept of the 

TMD was proposed by [1] which considers a 

vibration control device without any inherent 

damping. [2] extended Frahm’s absorber by 

introducing a certain amount of damping. Details 

regarding the design and theory of TMDs and closed-

form expressions for optimum absorber parameters 

are presented in [3]. The dynamic analyses of 

structures equipped with the conventional Voight 

type vibration absorber are presented in many papers 

in order to obtain optimum parameters. The optimum 

damping and tuning frequency ratios of the 

conventional TMD are obtained by [4] using the 
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numerical searching technique. Various mean square 

responses, such as relative displacement, velocity of 

the main mass, and force transmitted to the support, 

are minimized. Simple expressions for optimum 

absorber parameters are derived in [5, 6] for 

undamped and damped SDOF main systems under 

harmonic and white noise random excitations.  

Minimization of various response parameters is 

considered. The optimum tuning frequency and 

damping ratio of the TMD system are obtained by 

[7,8] using a numerical iteration searching technique. 

The steady-state response of damped systems is 

minimized to a minimum level through a curve-fitting 

method. [9] proposed a method for determining the 

optimum parameters of TMD by selecting the tuning 

and damping ratios that result in equal and large 

damping ratios in the first two modes of vibration. 

The responses of several single and multiple degree-

of-freedom structures, with or without TMDs, 

subjected to different ground excitations are 

presented. Exact algebraic solutions are derived by 

[10] for the optimum tuning ratio and damping 

coefficient, assuming an undamped primary system 

and a hysterically damped primary system. Algebraic 

exact expressions for the resonance and antiresonance 

frequencies have been obtained. [11] derived the 

approximate optimum stiffness and a damping ratio 

using an extension of design formulas for H∞ 

optimization under the assumption of damped 

structures. Ground and force excitations are 

considered. [12] derived explicit expressions for the 

optimum mass ratio, damper damping, and tuning 

frequency of the TMD system attached to a viscously 

damped SDOF primary system. An algorithm for 

particle swarm optimization (PSO) is presented, 

covering both external force and base acceleration. A 

hybrid passive optimal control method is proposed to 

find the optimal damping coefficients of viscous 

dampers (VDs) and a TMD in shear building 

structures by [13]. In the optimization problem, the 

damping coefficients of TMD and VDs are taken as 

design variables. The variation of the upper limits of 

damping coefficients, the variation of story mass and 

stiffness are investigated for a six-story shear building 

model with VD&TMD. 

 The classical Maxwell or Kelvin-Voight 

models are the most popular DVA models, where the 

spring and viscous damper are arranged in series or in 

parallel, respectively. In recent years, various types of 

viscoelastically damped DVAs have attracted much 

attention in order to obtain a considerably reduced 

structural response to wind or earthquake motions. 

The design of structures with viscoelastic tuned mass 

dampers (V-TMDs) together with the optimization of 

parameters is an important problem from a practical 

viewpoint. There is little research about the optimum 

design of V-TMDs. [14] presented a semi-analytical 

iterative approach to obtain the optimal parameters of 

a viscoelastically damped TMD. The primary 

structure is assumed to be linear and undamped. It has 

been demonstrated that superior vibration absorption 

is obtained by using a viscoelastically damped TMD 

compared to an equivalent viscously damped TMD. 

[15] developed a numerical approach, which is called 

a generalized optimality criteria approach, to 

minimize the maximum amplitude magnification 

factor of a three-element DVA. The proposed method 

handles the primary system damping. Simultaneous 

equations for the design problem are solved using 

numerical computing software. As reported, the 

three-element DVA is more effective than a 

conventional DVA of twice its mass. Exact solutions 

for the optimum parameters of the three-element 

DVA are derived by [16] through numerical analysis. 

It has been demonstrated that the optimized three-

element type of DVA is more advanced than the 

conventional Voigt type of DVA. Using algebraic 

manipulation, the optimum tuning and damping 

parameters are obtained for the three-element type of 

DVA. The H2 optimization problem for a damped and 

undamped primary system with a three-element type 

of DVA is discussed by [17]. The Newton-Raphson 

method is used as a numerical approach for the 

solution of a damped primary system. It has been 

proven that the three-element type of DVA is superior 

to the conventional Voight type of DVA. [18] studied 

the three-element DVA for the damped primary 

system. The criteria of the equivalent linearization 

method are utilized, and the damped structure is 

replaced by an equivalent undamped one. The 

approximate analytical solution of the DVA's 

parameters is obtained from the results of the 

undamped structure. [19] also demonstrated that the 

three-element TMD produces better performance than 

the TMD. Optimum tuning, damping, and stiffness 

ratios are selected as the design variables for the 

three-element TMD, including the damped primary 

system. A simulated annealing algorithm is utilized 

for the solution. 

 This study investigates the application of the 

fixed-point approach to the Zener type of V-TMD. 

The Zener model (sometimes called the standard 

linear solid model and/or three-element model) is 

more accurate than the Maxwell or Kelvin-Voight 

models in predicting real viscoelastic material 

response. The standard Voight or Maxwell models are 

not adequate to describe the rheological behavior of 

viscoelastic dampers [20].  The Zener model is a 

combination of a viscous damper and two springs. 

The objective of the present study is to consider the 

dynamic analysis of a structure equipped with Zener 

type V-TMD and the optimization analysis of the 
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structure, including parameter optimization. 

Numerous studies have been conducted on the Voigt 

type of TMD, and the analytical expressions for the 

optimum tuning and damping parameters have 

already been obtained. However, there are only a few 

papers that have been published on the viscoelastic 

Zener type of TMD. A literature review reveals that 

published works deal with the issue of parameter 

optimization in V-TMDs. The present study uses 

simplified mathematical operations, which in turn 

give rise to the simple analytical expressions of the 

optimum parameters of the V-TMD. In addition, 

accurate expressions that are simple and easy to use 

have not been derived until now for the optimum 

damping and stiffness ratios. The maximum DAF is 

efficiently minimized, and precise approximate 

solutions are obtained for the case where the primary 

oscillator is undamped. Precise expressions for the 

optimum parameters of a V-TMD, such as damping 

and stiffness ratios, are derived. In addition, the 

change in DAF values for different mass ratios is also 

discussed. The proposed procedure clearly explains 

the step-by-step instructions that are used to obtain 

optimum parameters and informs the readers 

associated with the process. 

 

2. Methodology 

 

2.1. Derivation of Equations of Motion for the 

Coupled System 

 

Figure 1 shows a Zener type of V-TMD attached to 

an undamped SDOF main structure. It is assumed that 

the secondary oscillator is connected to the primary 

oscillator through the Zener model. By considering 

base excitation (y0), the equations of motion are 

derived. 

 

Figure 1. Zener type of V-TMD connected to an 

undamped structure. 

 

 The mass and stiffness parameters of the main 

structure are m1 and k1, respectively, and m2 is the mass 

of the viscoelastic vibration absorber. Damping for the 

main structure is not considered here as it would help 

to reduce vibration and thus hide any additional 

damping that we expect to arise due to the viscoelastic 

damper. In order to develop and solve problems with 

the existence of fixed points, this assumption is a 

necessary condition.  

 The dynamic behavior of the system can be 

expressed by the following ordinary differential 

equations: 

 

2

1
2 2 1 1 2 1 0 12

( )  a a a

d y
y k y k y k k k m y k

dt
        (1) 

 
2

2 2
2 2 2 2 12

( ) ( ) 0adyd y dy
m c k y y

dt dtdt
      (2) 

 

2

2 1( ) ( ) 0a

a a

dy dy
c k y y

dt dt
     (3) 

 

where y1 and y2 are the displacements of the masses of 

the main structure and viscoelastic vibration absorber, 

respectively. The viscosity of the dashpot component is 

c2, ka and k2 are the elasticity parameters in the model. 

An additional internal degree of freedom ya is 

introduced, connected by a spring with a coefficient ka 

and by a dashpot with a coefficient c2. 

 ya(ω) and y2(ω) are obtained after frequency 

domain transformation of Eqns. (1) and (3) as follows: 
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a

a a

k k y ω iωc k y ω k k k ω m y ω
y ω

k k iωc k k
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

 
 (4) 

 
2 2

1 2 0 1 2 1 2 1 2 1 1

2

2 2 2

( ) ( ) ( ( ) ( )) ( )
( )

( )

a a a

a a

k iωc k y ω k k k ω m iωc k k k ω m y ω
y ω

k k iωc k k

        


 
 (5) 

 

 Substituting Eqns. (4) and (5) into the Fourier transform of Eqn. (2), the DAF expression can be 

obtained with complex numbers as follows:  

 

2 2

1 2 2 2 2 2

2 2 2 2

2 2 2 1 1 1 2 1 2 1 2 1 2

( ( ) ( ))
( )

( ( ))( ) ( ( ) ( ))

a a

a a a a

k k k ω m iωc k k ω m
β ω

i ik k ωc k k k ω m ω k k k ω m iωc k k k ω m m

    

               

(6) 

 

where  is the circular frequency. The absolute value of the equation, which is in terms of the complex 

numbers, is obtained as follows: 

 

2 2 2 2 2 2 2 2

1 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 1 1 1 2 1 2 2 2 1 1 1 2 1 2

( ( ) ( )
( )

( ( ) ( ) ) (( )( ) ( ) )

a a

a a a

k k k ω m ω c k k ω m
β ω

k k k ω m ω k k ω m m ω c k k k ω m ω k k k ω m m

   


            

 (7) 

 

 

The following non-dimensional parameters are 

introduced for convenience: 

Squared ratio of the excitation: 

2 2

1/ω ωΩ  

Mass ratio: 

2 1/m mμ
 

Damping ratio: 

2 2 2/ (2 )c m ωξ  
 Using these notations, DAF can be expressed 

as follows: 

 

 
2 2 2 2

1 2 1 2 1 2

2 2 2 2

1 2 1 2 1 2

((( Ω ) 4 Ω ( Ω ) )
(Ω)

(( ( 1 Ω)Ω ( 1 Ω Ω) ) 4 Ω ( ( 1 Ω)Ω ( 1 Ω Ω)( )) ))

a a

a a

μ k k k μζ k k μ k k k
β

μ k μ k k μζ k k μ k μ k k

     


             
 (8) 

 
 

 

2.2. Derivation of Tuning Parameters 

 

The DAF function is plotted in Figure 2 for different 

damping ratios. In the example, the mass ratio is 0.1, 

and the stiffness values are k1=1 N/m, k2=0.0545 N/m 

and ka=0.0578 N/m. 
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Figure 2. DAF function for different damping ratios  

 

 As can be seen from Figure 2, the response 

amplitude is independent of the damping ratio at three 

points (each one is represented by a solid circle). For 

classical TMDs, such fixed points have also been 

detected, and their number is two. For extracting the 

optimum parameter values of the traditional TMDs, 

classical methods are based on these fixed points. For 

the Zener type of V-TMD, there are three fixed points. 

The procedure for optimization is summarized 

through step-by-step instructions as follows: 

Step 1: 

Determine the optimum value for spring stiffness k2 

according to the three fixed points at which the curves 

intersect. 

Step 2:  

Determine the optimum value for spring stiffness ka 

with respect to the k2 value, which is calculated in 

Step 1. 

Step 3: 

Determine the damping ratio that gives the best 

symmetric DAF curve regarding the central fixed 

point. 

 

2.2.1. Determination of Optimum k2 Stiffness 

 

In order to determine the three fixed points, the 

squared frequencies for which the DAF has the same 

values have been searched. For ξ = 0 and ξ = +∞, the 

DAF yields the following equations: 

 

0

2

1 2

2

1 2

( Ω )
(Ω )

( ( 1 Ω)Ω ( 1 Ω Ω) )
ζ

μ k k
β

μ k μ k

 


     
 (9) 

 

 
2

1 2

2

1 2

( Ω )
(Ω )

( ( 1 Ω)Ω ( 1 Ω Ω)( ))

a

ξ

a

μ k k k
β

μ k μ k k

  


      
 (10) 

 

 

 According to [16], the fixed points are 

settled at the same height with the following 

relation: 

 

, ,

1
(Ω )l c r

μ
β

μ


  (11) 

 

 By considering the equality of Eqn. (9) and 

(11), the explicit expression for the optimum k2 

stiffness value is derived as follows: 

 

1

2 2

(1 (1 ))

(1 )

μ μ μ μ k
k

μ

  



 (12) 

 

2.2.2. Determination of Optimum ka Stiffness 
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The optimum ka stiffness value is obtained by 

substituting the ka stiffness value into Eqn. (10) 

and considering the equality with Eqn. (11). As a 

result, the following explicit expression is 

introduced:  

 
3/2

1

a 3

2( (1 ))

(1 )

μ μ k
k

μ





 (13) 

 

 The ratio of stiffness of springs (k2 / ka) is 

defined as the stiffness ratio. The optimum 

stiffness ratios are tabulated in Table 1 for 

different mass ratios. As tabulated, the optimum 

stiffness ratio of the V-TMD increases with the 

increase in mass ratio of the structure.  

 Using the optimum k2 and ka stiffness 

values, the corresponding DAF curve is plotted 

in Figure 3 for 10 % mass ratio. 

 

 

 

Table 1. Optimum stiffness ratios for different mass ratios 

Mass ratio 

(µ) 

Stiffness ratio 

(κ) 

0.01 0.221 

0.02 0.326 

0.03 0.412 

0.04 0.488 

0.05 0.558 

0.10 0.863 

0.15 1.131 

0.20 1.379 

0.25 1.618 

0.30 1.849 

 
 

 

 

 
Figure 3.  β(ξ=0) and β(ξ=∞) curves for 10% mass ratio 

 

 It is proved that the values of the three fixed 

points namely the left, center, and right fixed 

points at which an intersection occurs satisfy Eqn. 

(11).  

 For the % 10 mass ratio, closed-form 

solutions of the left, center, and right fixed points’ 

squared frequencies are derived as follows: 

 

,
2

(2 )
Ω 1

(1 ) (2 )

1
Ω

1

r l

c

μ μ

μ μ μ

μ


 

 




 (14) 

 

 

 Using the non-dimensional parameter, the 

frequencies of the three fixed points are presented 

in Table 2 for the cases µ = 0.10, ω1 = 1

1

k

m
 rad/s, 

k1 = 1 N/m, m1 =1 kg. Results are compared with 

[14] and [15]. The accurate and consistent 
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performance of the presented approach has been 

indicated. As tabulated in Table 2, the calculated 

results are accurate to two decimal places for the 

frequency values of the three fixed points.  
 

Table 2. Comparison of the left, central, and right fixed 

points’ frequencies 

Frequency 

values 

Present 

Study 

Reference 

Study 

[14] 

Reference 

Study 

[15] 

ωleft 0.764  0.76  0.76 

ωcenter 0.953  0.95  0.95 

ωright 1.190  1.19  1.18 

 

2.2.3. Determination of the Optimum Damping 

Ratio (ξ) 

 

The symmetry of the DAF curve regarding the central 

fixed point is directly related to the damping ratio 

effect. The best symmetry with regard to the central 

fixed point corresponds to the optimum value for the 

damping ratio. One way to check this symmetry is to 

make the slopes of the DAF curve at the left and right 

fixed points opposite each other. To the best of the 

author’s knowledge, an analytical (or closed-form) 

expression for the optimum damping ratio has not 

been derived yet.  

 In order to get an explicit expression for the 

optimum value of the damping ratio, the following 

procedure is proposed:  

 The squared frequency of a central fixed point 

has already been calculated as 1/(1+μ), so it takes a 

value less than 1 for any mass ratio. The square root 

of 1/(1+μ) has a value that is less than 1. So as to 

obtain the optimum damping ratio, the square root of 

1/(1+μ) must be equal to the height values of the three 

fixed points (see eqn. (11)) and must satisfy the 

following expression: 

 

, ,

1 1
(Ω ) (Ω ) ( )

1
ζ l c r

μ
β β β

μ μ


  


 (15) 

 

Here, Ωξ is the squared frequency that will be 

used to calculate the optimal damping ratio. 

Thereby, the symmetry of the DAF curve is 

precisely satisfied. An explicit expression of the 

optimum damping ratio for different mass ratios 

is derived as follows: 

 

2

(16 20 3 1/ (1 ) 12 (1 ) (4 5 )

16 31 16
opt

μ μ μ μ μ μ μ μ
ξ

μ μ

      


 
 (16) 

 

 

and a change in the optimal damping ratio with 

different mass ratios is shown in Figure 4. The 

optimum damping ratio of the V-TMD increases 

with the increase in the mass ratio of the 

structure, as expected. 

 

 

 

 
Figure 4. Change of optimum damping ratio with mass ratio considering optimum spring stiffness values
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2.2.4. Evaluation of the V-TMD Performance with 

Optimum Parameters 

 

 

Using the optimum values, the DAF curve is plotted 

in Figure 5 for different mass ratios. Noticeably, an 

increase in mass ratio results in a decrease in the 

maximum DAF values. In figure 5, the continuous 

line corresponds to the height values of the fixed 

points. It is also seen that the symmetry, which we 

want to investigate, is obtained using the optimum 

damping ratios based on the proposed algorithm for 

relatively large mass ratios. 
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(c) 

 
(d) 
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(f) 

Figure 5. β(Ω) curves obtained using optimum parameters for different mass ratios (a) μ=0.01, (b) μ=0.02, (c) μ=0.05, 

(d) μ=0.10, (e) μ=0.15, and (f) μ=0.20 

 

 To demonstrate the efficiency of the 

recommended technique, the results of the V-

TMD are compared to the available results in the 

literature and tabulated in Table 3. Additionally, 

the classical TMD results are given in order to 

make a comparison between the performance of 

TMD and V-TMD. 

 

Table 3. Maximum DAFs for different mass ratios 

Mass Ratio (μ) Classical TMD 

Reference Study 

[3] 

V-TMD 

Reference Study 

[15] 

V-TMD 

Present Study 

0.01 14.18 13.78 14.29 

0.02 10.05 9.67 10.02 

0.05 6.40 6.05 6.27 

0.10 4.58 4.27 4.42 

0.20 3.32 3.04 3.16 

 

 It is seen that the effectiveness of the V-

TMD in diminishing the maximum DAF values 

is better than that of the classical TMD, as 

expected. Another observation from Table 3 is 

that the results of the present study agree well 

with the results of earlier research studies. 

Compared with the results of [15], highest error 

rate is nearly 4 % (when μ=0.20). This error is at 

an acceptable level, and symmetry disruption is 

inevitable for large mass ratios. 
 

3. Conclusion  

 

A Tuned mass damper (TMD) is a traditional 

passive vibration control device that is attached 

to a vibrating main structure. In this study, the 

characteristics of viscoelastically damped TMD, 

which is an alternative to classically damped 

TMD, are discussed. As a V-TMD, the Zener 

model is used. Some of the main points examined 

in this study are as follows: 
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 The fixed-point theory is generalized to 

obtain the optimal parameters of the V-

TMD. 

 A Zener-type TMD has three fixed points, 

unlike the traditional TMD with two fixed 

points. 

 The optimal values of two stiffness 

parameters (ka and k2) are established 

considering the height of the DAF at three 

fixed points. 

 An optimal damping ratio expression is 

developed considering the symmetry of 

the DAF with reference to the central fixed 

point. 

 The change in the value of optimum 

stiffness parameters and damping ratio 

with reference to different mass ratios is 

also presented with representative figures 

and tables. It is observed that the present 

study results show accurate agreement 

with the results reported in the literature. 

 Simple closed-form expressions are 

sufficiently accurate for practical use. 

 The optimum damping ratio of the V-

TMD increases with the increase in the 

mass ratio of the structure, as expected. 

 The optimum stiffness ratio of the V-TMD 

increases with the increase in mass ratio of 

the structure, as expected. 

 The authors recommend to use a 

viscoelastic damper model composed of 

multiple Maxwell and/or Voight elements 

for future research and searching to see if 

there will still be fixed points for this form 

of general viscoelastic model.  
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