
Fundamental Journal of Mathematics and Applications, 7(2) (2024), 118-137

Research Paper / Open Access

Fundamental Journal of Mathematics and Applications
ISSN Online: 2645-8845

www.dergipark.org.tr/en/pub/fujma

https://doi.org/10.33401/fujma.1412958

Mathematical Modeling of Schistosomiasis Transmission Using
Reaction-Diffusion Equations

Dhorasso Temfack 1,†,

1School of Computer Science and Statistics, Trinity College Dubling, Ireland
†temfackd@tcd.ie

Article Information

Keywords: Disease dynamics; Hu-
man behavior; Neglected tropical
disease; Reaction-diffusion equa-
tions; Schistosomiasis; Sensitivity
analysis

AMS 2020 Classification: 34D20;
34D23; 35R99; 92B05; 92D30

Abstract

Schistosomiasis, a neglected tropical disease caused by parasitic trematodes of the genus Schisto-
soma, affects millions of people in tropical and subtropical regions lacking access to clean water
and proper hygiene. With its impact on health and well-being, the World Health Organization
aspires to eliminate schistosomiasis by 2030. This work addresses the challenge of effective control
in endemic areas by integrating diffusion in each sub-population using reaction-diffusion equations.
The proposed model includes treated individuals who have undergone massive drug administration
and a time-dependent function that models the change in human behavior. We present a Partial Dif-
ferential Equation (PDE) model of schistosomiasis spread that incorporates population movement
and human behavior change. Mathematical analysis explores the system’s dynamics according to
the infection threshold R0, shedding light on the disease’s behavior. Sensitivity analysis is used
to identify the key parameters affecting disease spread. Numerical simulations under different
scenarios elucidate the impact of human behavior on disease dynamics. This research contributes to
a deeper understanding of schistosomiasis transmission and provides insights into control strategies.

1. Introduction

Schistosomiasis, also known as Bilharzia or snail fever, is a neglected tropical disease (NTD) prevalent in tropical and
subtropical countries with limited access to safe drinking water and proper hygiene. It is caused by trematode blood flukes
of the genus Schistosoma and is endemic in 52 countries, affecting over 290 million people in 2018 [1]. The World Health
Organization (WHO) has aimed to eliminate schistosomiasis as a public health problem by 2030 [2]. Schistosomiasis is
transmitted through contact with fresh water contaminated by the infective larvae of Schistosoma parasites [1]. The life
cycle of the disease involves the release of parasite eggs into water bodies through human waste, hatching of eggs into
miracidia, infecting snails, developing into cercariae and eventually infecting humans through skin penetration, leading to
organ damage, abdominal pain, blood in stool or urine, anemia, dysuria and other health complications [3, 4]. Effective control
of schistosomiasis remains challenging in endemic regions and the main approach is mass drug administration (MDA) using
praziquantel, an anthelmintic drug, to reduce morbidity, mortality and transmission rates [5].
Research into the dynamics of Schistosoma infections traces its origins back to 1965 when George Macdonald introduced the
inaugural mathematical framework for schistosome epidemiology [6]. This pioneering model, based on differential equations,
describes the progression of the average worm burden in the human host, taking into account the complex nature of schistosome.
Subsequent to this, researchers have developed the model taking into account the heterogeneity of the intermediate host[7].
Contemporary investigations have leveraged agent-based models (ABMs) and individual-based models (IBMs) to capture
the multifaceted diversity in human behaviors and interactions [8, 9]. These innovative models have not only illuminated
the pivotal role of water-related activities but have also pinpointed regions of heightened transmission risk [8]. However,
human behavior and the movement of individuals between locations, play a significant role in disease spread, as infected
individuals can introduce the parasite to new areas, potentially creating new transmission hotpots [10]. Since then, various
models have been proposed that include more detailed information such as spatial heterogeneity or seasonality [10, 11]. Zhang
et al. [12] studied the spatial distribution of schistosomiasis and the treatment needs in Africa. Manuela Ciddio et al. [10]
utilized a multidimensional network model to investigate the spatial spread of schistosomiasis within the Saint-Louis region of
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Senegal. The study emphasizes the crucial role of spatial connectivity in disease propagation and underscores the significance
of accounting for various transport pathways to develop effective disease control strategies.
This paper aims to develop a mathematical model for schistosomiasis spread based on reaction-diffusion equations that
integrate human behavior change. Reaction-diffusion systems have proven to be effective and appropriate modeling tools for
comprehending the spatiotemporal dynamics of diseases. Operating within the domain of spatial continuity, these systems
have been pivotal in delving into intricate topics such as nonlinear infection mechanisms and spatial diffusivity. The model we
present in this paper takes into account individuals who have undergone mass drug administration (MDA) as detailed in [13].
Moreover, our investigation extends to encompass changes in human behavior and the exploration of diffusion phenomena,
contributing to an enhanced understanding of the spatial distribution of the disease.
The remainder of this work is organized as follows. Section 2 presents a Partial Differential Equation (PDE) model that
incorporates population mobility and the biological description of the infection parameters. A mathematical analysis of the
model to understand the dynamical behavior of the system depending on the value of the threshold of infection R0 is done in
Section 3. Section 4 conducts the sensitivity analysis of R0 to identify parameters sensitive to the disease spread. Section 5
presents the numerical simulations under different scenarios by taking appropriate parameters to explore the effect of human
behavior on disease dynamics. Finally, Section 6 gives a brief discussion and conclusion.

2. Model Formulation

Models of schistosomiasis transmission typically incorporate various aspects of the schistosome life cycle. The populations
considered consist of humans (H) and snails (S), with the presence of cercariae (C) and miracidia (M). Cercariae (C) represent
larval worms shed into the aquatic environment by infected snails, while miracidia (M) are eggs shed into streams by infected
humans engaging in activities like fishing, swimming, or drinking. The human population is divided into sub-populations:
susceptible (Sh), exposed (Eh), infected (Ih) and treated (Th) individuals, while the snail population consists of susceptible (Ss),
exposed (Es) and infected (Is) snails. The susceptible human reproduces at a constant rate Λh and dies naturally at the rate
µh, The susceptible become infected through contact with fresh water contaminated by cercariae from infected snail at the
rate βchθC. The exposed humans become infectious at a rate γh and we assume that a rate σh of infected humans receives
the MDA, while a fraction λ recovers and returns to the susceptible class. Others may die because of the infections at a rate
ρh, We assume that the treated humans are not infectious, i.e., they do not produce eggs for miracidia. Shedding of infection
within the environment by infected humans is assumed to occur at rate αm which represents the rate of miracidia produced by
infected humans. Susceptible snails reproduce at a constant rate Λs and die naturally at the rate µs. They become infected upon
contact with miracidia from the shedding of infected humans and mammals at the rate βmsM. The exposed snails become
infectious at a rate γs and those infected snails shed larva worms (cercariae) in the environment at a rate αc. The death rates of
miracidia and cercariae are µm and µc, respectively. The model assumes no immigration of infectious individuals. Figure 1
illustrates the transmission diagram of Schistosomiasis.

Figure 1: Transmission dynamics of Schistosomiasis. The disease cycle begins when infected individuals release Schistosoma eggs into
freshwater bodies through feces or urine. These eggs hatch, releasing miracidia that infect snails, where they develop into cercariae. The
cercariae are then released into the water, actively seeking contact with human skin. Upon skin penetration, they enter the bloodstream and
migrate to the liver, maturing into adult worms. The worms then migrate to the veins of the urinary or intestinal systems, where they lay eggs,
which starts the whole cycle again. Direct transitions between compartments are represented by the horizontal solid arrows. The mortality
rate is represented by the vertical arrows exiting the compartments. The dashed arrow from C to Sh and from M to Ss indicates the contact of
susceptible humans with freshwater contaminated by cercariae and the contact of susceptible snails with miracidia, respectively. On the
other hand, the dashed arrow from Ih to M and from Is to C indicates the shedding rate of miracidia and cercariae, respectively.
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We assume that snails, miracidia and cercariae can move within their environment due to factors such as water currents, host
movements and other ecological interactions. Diffusion processes allow us to simulate the movement of these populations over
time, which affects how they encounter and interact with each other.

This leads to the following system of partial differential equations:



∂Sh(x, t)
∂ t

= d1∆Sh +Λh +λTh−βchθ(t)CSh−µhSh,

∂Eh(x, t)
∂ t

= d2∆Eh +βchθ(t)CSh− γhEh−µhEh,

∂ Ih(x, t)
∂ t

= d3∆Ih + γhEh−σhIh−ρhIh−µhIh,

∂Th(x, t)
∂ t

= d4∆Th +σhIh−λTh− (1−λ )ρhTh−µhTh,

∂M(x, t)
∂ t

= d5∆M+αmIh−µmM,

∂Ss(x, t)
∂ t

= d6∆Ss +Λs−βmsMSs−µsSs,

∂Es(x, t)
∂ t

= d7∆Es +βmsMSs− γsEs−ρsEs−µsEs,

∂ Is(x, t)
∂ t

= d8∆Is + γsEs−ρsIs−µsIs,

∂C(x, t)
∂ t

= d9∆C+αcIs−µcC.

(2.1)

Where Sh, Eh, Ih and Th, represent the populations of susceptible, exposed, infected and treated humans at position x and time
t, respectively. Ss, Es, and Is represent the populations of susceptible, exposed and infected snails at position x and time t,
respectively. M and C represent the populations of miracidia and cercariae at position x and time t. We assume that the human,
snail, miracidia and cercariae population moves in the region Ω according to Fick’s second law [14], with di (i = 1, ...,9),
being the diffusion coefficients. Each diffusion coefficient di determines how quickly each sub-population spreads through
space. The Laplacian operator ∆ represents the spatial diffusion between neighboring locations and computes the difference
between a compartment’s value at a specific location and the average of its neighboring compartments.

By incorporating the model the time-dependent function θ(t) into the model, we identified human behavioral changes such as
avoiding wading, swimming and other forms of contact with contaminated water, as well as adopting improved sanitation and
gaining access to clean water. This function is given by

θ(t) =

{
1 No intervention,
(1+ζ ert)−1 with intervention

(2.2)

This type of function is often used to capture the gradual change in behavior from initial resistance to eventual widespread
adoption [15]. Here, ζ represents the maximum level of behavior change effectiveness that can be achieved. We have ζ ∈ (0,1),
where 0 represents no behavior change, 1 represents full behavior change compliance and r determines how quickly behavior
change is adopted and becomes effective over time.

The following initial conditions are associated with the system (2.1) :


Sh(x,0) = φ1(x), Eh(x,0) = φ2(x), Ih(x,0) = φ3(x), Th(x,0) = φ4(x), M(x,0) = φ5(x),
Ss(x,0) = φ6(x), Es(x,0) = φ7(x), Is(x,0) = φ8(x), C(x,0) = φ9(x),
x ∈Ω and φi ∈C2(Ω)∩C(Ω), i = 1, ...,9,

(2.3)

and homogeneous Neumann boundary conditions are imposed:

∂Sh

∂η
=

∂Eh

∂η
=

∂ Ih

∂η
=

∂Th

∂η
=

∂M
∂η

=
∂Ss

∂η
=

∂Es

∂η
=

∂ Is

∂η
=

∂C
∂η

= 0, x ∈ ∂Ω, t > 0, (2.4)

where Ω is an open bounded subset of Rn with a smooth boundary ∂Ω and η is the unit outer normal to ∂Ω. The biological
description of all the parameters in the system (2.1) is given in Table 1.
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Table 1: Description of the model parameters.

Param. Biological description Value Unit Source
Λh Recruitment rate of humans 0.62 humans per day [16]
Λs Recruitment rate of snails 2.5 snails per day [16]
βch Infection rate of cercariae on hu-

mans
4×10−6 per day [10]

βms Infection rate of miracidia on snails 5×10−5 per day [10]
θ Time-dependent function describing

human intervention
- - -

ρh Death rate of humans due to infec-
tion

0.000274 per day [13]

ρs Death rate of snails due to infection 0.011 per day [10]
γh Rate of transmission of humans

from exposure to infection
0.0238 per day [13]

γs Rate of transmission of snails from
exposure to infection

0.0286 per day [13]

σh Transmission rate of humans from
infection to treatment

0.03 per day [17]

αm Rate individuals produce miracidia 6.96 miracidia per human per day [18]
αc Rate snails produce cercariae 2.6 cercariae per snail per day [18]
λ Treatment efficacy (for Schistosoma

mansoni)
0.767 - [19]

µh Natural death rate of humans 0.00004379 per day [13]
µs Natural death rate of snails 2.7×10−3 per day [10]
µm Natural death rate of miracidia 3.04 per day [10]
µc Natural death rate of cercariae 0.91 per day [10]

3. Mathematical Analysis of the Model

This section is devoted to the theoretical study of the transmission model of the spread of Schistosomiasis described by a
system of 9-PDE of the system (2.1). The existence and uniqueness of positive solutions and the existence of equilibria and
their stability are established depending on the value of the basic reproduction number.
The system (2.1) can be expressed as:

∂X(x, t)
∂ t

= DX(x, t)+ f (X(x, t)), (3.1)

with X = (Sh,Eh, Ih,Th,M,Ss,Es, Is,C), D = diag(d1,d2,d3,d4,d5,d6,d7,d8,d9), and function f represent the right hand side
of the system (2.1) without the diffusive part, i.e.

f (X(x, t)) =



Λh +λTh−βchθCSh−µhSh,
βchθCSh− γhEh−µhEh,

γhEh−σhIh−ρhIh−µhIh,
σhIh−λTh− (1−λ )ρhTh−µhTh,

αmIh−µmM,
Λs−βmsMSs−µsSs,

βmsMSs− γsEs−ρsEs−µsEs,
γsEs−ρsIs−µsIs,

αcIs−µcC


. (3.2)

3.1. Existence, Uniqueness and Positivity

We said that X−=(S−h ,E
−
h , I−h ,T−h ,M−,S−s ,E

−
s , I−s ,C−) and X+=(S+h ,E

+
h , I+h ,T+

h ,M+,S+s ,E
+
s , I+s ,C+) and in C(Ω×[0,∞))∩

C1,2(Ω× [0,∞)) are lower and upper solutions of system (2.1), respectively, if X− ≤ X+ in Ω× [0,∞) and the following
differential inequalities hold:

∂X−(x, t)
∂ t

≤ DX−(x, t)+ f (X−(x, t)),

∂X+(x, t)
∂ t

≥ DX+(x, t)+ f (X+(x, t)), for (x, t) ∈Ω× (0,∞)
(3.3)



122 Fundamental Journal of Mathematics and Applications

and


∂X−

∂η
≤ 0≤ ∂X+

∂η
, for (x, t) ∈ ∂Ω× (0,∞),

X−(x, t)≤Φ(x, t)≤ X+(x, t) for (x, t) ∈Ω× (0,∞).
(3.4)

Where ≤ is the standard order relation in Rn (x≤ y⇔ xi ≤ yi, for i = 1, ...,n) and Φ = (φ1,φ2,φ3,φ4,φ5,φ6,φ7,φ8,φ9) .

Theorem 3.1. Let suppose that the initial functions φi (i = 1,2, . . . ,9) are continuous in Ω. Then problem (2.1) has ex-
actly one regular solution X(x, t) = (Sh(x, t),Eh(x, t), Ih(x, t),Th(x, t),M(x, t),Ss(x, t),Es(x, t), Is(x, t),C(x, t)). This solution is
characterized by positivity and boundedness in the region Ω× [0,∞).

Proof. The existence and uniqueness of the solution are obtained using the Lemma 1 in [20].

Let Γ :=C(Ω,R). We observe that 0R9 = (0,0,0,0,0,0,0,0,0) and W = (w1,w2,w3,w4,w5,w6,w7,w8,w9) are respectively
lower and upper solutions of the system (2.1), where

w1 = max
{

Λh
µh
,‖φ1‖Γ

}
, w6 = max

{
Λs
µs
,‖φ6‖Γ

}
,

w2 = max
{

Λh
µh
,‖φ2‖Γ

}
, w7 = max

{
Λs
µs
,‖φ7‖Γ

}
,

w3 = max
{

γhΛh
µ2

h
,‖φ3‖Γ

}
, w8 = max

{
γsΛs
µ2

s
,‖φ8‖Γ

}
,

w4 = max
{

σhγhΛh
µ3

h
,‖φ4‖Γ

}
, w9 = max

{
αcΛs
µcµs

,‖φ9‖Γ

}
,

w5 = max
{

αmΛh
µmµh

,‖φ5‖Γ

}
.

(3.5)

By applying the Redinger’s Lemma, we conclude that the problem (2.1) has exactly one regular solution X(x, t) such that
0R9 ≤ X(x, t)≤W in Ω× [0,∞).

Hence, 0 ≤ Sh(x, t) ≤ w1, 0 ≤ Eh(x, t) ≤ w2, 0 ≤ Ih(x, t) ≤ w3, 0 ≤ Th(x, t) ≤ w4, 0 ≤ M(x, t) ≤ w5, 0 ≤ Ss(x, t) ≤ w6,
0≤ Es(x, t)≤ w7, 0≤ Is(x, t)≤ w8, 0≤C(x, t)≤ w9.

Furthermore, if φi(x) 6= 0 for i = 1, ...,9, then from the maximum principle, we have Sh(x, t) > 0, Eh(x, t) > 0, Ih(x, t) > 0,
Th(x, t)> 0, M(x, t)> 0,Ss(x, t)> 0, Es(x, t)> 0, Is(x, t)> 0, C(x, t)> 0 for all t > 0, x ∈Ω.

3.2. Equilibria and Basic Reproduction Number

3.2.1. Equilibria

The equilibria of the system (2.1) are found by solving

dX(t)
dt

= f (X(t)) = 0, (3.6)

with X = (Sh,Eh, Ih,Th,M,Ss,Es, Is,C) and f given by (3.2). Hence, the system (2.1) has two equilibrium points, namely the
disease-free equilibrium point (DFE) and endemic equilibrium point (EE).

1. The DFE is given by

E0 = (S0
h,0,0,0,0,S

0
s ,0,0,0) =

(
Λh

µh
,0,0,0,0,

Λs

µs
,0,0,0

)
,

and it translates to the ideal case where the disease disappears into the human and snail population and always exists.



Fundamental Journal of Mathematics and Applications 123

2. The EE is given by E∗ = (S∗h,E
∗
h , I
∗
h ,T

∗
h ,M

∗,S∗s ,E
∗
s , I
∗
s ,C

∗), where



S∗h =
µc(ρs +µs)(γs +ρs +µs)

(
βmsαmI∗h +µsµm

)
(λ +(1−λ )ρh +µh)Λh +λσhI∗h

γsβmsαmαcΛs(λ +(1−λ )ρh +µh)I∗h +µhµc(ρs +µs)(γs +ρs +µs)
(
βmsαmI∗h +µsµm

) ,
E∗h =

σh +ρh +µh

γh
I∗h ,

I∗h =
µhµsµcµm(γh +µh)(ρs +µs)(σh +ρh +µh)(γs +ρs +µs)(λ +(1−λ )ρh +µh)(Re−1)

A1 +A2
,

T ∗h =
σh

λ +(1−λ )ρh +µh
I∗h ,

M∗ =
αm

µm
I∗h ,

S∗s =
µmΛs

βmsαmI∗h +µsµm
,

E∗s =
βmsαmΛs

(γs +ρs +µs)
(
βmsαmI∗h +µsµm

) I∗h ,

I∗s =
γsβmsαmΛs

(ρs +µs)(γs +ρs +µs)
(
βmsαmI∗h +µsµm

) I∗h ,

C∗ =
γsβmsαmαcΛs

µc(ρs +µs)(γs +ρs +µs)
(
βmsαmI∗h +µsµm

) I∗h .

(3.7)

With

Re =
βchθβmsαcαmγhγsΛhΛs

µhµsµcµm(γh +µh)(ρs +µs)(σh +ρh +µh)(γs +ρs +µs)
,

A1 = γsβchθβmsαmαcΛs(ρhσh((1−λ )ρh +µh)+(λ +(1−λ )ρh +µh)(γh(ρs +µs)+µh(σh +ρh +µh))),

A2 = αmµhµcβms(γh +µh)(ρs +µs)(σh +ρh +µh)(γs +ρs +µs)(λ +(1−λ )ρh +µh).

This equilibrium translates the situation of persistence of the disease into the population and exists if Re > 1.

3.2.2. Basic reproduction number

The epidemiological concept of the basic reproduction number (R0) pertains to the average count of fresh infections within a
susceptible population caused by a single infectious individual (human or snail). To determine this metric we use the same
approach as [21] and compute the next generation matrix.
Let the infective compartment be XI = (Eh, Ih,M,Es, Is,C), considering the following system:



∂Eh(x, t)
∂ t

= d2∆Eh +βchθCSh− γhEh−µhEh,

∂ Ih(x, t)
∂ t

= d3∆Ih + γhEh−σhIh−ρhIh−µhIh,

∂M(x, t)
∂ t

= d5∆M+αmIh−µmM,

∂Es(x, t)
∂ t

= d7∆Es +βmsMSs− γsEs−ρsEs−µsEs,

∂ Is(x, t)
∂ t

= d8∆Is + γsEs−ρsIs−µsIs,

∂C(x, t)
∂ t

= d9∆C+αcIs−µcC.

(3.8)

Let’s consider the two vectors F and V . Where F represents the rate of new infections appearing in a compartment and V
represents the rate of infectives leaving the system, defined as follows:

F =


βchθCSh

0
0

βmsSs
0
0

 , and V =


(γh +µh)Eh

(σh +ρh +µh)Ih− γhEh
µmM−αmIh

(γs +ρs +µs)Es
(ρs +µs)Is− γsEs

µcC−αcIs

 .

The Jacobian matrices of F and V at the DFE E0 are given by:
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JF =



0 0 0 0 0 βchθΛh
µh

0 0 0 0 0 0
0 0 0 0 0 0
0 0 βmsΛs

µs
0 0 0

0 0 0 0 0 0
0 0 0 0 0 0


, JV =


γh +µh 0 0 0 0 0
−γh σh +ρh +µh 0 0 0 0

0 −αm µm 0 0 0
0 0 0 γs +ρs +µs 0 0
0 0 0 −γs ρs +µs 0
0 0 0 0 −αc µc

 .

Then, the next generation matrix is given by:

JF J−1
V =



0 0 0 βchθΛhαcγc
µhµc(γs+ρs+µs)(ρs+µs)

βchθ µhαc
µhµc(ρs+µs)

βchθΛh
µhµc

0 0 0 0 0 0
0 0 0 0 0 0

βmsΛsαm
µs(γh+µh)(σh+ρh+µh)

βmsΛsαm
µsµm(σh+ρh+µh)

βmsΛs
µsµm

0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

The reproduction number is the spectral radius of the next generation matrix. Hence, we have

R0 := ρ(JF J−1
V ) =

(
βchθβmsαcαmγhγsΛhΛs

µhµsµcµm(γh +µh)(ρs +µs)(σh +ρh +µh)(γs +ρs +µs)

) 1
2
. (3.9)

Using the notations

R0,hs =
βmsαmγsΛs

µsµm(ρs +µs)(γs +ρs +µs)
, and R0,sh =

βchθαcγhΛh

µhµc(γh +µh)(σh +ρh +µh)
, (3.10)

the expression of R0 takes the form:

R0 =
√

R0,hs ·R0,sh. (3.11)

The quantity R0,hs and R0,sh reflect the transmission from human to snail and from snail to human, respectively. This expression
of R0 as a geometric mean of R0,hs and R0,sh, effectively demonstrates how the different population parameters in the life cycle
(Human-Snail-Human), such as birth, death and infection rates impact the transmission intensity as shown in Section 4.

Lemma 3.2. If R0 > 1, then the endemic equilibrium point E∗ of system (2.1) given by (3.7) exists and is unique.

Proof. It is easy to observe that Re = R2
0. Hence Re > 1 if and only if R0 > 1. Therefore the necessary and sufficient condition

for the existence of the endemic equilibrium E∗ is R0 > 1.

The nature of the system (2.1) is determined by the time-dependent intervention function θ(t). The analysis of the stability of
the system is divided into two cases: one where there is no human intervention (θ(t) = 1) and the other where there is human
intervention ( θ(t) = (1+ζ ert)−1).

3.3. Stability of autonomous dynamical system

3.3.1. Local stability of the equilibrium

To establish the local stability of the equilibrium, A similar methodology as in prior works such as [22, 23] is employed.
Consider the eigenvalues of −∆ on Ω with homogeneous Neumann boundary conditions: 0 = ν0 < νi < νi+1, i = 1,2, ...
and E(νi) the associated eigenspace. Let denote by Bi, the orthogonal basis for E(νi). Consequently, the solution space
B= {(Sh,Eh, Ih,Th,M,Ss,Es, Is,C)} of the system (2.1) can be partitioned as follows:

B=
∞⊕

i=1

Bi.

If we denote by J(E) the Jacobian matrix of the system (2.1) at the equilibrim E, then as prove in [24] the eigenvalues of J(E)
are equivalent to the eigenvalue of the matrix

M(E) =−νiD+ J f (E).

Where D = diag(d1,d2,d3,d4,d5,d6,d7,d8,d9) is a diagonal matrix of the diffusion coefficients and J f (E) is the Jacobian
matrix of the function f given in (3.2) at the equilibrium E.
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Theorem 3.3. If R0 < 1 and θ(t) = 1, then the disease-free equilibrium point E0 of system (2.1) is locally asymptotically
stable (LAS).

Proof. Let J(E0) the Jacobian matrix of the system (2.1) at the DFE. The eigenvalue value of J(E0) are equivalent to that the
matrix

M(E0) =−νiD+ J f (E0) =



−a1 0 0 λ 0 0 0 0 −βchθ
Λh

µh

0 −a2 0 0 0 0 0 0 βchθ
Λh

µh
0 γh −a3 0 0 0 0 0 0
0 0 σh −a4 0 0 0 0 0
0 0 αm 0 −a5 0 0 0 0

0 0 0 0 −βms
Λs

µs
−a6 0 0 0

0 0 0 0 βms
Λs

µs
0 −a7 0 0

0 0 0 0 0 0 γs −a8 0
0 0 0 0 0 0 0 αc −a9



.

Where a1 = µh +νid1, a2 = (γh +µh)+νid2, a3 = (σh +ρh +µh)+νid3, a4 = (λ +(1−λ )ρh +µh)+νid4, a5 = µm +νid5,
a6 = µs +νid6, a7 = (σs +ρs +µs)+νid7, a8 = (ρs +µs)+νid8 and a9 = µc +νid9.
The characteristic polynomial of this matrix is given by:

P1(x) =−(a1 + x)(a4 + x)(a6 + x)Q1(x) with

Q1(x) = x6 + k5x5 + k4x4 + k3x3 + k2x2 + k1x+ k0 and the values of the coefficients are:

k0 = a2a3a5a7a8a9

(
1− βchθβmsαcαmγhγsΛhΛs

µhµsa2a3a5a7a8a9

)
,

k1 = a2a3a5a7a8 +a2a3a5a7a9 +a2a3a5a8a9 +a2a3a7a8a9 +a2a5a7a8a9 +a3a5a7a8a9 > 0,
k2 = a2a3a5a7 +a2a3a5a8 +a2a3a5a9 +a2a3a7a8 +a2a3a7a9 +a2a3a8a9 +a2a5a7a8

+ a2a5a7a9 +a2a5a8a9 +a3a5a7a8 +a3a5a7a9 +a3a5a8a9 +a5a7a8a9 > 0,
k3 = a2a3a7 +a2a3a8 +a2a3a9 +a2a5a7 +a2a5a8 +a2a5a9 +a3a5a7 +a3a5a8 +a3a5a9 +a5a7a8

+ a5a7a9 +a5a8a9 +a2a7a8 +a2a7a9 +a2a8a9 +a3a7a8 +a3a7a9 +a3a8a9 +a7a8a9 > 0.
k4 = a2a7 +a2a8 +a2a9 +a3a7 +a3a8 +a3a9 +a7a8 +a7a9 +a8a9 > 0,
k5 = a2 +a3 +a5 +a7 +a8 +a9 > 0.

It is easy to see that P1 has three negative eigenvalues: x1 =−a1, x2 =−a4 and x3 =−a6. The other eigenvalues are roots of
Q1(x).
Since k1,k2,k3,k4,k5 > 0, then by using the Routh-Hurwitz criteria [25] and the conditions of Heffernan [26] that the
polynomial Q1(x) has negative real roots if k5k4 > k3, k4k2 > k0, k2k1 > k3k0. We already have:

k5k4− k3 = a2
2a7 +a2

2a8 +a2
2a9 +a2a3a7 +a2a3a8 +a2a3a9 +a2a5a7 +a2a5a8

+ a2a5a9 +a3a7a8 +a3a7a9 +a3a8a9 +a5a7a8 +a5a7a9 +a5a8a9

> 0.

If R0 < 1, then we have:

βchθβmsαcαmγhγsΛhΛs

µhµsa2a3a5a7a8a9
≤ R2

0 < 1⇒ 0 < k0 < a2a3a5a7a8a9. (3.12)

Hence,

k4k2 > a2a3a5a7a8a9 > k0, and k2k1− k3k0 > k2k1−a2a3a5a7a8a9k3 = 0. (3.13)

Thus all the eigenvalues of P1 have a negative real part, which implies that the disease-free equilibrium E0 is locally
asymptotically stable if R0 < 1.

Theorem 3.4. If R0 > 1 and θ(t) = 1, then the endemic equilibrium point E∗ of system (2.1) is locally asymptotically stable
(LAS).
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Proof. Let J(E∗) the Jacobian matrix of the system (2.1) at the EE. The eigenvalue value of J(E∗) are equivalent to that the
matrix

M(E∗) = νiD+ J f (E∗) =



−b1 0 0 λ 0 0 0 0 −βchθS∗h
βchθC∗ −b2 0 0 0 0 0 0 βchθS∗h

0 γh −b3 0 0 0 0 0 0
0 0 σh −b4 0 0 0 0 0
0 0 αm 0 −b5 0 0 0 0
0 0 0 0 −βmsS∗s −b6 0 0 0
0 0 0 0 βmsS∗s 0 −b7 0 0
0 0 0 0 0 0 γs −b8 0
0 0 0 0 0 0 0 αc −b9


.

Where b1 = βchθC∗ + µh + νid1, b2 = (γh + µh) + νid2, b3 = (σh + ρh + µh) + νid3, b4 = (λ + (1− λ )ρh + µh) + νid4,
b5 = µm +νid5, b6 = βmsM∗+µs +νid6, b7 =−βmsM∗+(σs +ρs +µs)+νid7, b8 = (ρs +µs)+νid8 and b9 = µc +νid9.
We are employing the approach as [27, 28, 29]. Assuming the linearized equation at the equilibrium point E∗ takes the form:

U ′ = M(E∗)U, (3.14)

Here, we consider a solution characterized by the expression:

U(t) =U0etz, z ∈ C9, (3.15)

where U0 = (U1,U2,U3,U4,U5,U6,U7,U8,U9). Upon substituting this particular solution form (3.15) into the linearized system
(3.14), we obtain the relationship zU = M(E∗)U , which can be rephrased as the subsequent system:

zU1 =−b1U1 +λU4−βchθS∗hU9,

zU2 = βchθC∗U1−b2U2 +βchθS∗hU9,

zU3 = γhU2−b3U3,

zU4 = σhU3−b4U4,

zU5 = αmU3−b5U5,

zU6 =−βmsS∗sU5−b6U6,

zU7 = βmsS∗sU5−b7U7,

zU8 = γsU7−b8U7,

zU9 = αcU8−b9U9.

(3.16)

The system (3.16) can be rewritten as

(1+Fi(z))Ui +Gi(U) = (HU)i, i = 1, ...,9 (3.17)

where

F1(z) = 1
b1
, F2(z) = 1

b2
, F3(z) = 1

b3
, F4(z) = 1

b4
, F5(z) = 1

b5
,

F7(z) = 1
b6
, F7(z) = 1

b7
, F8(z) = 1

b8
, F9(z) = 1

b9
,

and

G1(U) =
βchθS∗h

b1
U9, G6(U) = βmsS∗s

b6
U5,

G2(U) = G3(U) = G4(U) = G5(U) = G7(U) = G8(U) = G9(U) = 0,

and a non-negative matrix H given by

H =



0 0 0
λ

b1
0 0 0 0 0

βchθC∗

b1
0 0 0 0 0 0 0

βchθS∗h
b2

0
γh

b3
0 0 0 0 0 0

0 0
σh

b4
0 0 0 0 0 0

0 0
αm

b5
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0
βmsS∗s

b7
0 0 0 0

0 0 0 0 0 0
γs

b8
0 0

0 0 0 0 0 0 0
αc

b9
0



.
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The equilibrium state denoted as E∗ = (S∗h,E
∗
h , I
∗
h ,T

∗
h ,M

∗,S∗s ,E
∗
s , I
∗
s ,C

∗) is defined as the endemic equilibrium, satisfying the
condition E∗ = HE∗. Since all the components of E∗ are positive when R0 > 1. Let U denote a solution of equation (3.17),
there exists a minimal positive real c0 (as established in [29]), such that the following inequality holds:

|U | ≤ c0E∗, (3.18)

where |U | = (|U1|, |U2|, |U3|, |U4|, |U5|, |U6|, |U7|, |U8|, |U9|). The objective is to demonstrate Re(z) < 0. Let us assume by
contradiction that Re(z)≥ 0.
Given that U 6= 0, we conclude that Re(z)> 0, leading to |1+Fi(z)|> 1 for all i = 1, . . . ,9. Hence

c0

Ψ(z)
< c0, where Ψ(z) = min

i=1,..,8
|1+Fi(z)|> 1.

Hence, by the minimality of c0, it is follows that:

|U |> c0

Ψ(z)
E∗. (3.19)

By applying the norm to both sides of the third equation in (3.17) and using the non-negativity of matrix H, we get:

|1+F3(z)||U3|= |(HU)3| ≤ H|U3| ≤ c0H(E∗)3 = c0I∗h , (3.20)

This implies that |U3| ≤ c0
Ψ(z) I∗h and then, contradicts equation (3.19). Hence, Re(z)< 0, which means that all eigenvalues of the

matrix M(E∗) have a negative real part. Therefore, the endemic equilibrium E∗ is locally asymptotically stable if R0 > 1.

3.3.2. Global stability of the disease-free equilibrium

Theorem 3.5. If θ(t) = 1, then disease-free equilibrium point E0 of system (2.1) is globally asymptotically stable (GAS) if
R0 < 1 and unstable if R0 > 1.

Proof. The Lyapunov-LaSalle technique is used to prove the global asymptotic stability of E0. Let’s consider the Lyapunov
function defined as follows :

L =
∫

Ω

[c1Eh(x, t)+ c2Ih(x, t)+ c3M(x, t)+ c4Es(x, t)+ c5Is(x, t)+ c6C(x, t)]dx, (3.21)

where

c1 = αmαcγhγsβsΛs(γh +µh),

c2 = αmαcγsβsΛs(γh +µh)

c3 = αcγsβsΛs(γh +µh)(σh +ρh +µh),

c4 = αcγsµmµs(γh +µh)(σh +ρh +µh),

c5 = µmµs(ρs +µs)(γh +µh)(γs +ρs +µs)(σh +ρh +µh),

c6 = µmµsαc(γh +µh)(γs +ρs +µs)(σh +ρh +µh).

We have:

dL
dt

=
∫

Ω

[
c1

∂Eh(x, t)
∂ t

+ c2
∂ Ih(x, t)

∂ t
+ c3

∂M(x, t)
∂ t

+ c4
∂Es(x, t)

∂ t
+ c5

∂ Is(x, t)
∂ t

+ c6
∂C(x, t)

∂ t

]
dx

=
∫

Ω

[c1(d2∆Eh +βchθCSh− (γh +µhEh)Eh)+ c2(d3∆Ih + γhEh− (σh +ρh +µh)Ih)

+ c3(d5∆M+αmIh−µmM)+ c4(d7∆Es +βmsMSs− (γs +ρs +µs)Es)

+ c5(d8∆Is + γsEs− (ρs +µs)Is)+ c6(d9∆C+αcIs−µcC)]dx

=
∫

Ω

[
c1βh

(
Sh−

c6µc

c1βh

)
C+(c2γh− c1(γ +µh))Eh +(c3αm− c2(σh +ρh +µh))Ih

+ (c5γs− c4(γs +ρs +µs))Es +(c6αc− c5(ρs +µs))Is + c4βs

(
Ss−

c3µm

c4βs

)
M
]
dx

+
∫

Ω

[
c1d2∆Eh + c2d3∆Ih + c3d5∆M+ c4d7∆Es + c5d8∆Is + c6d9∆C

]
dx

According to the Green’s formula and the homogeneous Neumann boundary conditions (2.4), we have∫
Ω

∆Ehdx =
∫

Ω

∆Ihdx =
∫

Ω

∆Mdx =
∫

Ω

∆Esdx =
∫

Ω

∆Isdx =
∫

Ω

∆Cdx = 0,
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Hence

dL
dt

=
∫

Ω

[
c1βh

(
Sh−

c6µc

c1βh

)
C+ c4βs

(
Ss−

c3µm

c4βs

)
M
]
dx

≤
∫

Ω

[
c1βh

(
Λh

µh
− c6µc

c1βh

)
C+ c4βs

(
Λs

µs
− c3µm

c4βs

)
M
]
dx

≤
∫

Ω

[
c1βh

Λh

µh

(
R2

0−1
)

C
]
dx

Therefore,
dL
dt
≤ 0 whenever R0 < 1. Furthermore,

dL
dt

= 0 if and only if M = C = 0. These conditions are only satisfied

by the DFE E0. It follows that the largest invariant set {(Sh,Eh, Ih,Th,M,Ss,Es, Is,C) | L̇ = 0} when R0 < 1 is reduced to the
singleton E0. Based on LaSalle’s Invariance Principle [30], the DFE E0 is globally asymptotically stable when R0 < 1 and
unstable if R0 > 1.

Figure 2: Birfucation plot. This plot shows the stability of equilibrium points of the system (2.1) for θ(t) = 1 as a function of R0. The
horizontal line represents the stable and unstable states of the DFE E0. The half parabola represents the stable states of the EE E∗. The blue
lines denote the stable states and the red lines the unstable states. The black arrows indicate the direction of the vector field.

3.4. Stability of non-autonomous dynamical system

Theorem 3.6. If θ(t) = (1+ ζ ert)−1, then the arbitrary equilibrium point Ē = (S̄h, Ēh, Īh, T̄h,M̄, S̄s, Ēs, Īs,C̄) of the non-
autonomous dynamical system (2.1) is uniformly stable.

Proof. We are employing the approach as in [15]. Let X(x, t)= (Sh(x, t),Eh(x, t), Ih(x, t),Th(x, t),M(x, t),Ss(x, t),Es(x, t), Is(x, t),C(x, t))
be a solution of the system (2.1). According to the positive and boundedness of the solution in Theorem 3.1, we have

limsup
t→+∞,x∈Ω

X(x, t)≤W,

with W = (w1,w2,w3,w4,w5,w6,w7,w8,w9) given in (3.5). Let assume that

‖φ1‖C(Ω,R) ≤
Λh

µh
and ‖φ6‖C(Ω,R) ≤

Λs

µs
.

Then, for t > 0, we can derive the norm of the equilibrium point

‖E(x, t)‖∞ = ‖(Sh(x, t),Eh(x, t), Ih(x, t),Th(x, t),M(x, t),Ss(x, t),Es(x, t), Is(x, t),C(x, t))‖∞

≤ ‖W‖∞ = max{w1,w6}= max
{

Λh
µh
, Λs

µs

}
.

A time t = 0, we have:

‖E(x,0)‖∞ = ‖(Sh(x,0),Eh(x,0), Ih(x,0),Th(x,0),M(x,0),Ss(x,0),Es(x,0), Is(x,0),C(x,0))‖∞
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= ‖
(

Λh

µh
,0,0,0,0,

Λs

µs
,0,0,0

)
‖∞

= max
{

Λh

µh
,

Λs

µs

}
.

Let consider a class K function α(.) such that

α(‖E‖∞) = c‖E‖∞, with the constant c≥max
{

1,
Λh

µh
,

Λs

µs

}
.

Therefore,

‖E(x,0)‖∞ < c⇒‖E(x, t)‖∞ < c‖E(x,0)‖∞ = α(‖E(x,0)‖∞), ∀t ≥ 0.

By applying Lemma 4.1 in [31] and the fact that all p-norms in Rn are equivalent, it result that an arbitrary equilibrium
point Ē = (S̄h, Ēh, Īh, T̄h,M̄, S̄s, Ēs, Īs,C̄) of the non-autonomous dynamical system (2.1) when θ(t) = θ0(1+ζ ert) is uniformly
stable.

4. Sensitivity Analysis

To assess how model parameters influence schistosomiasis spread, we employed global sensitivity analysis. This approach
computed partial rank correlation coefficients (PRCC) for model parameters affecting the basic reproduction number R0 [32],
assuming statistical independence for each parameter of interest. This analysis identifies critical parameters significantly
impacting the output R0, guiding accurate measurements.

Figure 3: Plot of PRCC R0. The PRCC calculation was performed for R0 using Latin Hypercube Sampling (LHS) technique. Parameters in
Table 1 were sampled from uniform distributions.

Figure 3 presents the PRCC values of the model parameters. We observe that parameters such as βch, βms, γs, αc, αm, Λh and
Λs contribute to an increase in the value of R0, while parameters µh µs, µc, µm, ρs and σh are influential in reducing the burden
of schistosomiasis within the population. Notably, the parameter with the highest sensitivity to R0 is the natural death rate of
the snail population µs. This suggests that an increase in the snail death rate effectively curtails the spread of schistosomiasis
within the population.

Local sensitivity analysis is also used to examine the impact of parameter changes on disease spread using R0, which determines
disease persistence or eradication. The normalized direct sensitivity index of R0 with respect to a parameter v is given by :

SR0
v =

∂R0

∂v
× v

R0
. (4.1)

This index quantifies how R0 changes as v varies. More precisely, if v grows by x% then R0 grows by SR0
v × x%. A positive

index implies a proportional increase (decrease) in R0 with parameter growth (reduction). Conversely, a negative index signals
an opposite relationship. The local sensitivity indexes for R0related parameters are presented in Table 2.
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Table 2: Local sensitivity index for model parameters.

Param.(v) Λh Λs βch βms αc αm γh γs

SR0
v +0.5 +0.5 +0.5 +0.5 +0.5 +0.5 +0.000918 +0.0162

Param.(v) µh µs µc µm ρs ρh σh

SR0
v -0.501 -0.631 -0.5 -0.5 -0.531 -0.0574 -0.442

Table 2 demonstrates that decreasing the recruitment rates of humans and snails results in a substantial decrease in the number
of human infections. Specifically, a 1% reduction in either the human or snail recruitment rate would result in a 0.5% decrease
in R0. Conversely, a 1% increase in the treatment rate σh would result in a 0.442% reduction in R0. It is noteworthy that
the parameter ρh, which characterizes the human death rate attributed to the infection, exerts a relatively low influence on
the disease spread threshold. An augmentation of 1% in the parameter ρh leads to a mere 0.057% decrease in the threshold.
Conversely, the natural death rate of snails, denoted as µs, exhibits the most significant local sensitivity index. If µs were to
increase by 1%, R0 would decrease notably by 0.631%. Additionally, our investigation highlights that the rates of transmission
from exposure to infection, namely γh for humans and γs for snails, do not wield a significant impact on the reproductive
number of the infection. This observation can be rationalized by considering the incubation period required for an exposed
human or snail to become infected, which can be quite prolonged.

(a) (b)

(c) (d)

Figure 4: Contour plot of R0. (a) Simulated the basic reproduction number R0 as a function of the and the natural death rate of snail µs and death rate
of cercariae µc. (b) Simulated R0 as a function of the natural death rate of snail µs and the infection rate of cercariae on human βch. (c) Simulated R0 as a
function of the natural death rate of snail µs and the infection rate of miracidia on snail βms. (d) Simulated R0 as a function of the treatment rate of infected
human σh and the infection rate of cercariae on human βch. The other parameters are taken at their base value in Table 1.

In Figure 4, we illustrate the influence of parameter changes µs, µc, βch, βms and σh on R0 using a contour plot. When µs is
increased while µc remains constant, an observable decrease in R0 follows (see Fig 4 (a)). Conversely, a decrease in µs while
keeping βch or βms constant results in an increase in R0 (see Figure 4 (b)-(c)). Figure 4 (d) demonstrates that even with a high
rate of infection, increasing the rate of treatment for infected humans can substantially reduce the value of R0. Effective control
of these parameters can bring R0 below one, meaning that disease-free equilibrium can be achieved, as proved by Theorem 3.3.
This implies that disease-free equilibrium can be achieved by judiciously controlling these parameters.
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5. Numerical Simulations

In this section, we conduct numerical simulations to examine disease spread in continuous space and validate theoretical analysis.
Numerical computations and plots are performed in MATLAB using the built-in function pdepe (For more information, visit:
https://www.mathworks.com/help/matlab/ref/pdepe.html). This function employs the finite difference method on
a spatial domain 0 ≤ x ≤ L with a grid width set to 10−2. This discretization transforms the system of partial differential
equations (PDEs) into a large system of ordinary differential equations (ODEs), which is then solved using the built-in solver
ode15s with a time step of δ t = 10−2. The 3D plots are generated using the plotsurface function of MATLAB, which
takes as parameters the time vector, the space vector, and the numerical solution produced by the pdepe function.

Spatiotemporal behavior: We consider the model (2.1) with homogeneous Neumann boundary conditions (2.4). For
convenience, we set Ω = [0,1]. In our model, human population movement is influenced by factors like migration and
commuting behaviors, and it is assumed to occur downstream along the river, reflecting the natural flow of infected individuals
and the spread of contamination. Snails, acting as intermediate hosts, can move within the water, primarily influenced by water
currents and environmental factors. This movement contributes to the downstream distribution of cercariae. Miracidia, the
parasite larvae, and cercariae, the infectious stage, are carried downstream by water flow, facilitating their transmission to
susceptible snails and humans in downstream areas. To capture such movement dynamics, we fix the following diffusion
coefficients in units of m2day−1: d1 = 0.1, d2 = 0.05, d3 = 0.02, d4 = 0.1, d5 = 0.0005, d6 = 0.001, d7 = 0.0005, d8 = 0.0003,
d9 = 0.0002.

Additionally, we adopt the subsequent initial conditions: Sh(0) = 0.99 Λh
µh
− 200cos(2πx), Eh(0) = 0, Ih(0) = 0.01 Λ

µs
−

50cos(2πx), Th(0) = 0, M = 10, Ss(0) = 0.99 Λs
µs
−3cos(2πx), Es(0) = 0, Is(0) = 0.01 Λs

µs
−2cos(2πx), C = 10.

We divide the simulations into different cases corresponding to the stability of each one of the equilibrium points of the model
(2.1) as follows:

Case 1: We consider the values βch = 2× 10−6, βms = 3× 10−5, αc = 1.5, αm = 2.96, µs = 6× 10−3, µc = 1.01, µm = 5
and θ(t) = 1, the other parameters are given in a Table 1. The corresponding threshold is R0 = 0.5839 < 1 and from
Theorem 3.5 the DFE is GAS. As depicted in Figure 5, the numbers of infected individuals Ih(t,x) and infected snails
Is(t,x) converge to zero.

Case 2: We consider all the value the parameter values given in a Table 1 with θ(t) = 1. The corresponding threshold is
R0 = 4.989 > 1 and it follows from Theorem 3.4 that the EE is LAS. As shown in Figure 6, the numbers of infected
individuals Ih(t,x) and infected snails Is(t,x) converge to the endemic points I∗h and I∗s , respectively.

Case 3: We consider the same parameters as presented in Table 1, but with θ(t) = (1+ζ ert)−1, where ζ = 0.02 and r = 0.005.
As demonstrated in Theorem 3.6, the equilibrium of the non-autonomous dynamical system displays uniform stability.
Illustrated in Figure 7, the intervention function’s effect, θ(t), leads to a gradual reduction of the reproduction number
below 1 over time. Consequently, both the numbers of infected individuals, Ih(t,x) and infected snails, Is(t,x), decrease
and converge to zero over time, while the populations of susceptible humans and snails increase. We find that the
spatio-temporal evolution of exposed and infected humans are similar, indicating that human interventions have the
same effect on exposed individuals as they do on infected individuals.

https://www.mathworks.com/help/matlab/ref/pdepe.html
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(a) Suceptible humans (b) Exposed humans (c) Infected humans

(d) Treated humans (e) Miracidia (f) Suceptible snails

(g) Exposed snails (h) Infected Snails (i) Cercariae

Figure 5: Spatiotemporal evolution of schistosomiasis transmission when R0 < 1 and θ(t) = 1. The disease-free equilibrium E0 is
globally asymptotically stable.
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(a) Suceptible humans (b) Exposed humans (c) Infected humans

(d) Treated humans (e) Miracidia (f) Suceptible snails

(g) Exposed snails (h) Infected Snails (i) Cercariae

Figure 6: Spatiotemporal evolution of schistosomiasis transmission when R0 > 1 and θ(t) = 1. The endemic equilibrium E∗ is globally
asymptotically stable.



134 Fundamental Journal of Mathematics and Applications

(a) Suceptible humans (b) Exposed humans (c) Infected humans

(d) Treated humans (e) Miracidia (f) Suceptible snails

(g) Exposed snails (h) Infected Snails (i) Cercariae

Figure 7: Spatiotemporal evolution of schistosomiasis transmission when R0 > 1 and human intervention θ(t) = (1+ζ ert)−1. The
arbitrary equilibrium of the non-autonomous system is uniformly stable

The simulations above illustrate that in a homogeneous system, while the early phase may exhibit variation depending on the
spatial location x, the eventual state of the infectious disease appears to be independent of its dispersal rate.

Control Strategies: Here, an examination of the temporal evolution of the disease progression under different control
measures, namely Mass Drug Administration (MDA) and human interventions is conducted. Figure 8 illustrates the progression
of disease prevalence while varying treatments for infected humans. For all cases, the baseline parameter values listed in Table
1 are used and only manipulate the parameters σh (infected treatment rate) and βch (reinfection rate). The graphs in Figure
8 are generated using the ODE version of the equation (2.1), with each curve representing the proportion (in percentage) of
infected individuals over the total population.

Figure 8 demonstrates the impact of human interventions on the spread of Schistosoma. The curves colored in red, yellow,
green and blue represent infection prevalence with no treatment (σh ≈ 0), low treatment (σh = 0.03), moderate treatment
(σh = 0.12) and high treatment (σh = 0.25), respectively. Notably, the most severe outbreaks manifest during the early phase
across the four scenarios mentioned. These findings suggest that MDA is an effective control strategy not only in the initial
stages of transmission but also throughout the transmission process (see Fig 8 (a)-(c)). Applying appropriate treatment to
infected individuals can substantially diminish disease prevalence. Nevertheless, as depicted in Fig 8 (a)-(c), relying solely on
MDA becomes insufficient when the reinfection rate becomes high. Therefore, it becomes imperative to encourage individuals
to adopt additional control measures such as avoiding contact with contaminated water through wading, swimming and
other activities, along with implementing improved sanitation and securing access to clean water. Fig 8 (d) underscores that
combining MDA with human interventions (ζ = 0.02 and r = 0.005) can lead to a significant reduction in prevalence.
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Figure 8: Influence of varying MDA rate on infection prevalence.

6. Conclusion

In this paper, an enhanced mathematical model has been developed utilizing diffusion equations to depict the dynamics of
schistosomiasis, thereby expanding upon a previously established framework. By integrating both the influence of treated
individuals and the temporal function of human interventions, the extended model has been thoroughly analyzed both
temporally and spatially, delving into critical aspects such as the existence, uniqueness, and positivity of solutions, as well as
the existence and stability of endemic and disease-free equilibria, contingent upon the threshold value of the basic reproduction
number, R0. It has been demonstrated that when R0 < 1, the global asymptotic stability of the disease-free equilibrium has been
conclusively established. Conversely, for R0 > 1, the endemic equilibrium has been firmly established as locally stable within
the autonomous system. Furthermore, the results have been extended to non-autonomous systems, showcasing the uniform
stability of any arbitrary equilibrium, irrespective of the value of R0. Additionally, a comprehensive sensitivity analysis of R0
has been conducted, employing PRCC and the local sensitivity index to unravel the intricate dynamics influenced by individual
parameters. It has been determined that a 1% increase in the treatment rate σh would result in a 0.442% reduction in R0. The
theoretical findings have been rigorously validated through numerical simulations, which corroborate the conclusions drawn
from the qualitative analysis, notably emphasizing the profound impact of various control measures. These findings underscore
the efficacy of Mass Drug Administration (MDA) as a control strategy not only during the initial stages of transmission but
also throughout the transmission process. However, it has been elucidated through numerical simulations that relying solely
on MDA becomes inadequate when the reinfection rate escalates. Consequently, it becomes imperative to advocate for the
adoption of additional control measures by individuals, such as avoiding contact with contaminated water through activities
like wading and swimming, in addition to implementing improved sanitation and securing access to clean water. Furthermore,
the combined implementation of mass drug administration (MDA) and targeted human interventions has been identified as a
potent approach, substantially diminishing the prevalence of infection and aligning with the targets set by the World Health
Organization. This holistic strategy not only addresses the immediate challenges posed by schistosomiasis but also lays the
groundwork for sustainable long-term management of the disease. In our future research, we plan to explore the optimization
of intervention strategies by considering socioeconomic factors, geographical variations, and the evolution of drug resistance.
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Furthermore, incorporating predictive modeling techniques could facilitate the development of proactive intervention strategies,
thereby enhancing the overall effectiveness of schistosomiasis control efforts.
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