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Abstract: This paper undertakes a machine learning-based forecasting of a subset of financial processes 

pertaining to the stock market for a particular period in Turkey.  There are various machine learning/artificial 

intelligence algorithms ranging from multilayer perceptron to support vector machines that can be used, with 

varying degrees of success, for forecasting purposes. The forecasting task to be undertaken in this paper will be 

carried out in contexts inclusive of a number of crisis-associated complexities generating unusual fluctuations in 

the financial markets. These fluctuations could pose, for traditional methods, significant difficulties that could 

be predictably overcome by machine learning/artificial intelligence algorithms which could escape a reasonable 

range of the possible complications that could be encountered. We will employ a number of algorithms which 

we will compare and contrast in accordance with a chosen performance metric. Not all algorithms perform 

equally well but some yield results that could be comfortably and successfully used for further analysis. 

Successful policy analyses addressing some of the essential intricacies of financial processes are of both 

theoretical and practical significance. They could produce considerable welfare improvements in emerging 

economies such as Turkey.  Possible ways in which such improvements could be modeled are worthy of future 

research. 
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Introduction 
 

Financial processes may exhibit, in different contexts, a wide array of properties including stability, instability, 

various degrees of unpredictability and chaos. These properties could create considerable complications for the 

analysis of financial processes especially at crisis junctures. There are a number of works in the literature 

dealing with these properties, related issues and associated complications. Among these works are Beker (2014), 

Fedyk (2017), Ferrara & Guegan (2000) ,  Klioutchnikov, Musaev, Makshanov & Grigoriev (2023), Sigova, & 

Beizerov (2017), Rosengren (2014), Scholten (2016), Sinha, Horvath, Beason & Ross (2019), Tropeano (2010), 

Valenti, Fazio & Spagnolo (2018).    

 

The range of complications associated with the analysis and forecasting of financial processes is fairly wide. 

Employing some of the state-of-art constructs such as machine learning/artificial intelligence algorithms may 

well prove to be highly effective in addressing some of those complications, as partly shown in works such as 

Kumar et. al. (2023), Li (2023), Yu (2008) and Nair & Mohandas (2015). In this paper, we will use a subset of 

the available algorithms for the purpose of accurately forecasting the changes in stock market averages at a 

particular juncture in Turkey.  We explain the material, methods and results in the second section. The final 

remarks are presented in the concluding section. 

 

 

Material, Methods and Results 
 

Consider a stock market where shares of a number of firms are being traded. A diverse list of microeconomic 

and macroeconomic factors could influence the changes in stock market averages, not to mention the political 

and other factors that can be multidimensionally interconnected with the economic ones. Abstracting from the 

detailed modeling of the interconnections of these factors, which is beyond the scope of this short paper, we 
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will, for the sake of simplicity and machine-learning-based-exposition, assume that the changes in stock market 

averages are influenced by the changes in bond rates, inflation rates, exchange rates and the general course 

(situation) or prospects of business activity. The particular algorithms we will make use of will enable us to 

forecast the stock market averages on the basis of algorithm-selected past variables and/or artificially 

constructed variables associated with the factors/variables within the system.  

 

 

Forecasting via Machine Learning Algorithms 

 

We can forecast the trajectory of changes in the stock market averages (the closing values) both within the 

chosen period as well as beyond the relevant period. We will choose a particular period characterized by the 

military coup-resulting political clashes influencing the financial system. The period in question extends from 

December 2013 to December 2016. Using the data for the period in question, which could be obtained from the 

websites of the Central Bank of Turkey, Turkish Statistical Institute and a number of private institutions, we will 

undertake machine-learning-based forecasting of the key variable chosen for the study.  

 

The algorithms we will make recourse to are Multilayer Perceptron, support vector machines (SVM), M5P, 

Decision Table, KStar and Random Forest. An open-source program, namely WEKA, will be used to run these 

algorithms with a set-up where the change in stock market average (dy) is the target variable while the changes 

inflation rate, the bond rate, the exchange rate and the general course/situation of business as well as the HP-

filter extracted cycle for the changes in the stock market averages are the “overlay variables” (General 

descriptions of the use of these algorithms are available in Witten (2022a,b).) The performance metric we will 

choose for the forecasting accuracy of the algorithms is “the normalized root mean squared error” (NRMSE), 

which is defined, for the sake of convenience, as the root mean squared error (RMSE) divided by the range of 

the changes in the stock market averages over the period in question (s), i.e., 

 

NRMSE = RMSE/s.  

 

Let N denote the number of observations and sn and sn
p
 represent the actual and predicted values for n=1,…,N. 

RMSE is the square roof of the sum, from 1 to N, of all (sn-sn
p
)

2
 divided by N. The obtained NRMSE values for 

some of the attribute-selected machine learning algorithms are given in Table 1 below. 

 

Table 1.  The NRMSE values for different attribute-selected machine learning algorithms              

 Multilayer 

Perceptron 

SVM M5P Decision 

Table 

KStar Random 

Forset 

NRMSE 0.0264 0.0036          0.0465     0.0702    0.0791        0.0970                  

 

For the algorithms in question, the NRMSE values pertaining to this particular case range from 0.0036 to 

0.0970, which are, on average, fairly low, indicating a high degree of forecasting accuracy.We have used 70 % 

of the data for training and the rest for testing. For illustration purposes, let us present (in Table 2 and Table 3), 

for the training and testing period, the predictions which we have obtained via one of these algorithms, namely 

M5P. 

 

Table 2. Predictions for the target variable with the training data (1-step ahead) 

Instance#        Actual Predicted Error 

13 -4798.31     -4909.387      -111.077 

14 -3301.48    -3307.0982       -5.6182 

15   3101.01 3347.7172      246.7072 

16 -966.04     -789.4578      176.5822 

17 -731     -496.4853      234.5147 

18 -2340    -2107.2741      232.7259 

19 -4700    -4495.5711      204.4289 

20 -1005     -647.6348      357.3652 

21 5204     5787.8451      583.8451 

22 -4176 -3844.1476      331.8524 

23 -3506    -3122.0738      383.9262 

24 1754 2327.8154      573.8154 

25 2333 2952.2177      619.2177 
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Table 3. Predictions for the target variable with the test data (1-step ahead) 

Instance#        Actual Predicted   Error 

26 7454     8256.0979      802.0979 

27 2060 2723.2695      663.2695 

28 -7525    -7129.4869      395.5131 

29 -986     -367.5721      618.4279 

30 -1411     -783.4375      627.5625 

31 562 1270.8356      708.8356 

32 520 1247.8636      727.8636 

33 2048 2842.2903      794.2903 

34 -4541    -3928.3316      612.6684 

35 4144 5040.8616      896.8616 

 

The associated trajectories are given in Figure 1 and Figure 2  

 

 
Figure 1. Predictions for the change in the stock market average (dy) with the training data 

 

 
Figure 2. Predictions for the change in the stock market average (dy) with the testing data 

 

 

Extension 

 

So far, we have used some machine learning algorithms to derive the trajectory of the stock market averages. 

We can extend this framework so as to incorporate some these algorithms into simulation set-ups with feedback 
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relations that can help better capture the intricacies of the real-life financial processes. Let us consider a system 

dynamics set-up where the stock market average is the stock variable, the change of which is the flow variable.  

Suppose that the changes in inflation rate (D-Inflation rate), the bond rate (D-Bond rate), the exchange rate (D-

Exchange rate), the general course and prospects of business (D-General business conditions) are auxiliary 

variables influencing the flow variable.  Suppose that there are microeconomic and macroeconomic stochastic 

factors (shocks/fluctuations) influencing the auxiliary variables in question. We will also assume that general 

business conditions are affected by the stock market averages. We can use the machine learning algorithms to 

estimate the weights with which the auxiliary variables influence the change in the stock variable. The system 

dynamics simulation diagram representing these relationships is given in Figure 4.   

 

 
Figure 4. A system dynamics simulation diagram 

 

With properly collected and constructed data set, we can estimate the relationships within the set-up and 

undertake system dynamics simulations of the trajectory of the stock market average (as well as the changes in 

the stock market average) incorporating the feedback relations within the system. We can even go further to 

incorporate additional complexities such as delays, strategic interdependencies and public policy interventions, 

which will enrich the framework so as to replicate, to a meaningful extent, the convoluted interactions in real-

life financial processes. 

 

 

Concluding Remarks 
 

Machine learning algorithms are shown to be reasonably effective in forecasting the trajectory of the financial 

processes.  The accuracy of the predictions in question may well justify their use for public policy purposes. 

Machine-learning-integrated hybrid methods could play a significant role in the formulations of optimal 

financial policies. The topic is worthy of future research. 
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