
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume XX (x) (XXXX), 1 – 15

DOI : 10.15672/hujms.xx

Research Article

On products of idempotents and nilpotents

Hongying Chen1, Juan Huang2, Tai Keun Kwak∗3
1Department of Mathematics, Pusan National University, Busan 46241, Korea

2 Department of Mathematics, Yanbian University, Yanji 133002, China and Department of
Mathematics, Pusan National University, Busan 46241, Korea

3Division of Liberal Arts and Sciences, Daejin University, Pocheon 11159, Korea

Abstract
This article studies the ring structure arising from products of idempotents and nilpotents.
Thus the argument is concerned essentially with the one-sided IQNN property of rings.
We first prove that if the 2 by 2 full matrix ring over a principal ideal domain F of
characteristic zero is right IQNN then F contains infinitely many non-integer rational
numbers; and that the concepts of right IQNN and right quasi-Abelian are independent
of each other. We next introduce a ring property, called right IAN, as a generalization
of both right IQNN and right quasi-Abelian; and provide several kinds of methods to
construct right IAN rings. In the procedure, we also show that the right IQNN and right
IAN do not go up to polynomial rings.
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1. Prerequisites
In ring theory we often encounter with products of idempotents and nilpotents. This

occurs, for example, in the study of representing an element as a sum of an idempotent and
a nilpotent element (or a unit), which is a prominent area of recent ring theory (see [1, 3,
13]). Especially this article concerns the structure of rings which stems from representing
a product ea by a product bf , where e, f are idempotents and a, b are nilpotents in a
given ring. The results obtained here may provide useful information to the study of
representing elements by idempotents and nilpotents.

Throughout this article, every ring is an associative ring with identity unless otherwise
stated. Let R be a ring. I(R) is used to denote the set of all idempotents of R, and
I(R)′ = I(R)\{0, 1}. We use U(R), N(R), and N∗(R) to denote the group of all units,
the set of all nilpotent elements, and upper nilradical (i.e., the sum of all nil ideals) of R,
respectively. It is well-known that N∗(R) ⊆ N(R). A nilpotent element is also called a
nilpotent for simplicity. Denote the n by n (n ≥ 2) full (resp., upper triangular) matrix
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ring over R by Matn(R) (resp., Tn(R)). Write Dn(R) = {(aij) ∈ Tn(R) | a11 = · · · = ann},
In means the identity matrix in Matn(R) and use Eij for the matrix with (i, j)-entry 1
and zeros elsewhere. Z (Zn) and Q denote the ring of integers (modulo n) and the field
of rational numbers, respectively. For m, n ∈ Z, gcd(m, n) means the greatest common
divisor of m, n. The characteristic of R is denoted by ch(R).

Recall that R is called a reduced ring if it has no nonzero nilpotents, i.e., N(R) = 0. A
ring is called Abelian if every idempotent is central. Reduced rings are obviously Abelian.
Following [2], a ring R is called right (resp., left) quasi-Abelian provided that either I(R)′

is empty, or else for any (e, a) ∈ I(R)′ × R (resp., (a, e) ∈ R × I(R)′) there exists (b, f) ∈
R × I(R)′ (resp., (f, b) ∈ I(R)′ × R) such that ea = bf (resp., ae = fb). A ring R is called
quasi-Abelian if it is both right and left quasi-Abelian. Abelian rings are clearly quasi-
Abelian, but not conversely by [2, Example 1.4]. It is easy to check that if R is a ring with
I(R)′ nonempty then R is right quasi-Abelian if and only if for any e ∈ I(R)′ and a ∈ R,
there exists f ∈ I(R)′ such that ea = eaf ([2, Remark 1.3]). Following [11, Definition
1.2], a ring R is said to be right idempotent-quasi-normalizing on nilpotents (simply, right
IQNN) provided that I(R)′ is empty, or else for every pair (e, a) ∈ I(R)′ × N(R) there
exists (b, f) ∈ N(R)×I(R)′ such that ea = bf . A left IQNN ring is defined symmetrically.
A ring is called IQNN if it is both right and left IQNN. Abelian rings are clearly IQNN
but not conversely as in [11].

In Section 2, we prove that the principal ideal domain F with ch(F ) = 0 contains
infinitely many non-integer rational numbers when Mat2(F ) is a right IQNN ring, and
and the domain H such that K[x] ⊆ H ⊆ K(x), where K(x) is the quotient field of the
polynomial ring K[x] over a field K, contains infinitely many non-polynomial fractions
when Mat2(H) is a right IQNN ring (Theorem 2.4). In Section 3, we define the concept of
a right (left) IAN ring (Definition 3.1) which unifies both the quasi-Abelian ring property
and the IQNN ring property, and then study under what conditions these three concepts
are interrelated (Proposition 3.9). In addition, it is shown that (i) R is reduced with
I(R) = {0, 1} if and only if Tn(R) for n ≥ 2 is IAN (Proposition 3.10); (ii) if Dn(R) for
n ≥ 2 is a right IAN ring, then so is R (Proposition 3.14(2)); (iii) some useful examples of
right IAN rings are also provided, including the Dorroh extension (Proposition 3.16) and
polynomial rings (Remark 3.18).

2. Remarks on right IQNN rings
We first observe the IQNN property of Mat2(F ) over a commutative domain F , showing

that the concepts of right IQNN and right quasi-Abelian are independent of each other.
We need the following information essentially for our purpose.

Lemma 2.1. Let F be a commutative domain and R = Mat2(F ). Then the following
assertions hold.

(1) I(R)′ is
{E1, E2, E3, E4, E5, E6, E7}

where for t ̸= 0, u ̸= 0

E1 =
(

1 0
0 0

)
, E2 =

(
0 0
0 1

)
, E3 =

(
1 t
0 0

)
, E4 =

(
1 0
u 0

)
, E5 =

(
0 t
0 1

)
, E6 =

(
0 0
u 1

)
,

and
E7 =

(
s t
u 1 − s

)
for s /∈ {0, 1} and s(1 − s) = tu;

and N(R) is the union of two sets{
B1 =

(
0 0
0 0

)
, B2 =

(
0 t
0 0

)
, B3 =

(
0 0
u 0

)
| t ̸= 0, u ̸= 0

}
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and {
B4 =

(
a b
c −a

)
| a ̸= 0, b ̸= 0, c ̸= 0, and a2 = −bc

}
.

(2) If E7B4 ̸= 0 then every entry of E7B4 is nonzero, and this result also holds for the
cases of B4E7, E4B4, E5B4, B4E3 and B4E6.

(3)(i) Let F = Z and p, q be any nonzero integers. If C =
(

0 p
0 q

)
∈ R is such that

C = EA for some E ∈ I(R)′ and A ∈ N(R), then there exist E′ ∈ I(R)′ and B ∈ N(R)
such that EA = BE′, in fact EA is B4E2 or B4E5.

(ii) Let F = Z and p, q be any nonzero integers such that p ̸= 1. If C =
(

q 0
p 0

)
∈ R is

such that C = EA for some E ∈ I(R)′ and A ∈ N(R), then there exist E′ ∈ I(R)′ and
B ∈ N(R) such that EA = BE′.

Proof. (1) It follows from [11, Lemma 2.3(2, 3)].

(2) Let K be the quotient field of F . Consider E7 =
(

s t
u 1 − s

)
∈ I(R)′ and B4 =(

a b
c −a

)
∈ N(R) in (1), where s /∈ {0, 1}, s(1−s) = tu (then t, u ̸= 0) and a ̸= 0, a2 = −bc

(then b ̸= 0, c ̸= 0). Then we have

E7B4 =
(

sa + tc sb − ta
ua + (1 − s)c ub − (1 − s)a

)
and B4E7 =

(
as + bu at + b(1 − s)
cs − au ct − a(1 − s)

)
.

From the relations s(1 − s) = tu and a2 = −bc, we obtain that sb − ta = a−1(sab − ta2) =
a−1(sab+tbc) = b

a(sa+tc), ua+(1−s)c = s−1(sua+s(1−s)c) = s−1(sua+tuc) = u
s (sa+tc)

and ub − (1 − s)a = (as)−1(asub − a2s(1 − s)) = (as)−1(asub + bctu) = bu
as(sa + tc); and

that at + b(1 − s) = s−1(sat + bs(1 − s)) = s−1(sat + btu) = t
s(as + bu), cs − au =

a−1(acs−a2u) = a−1(acs+bcu) = c
a(as+bu) and ct−a(1−s) = (as)−1(asct−a2s(1−s)) =

(as)−1(asct + bctu) = ct
as(as + bu), from which we see

E7B4 =
(

sa + tc b
a(sa + tc)

u
s (sa + tc) bu

as(sa + tc)

)
and B4E7 =

(
as + bu t

s(as + bu)
c
a(as + bu) ct

as(as + bu)

)
in Mat2(K).

Next consider E4 =
(

1 0
u 0

)
, E5 =

(
0 t
0 1

)
∈ I(R)′ and B4 =

(
a b
c −a

)
∈ N(R) in (1),

where a ̸= 0, a2 = −bc (then b ̸= 0, c ̸= 0). Then

E4B4 =
(

a b
ua ub

)
=
(

a −a
c a

ua −ua
c a

)
and E5B4 =

(
tc −ta
c −a

)
=
(

− ta
b a −ta

−a
b a −a

)
.

In addition, for E3 =
(

1 t
0 0

)
, E6 =

(
0 0
u 1

)
∈ I(R)′, we have

B4E3 =
(

a ta
c tc

)
=
(

a ta
−a

b a − ta
b a

)
and B4E6 =

(
ub b

−ua −a

)
=
(

−ua
c a −a

c a
−ua −a

)
,

as desired.
(3)(i) By (2), we have the cases that A = B2 =

(
0 v
0 0

)
∈ N(R), and E is E7 =(

p′ m
q′ 1 − p′

)
∈ I(R)′ (where p′(1 − p′) = q′m ̸= 0) or E4 =

(
1 0
u 0

)
∈ I(R)′; that is, EA

is
(

0 p′v
0 q′v

)
with p = p′v and q = q′v, or

(
0 v
0 uv

)
with p = v and q = uv.

Case 1. When p divides q.
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We have

BE′ =
(

−q p

− q2

p q

)(
0 0
0 1

)
=
(

0 p
0 q

)
= EA,

noting B =
(

−q p

− q2

p q

)
∈ N(R) and E′ =

(
0 0
0 1

)
∈ I(R)′.

Case 2. When q divides p.
We have (

p −p2

q

q −p

)(
0 1 + p

q

0 1

)
=
(

0 p
0 q

)
= EA,

noting B =
(

p −p2

q

q −p

)
∈ N(R) and E′ =

(
0 1 + p

q

0 1

)
∈ I(R)′.

Case 3. When p and q do not divide each other, and gcd(p, q) = 1.
Note that this case arises from E7B2 with B2 = E12 or B2 = −E12. It suffices to

consider the case of B2 = E12, i.e., v = 1. Then p = p′ and q = q′ (hence p(1 − p) = qm).
Evidently |p|, |q| ≥ 2.

Let p = pu1
1 · · · p

uf

f and q = qv1
1 · · · q

vg
g (ui, vj ≥ 1) be the prime number decompositions

of p, q respectively, where pi’s and qj ’s are distinct. Then, from the hypothesis that
gcd(p, q) = 1 and p(1 − p) = qm, we see that every q

kj

j divides 1 − p and, consequently, q
divides 1 − p.

Assume EA = B4E2. Then(
0 p
0 q

)
=
(

a b
c −a

)(
0 0
0 1

)
=
(

0 b
0 −a

)
and so b = p, a = −q. But a2 = −bc implies q2 = −pc, entailing that every pi divides q, a
contradiction. So we must have EA = B4E5. Then(

0 p
0 q

)
=
(

a b
c −a

)(
0 t
0 1

)
=
(

0 at + b
0 ct − a

)
and so at + b = p, ct − a = q. But a2 = −bc implies

p = at + b = a−1(a2t + ab) = a−1(−bct + ab) = −b

a
(ct − a) = −b

a
q

and
q = ct − a = a−1(act − a2) = a−1(act + bc) = c

a
(at + b) = c

a
p,

entailing pa = −qb and qa = pc. Then a, c ∈ qZ and a, b ∈ pZ by the distinctness of pi’s
and qj ’s; hence we can let a = qh1ph2a1 with a1 ∈ Z and h1, h2 ≥ 1. It then follows that
b = −p

q a = −qh1−1ph2+1a1 and c = q
pa = qh1+1ph2−1a1.

From the relation at + b = p, we have

t = p − b

a
= p + qh1−1ph2+1a1

qh1ph2a1
= 1 + qh1−1ph2a1

qh1ph2−1a1
.

Here if h1 ≥ 2 (resp., h2 ≥ 2) then q (resp., p) divides 1, a contradiction. Thus h1 = h2 = 1
and we obtain that a = qpa1, b = −p2a1, c = q2a1. Then

t = p − b

a
= p + p2a1

qpa1
= 1 + pa1

qa1
,

entailing a1(qt−p) = 1 and a1 = 1
qt−p . Since a1 ∈ Z, we must have |a1| = 1 and |qt−p| = 1.

Letting a1 = −1, we obtain that a = −qp, b = p2, c = −q2 and t = −1−p
q .
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Since q divides 1 − p as above, we have that t = −1−p
q ∈ Z and

BE′ =
(

−qp p2

−q2 qp

)(0 −1−p
q

0 1

)
=
(

0 p
0 q

)
= EA,

noting B =
(

−qp p2

−q2 qp

)
∈ N(R) and E′ =

(
0 −1−p

q

0 1

)
∈ I(R)′.

(ii) Then 0 ̸= A =
(

0 0
s 0

)
∈ N(R), and E is

(
1 − p′ q′

m′ p′

)
∈ I(R)′ (where p′(1 − p′) =

q′m′ ̸= 0 (hence p′ ̸= 0, 1)) or
(

0 t
0 1

)
∈ I(R)′ (where t ̸= 0); that is, EA =

(
q′s 0
p′s 0

)
with

p = p′s and q = q′s, or EA =
(

st 0
s 0

)
with p = s and q = st. We apply the argument of

(i).
Case 1. When p divides q.
We have

BE′ =
(

q − q2

p

p −q

)(
1 0
0 0

)
=
(

q 0
p 0

)
= EA,

noting B =
(

q − q2

p

p −q

)
∈ N(R) and E′ =

(
1 0
0 0

)
∈ I(R)′.

Case 2. When q divides p.
We have

BE′ =
(

−p q

−p2

q p

)(
1 0

1 + p
q 0

)
=
(

q 0
p 0

)
= EA,

noting B =
(

−p q

−p2

q p

)
∈ N(R) and E′ =

(
1 0

1 + p
q 0

)
∈ I(R)′.

Case 3. When p and q do not divide each other, and gcd(p, q) = 1.
Note |p|, |q| ≥ 2, and we have

BE′ =
(

qp −q2

p2 −qp

)( 1 0
−1−p

q 0

)
=
(

q 0
p 0

)
= EA,

noting B =
(

qp −q2

p2 −qp

)
∈ N(R) and E′ =

(
1 0

−1−p
q 0

)
∈ I(R)′. □

In [11], it is proved that Mat2(K) is IQNN over a field K, and a question “Is Mat2(F )
also right IQNN when F is a commutative domain?" is raised. The following example
answers this question negatively.

Example 2.2. We follow the notation of Lemma 2.1(1).
(1) Let R = Mat2(Z) and we will show that R is not right IQNN. Note that Z is

a principal ideal domain. Let p be any prime integer. Take E =
(

1 0
p2 0

)
and A =(

p p2

−1 −p

)
∈ R. Then E ∈ I(R)′ and A ∈ N(R) such that EA =

(
p p2

p3 p4

)
. Assume on

the contrary that there exist B ∈ N(R) and E′ ∈ I(R)′ such that EA = BE′. By Lemma
2.1(2), BE′ must be one of the following cases:

B4E3, B4E6, or B4E7.
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(Case 1) EA = B4E3 =
(

a b
c −a

)(
1 t
0 0

)
=
(

a ta
−a

b a − ta
b a

)
by Lemma 2.1(2), where

a2 = −bc ̸= 0 and t ̸= 0. Then a = p and p3 = −a
b a = −p2

b . So b = −1
p ∈ Z, a

contradiction.

(Case 2) EA = B4E6 =
(

a b
c −a

)(
0 0
u 1

)
=
(

−ua
c a −a

c a
−ua −a

)
by Lemma 2.1(2), where

a2 = −bc ̸= 0 and u ̸= 0. Then a = −p4 and p3 = −ua = up4, entailing u = 1
p ∈ Z, a

contradiction.

(Case 3) EA = B4E7 =
(

a b
c −a

)(
s t
u 1 − s

)
=
(

as + bu at + b(1 − s)
cs − au ct − a(1 − s)

)
=
(

α t
sα

c
aα ct

asα

)
by Lemma 2.1(2), where α = as + bu, a2 = −bc ̸= 0 and s(1 − s) = tu ̸= 0. Then α = p,
c
aα = p3 and t

sα = p2, from which we see c = p2a and t = ps. From a2 = −bc, we obtain
a2 = −p2ab and a = −p2b.

Now, by the results above, we have

p2 = at + b(1 − s) = (−p2b)(ps) + b(1 − s) = −p3bs + b(1 − s) = b(1 − (1 + p3)s),

from which we see b = p2

1−(1+p3)s ∈ Z. Since s ̸= 0, 1 and |1 − (1 + p3)s| > p2, there cannot
exist b, s ∈ Z that satisfy the equation b = p2

1−(1+p3)s .
Consequently EA /∈ N(R) × I(R)′, and therefore R is not right IQNN.
(2) Let R = Mat2(F ), where F = Z[

√
3 i] = {a + b

√
3 i | a, b ∈ Z} and i2 = −1. Note

that Z[
√

3 i] is not a unique factorization domain (hence it is not a principal ideal domain)
as can be seen by the two distinct factorizations into irreducible elements: 4 = 2 · 2 =
(1+

√
3 i)(1−

√
3 i). We claim that R is not right IQNN. We will use Lemma 2.1(1) freely.

Let E =
(

1 0
0 0

)
∈ I(R)′ and A =

(
2 1 +

√
3 i

−(1 −
√

3 i) −2

)
∈ N(R). Then EA =(

2 1 +
√

3 i
0 0

)
. Assume on the contrary that there exist B ∈ N(R) and E′ ∈ I(R)′ such

that EA = BE′. Then BE′ must be one of the following:

B2E6, B2E7, B4E3, B4E6, and B4E7.

(Case 1) EA =
(

0 t
0 0

)(
0 0
u 1

)
= B2E6 implies tu = 2 and t = 1 +

√
3 i, entailing

u = 1
2 − 1

2
√

3 i /∈ Z[
√

3 i].

(Case 2) EA =
(

0 t
0 0

)(
s′ t′

u′ 1 − s′

)
= B2E7 (where s′ /∈ {0, 1} and s′(1 − s′) = t′u′)

implies tu′ = 2 and t(1−s′) = 1+
√

3 i. Since 2 is irreducible and the only units of Z[
√

3 i]
are 1, −1, we have that

(t, u′) ∈ {(1, 2), (−1, −2), (2, 1), (−2, −1)}.

Letting (t, u′) = (1, 2), we have s′ = −
√

3 i and 2t′ = t′u′ = s′(1−s′) = (−
√

3 i)(1+
√

3 i) =
3−

√
3 i. From this, we obtain t′ = 3

2 − −1
2

√
3 i /∈ Z[

√
3 i]. When (t, u′) = (−1, −2), we have

t′ = −1
2 + 3

2
√

3 i /∈ Z[
√

3 i]. When (t, u′) = (2, 1), (−2, −1), we have s′, 1 − s′ /∈ Z[
√

3 i].
In any case, we have a contradiction.

(Case 3) EA =
(

a b
c −a

)(
1 t
0 0

)
= B4E3 implies c = 0, a contradiction.

(Case 4) EA =
(

a b
c −a

)(
0 0
u 1

)
= B4E6 implies a = 0, a contradiction.
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(Case 5) EA =
(

a b
c −a

)(
s t
u 1 − s

)
= B4E7 (where a ̸= 0, b ̸= 0, c ̸= 0, a2 = −bc and

s /∈ {0, 1}, s(1 − s) = tu) gives the following equations: as + bu = 2 and cs − au = 0.
Multiplying cs − au = 0 by a, we obtain

0 = cas − a2u = cas + bcu = c(as + bu)
from the relation a2 = −bc, from which we see as + bu = 0 since c ̸= 0, contrary to
as + bu = 2.

Summarizing, EA cannot be contained in the set {BE′ | B ∈ N(R) and E′ ∈ I(R)′},
and therefore R is not right IQNN.

By help of Example 2.2, we can show that the concepts of right IQNN and right quasi-
Abelian are independent of each other.

Example 2.3. (1) Let R = Mat2(Z). Then R is quasi-Abelian by [8, Theorem 3.4], but
R cannot be right IQNN by Example 2.2.

(2) Recall that for a domain R and n ≥ 2, Tn(R) is right quasi-Abelian if and only if
R is a division ring if and only if Tn(R) is left quasi-Abelian, by [2, Theorem 2.1] and
its proof. Let F be a domain that is not a division ring. Then T2(F ) is right IQNN by
[11, Theorem 3.1], but it is not right quasi-Abelian by the preceding argument.

It is evident that if R is a right quasi-Abelian ring with N∗(R) = N(R) then R is right
IQNN. Note that R = Matn(A) cannot satisfy the condition N∗(R) = N(R), where n ≥ 2
and A is any ring. The degree of a polynomial f is denoted by deg(f).

Theorem 2.4. Let K be a field, K(x) be the quotient field of K[x], and H be a domain
with K[x] ⊆ H ⊆ K(x). If Mat2(H) is right IQNN then H contains infinitely many
non-polynomial fractions.

Proof. Let p be any non-constant polynomial that is prime in K[x], and q ∈ K[x] be any

polynomial satisfying deg(q) > deg(p). Let R = Mat2(H) and consider E =
(

1 0
q 0

)
∈

I(R)′ and A =
(

p p2

−1 −p

)
∈ N(R). Then E ∈ I(R)′ and A ∈ N(R) such that EA =(

p p2

pq p2q

)
.

Suppose that R is right IQNN. Then there exist B ∈ N(R) and E′ ∈ I(R)′ such that
EA = BE′. By Lemma 2.1(2), BE′ must be one of the following cases:

B4E3, B4E6, or B4E7.

(Case 1) EA = B4E3 =
(

a b
c −a

)(
1 t
0 0

)
=
(

a ta
−a

b a − ta
b a

)
by Lemma 2.1(2), where

a2 = −bc ̸= 0 and t ̸= 0. Then a = p and pq = −a
b a = −p2

b , from which H contains
b = −p

q ∈ K(x)\K[x] since deg(q) > deg(p).

(Case 2) EA = B4E6 =
(

a b
c −a

)(
0 0
u 1

)
=
(

−ua
c a −a

c a
−ua −a

)
by Lemma 2.1(2), where

a2 = −bc ̸= 0 and u ̸= 0. Then a = −p2q and pq = −ua = up2q, entailing that H contains
u = 1

p ∈ K(x)\K[x].

(Case 3) EA = B4E7 =
(

a b
c −a

)(
s t
u 1 − s

)
=
(

as + bu at + b(1 − s)
cs − au ct − a(1 − s)

)
=
(

α t
sα

c
aα ct

asα

)
by Lemma 2.1(2), where α = as + bu, a2 = −bc ̸= 0 and s(1 − s) = tu ̸= 0. Then α = p,
c
aα = pq and t

sα = p2, from which we see c = qa and t = ps. From a2 = −bc, we obtain
a2 = −qab and a = −qb.
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Now, by the results above, we have
p2 = at + b(1 − s) = (−qb)(ps) + b(1 − s) = b(1 − (1 + qp)s),

and so b = p2

1−(1+pq)s . Since s ̸= 0, 1 and |1 − (1 + pq)s| = |(1 + p2 + pm)s − 1| ≥
p2 + (pm + 1)|s| − 1 ≥ p2 + pm > p2, H contains b = p2

1−(1+pq)s ∈ K(x)\K[x] since
deg(1 − (1 + pq)s) > deg(p2).

Summarizing, H contains a non-polynomial fraction in any case and, consequently, H
contains infinitely many non-polynomial fractions since p and q are taken arbitrarily. □

The Abelian property goes up to polynomials by [10, Lemma 8], but the right quasi-
Abelian property does not by [2, Proposition 2.5(1)]. Theorem 2.4 is applicable to show
that the right IQNN property is not preserved by polynomial rings. In fact, Mat2(Q)
is IQNN by [11, Theorem 2.4] but Mat2(Q)[x] is not right IQNN, since Mat2(Q)[x] ∼=
Mat2(Q[x]) and, by Theorem 2.4, Mat2(Q[x]) is not right IQNN.

3. Right IAN rings
As noted earlier, if R is a ring with I(R)′ nonempty then R is right quasi-Abelian if

and only if for any e ∈ I(R)′ and a ∈ R, there exists f ∈ I(R)′ such that ea = eaf .
Motivated by the arguments of the preceding section, we next consider a class of rings
which generalizes both the quasi-Abelian property and the IQNN property, and will show
that this new class is quite large.

Definition 3.1. A ring R is said to be right (resp., left) idempotent-attaching on nilpotents
(simply, right (resp., left) IAN) provided that I(R)′ is empty, or else for every pair (e, a) ∈
I(R)′ × N(R) (resp., (a, e) ∈ N(R) × I(R)′ ) there exists f ∈ I(R)′ such that ea = eaf
(resp., ae = fae). A ring is IAN if it is both right and left IAN.

The following shows that the IAN property is not right-left symmetric.

Example 3.2. We recall the rings in [11, Example 2.6]. Let K = Z2 be a field and
A = K⟨a, b⟩ be the free algebra with noncommuting indeterminates a, b over K.

Consider the ideal I of A generated by ba, a2 − a, b2 and set R1 = A/I. Identify the
elements in A with their images in R1 for simplicity. By the argument of [11, Exam-
ple 2.6(1)], N(R1) = {αab + βb | α, β ∈ K} and I(R1)′ = {γ + a + δab | γ, δ ∈ K}, from
which we see that

N(R1) ⊋ I(R1)′N(R1) = {0, ab, ab + b} = I(R1)′N(R1)I(R1)′

and
N(R1)I(R1)′ = {0, ab, b, ab + b} = N(R1) ⊋ I(R1)′N(R1)I(R1)′.

Thus R is right IAN but not left IAN.

We see below a condition under which the IAN property is right-left symmetric. Let
R be a ring. Recall that an involution on R is a function ∗ : R → R which satisfies the
properties that (x + y)∗ = x∗ + y∗, (xy)∗ = y∗x∗, 1∗ = 1, and (x∗)∗ = x for all x, y ∈ R.
It is well-known that 0∗ = 0, a∗ ∈ N(R) for a ∈ N(R), and e∗ ∈ I(R)′ for e ∈ I(R)′. We
use these facts without referring.

Proposition 3.3. Let R be a ring with an involution ∗. Then R is right IAN if and only
if R is left IAN.

Proof. Let R be right IAN and a ∈ N(R), e ∈ I(R)′. Then a∗ ∈ N(R) and e∗ ∈ I(R)′.
So there exists f ∈ I(R)′ such that e∗a∗ = e∗a∗f . Thus we have

ae = ((ae)∗)∗ = (e∗a∗)∗ = (e∗a∗f)∗ = f∗ae.

But f∗ ∈ I(R)′, so R is left IAN. The converse can be proved analogously. □
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Following [7], a ring R is said to be von Neumann regular if for each a ∈ R there exists
b ∈ R such that a = aba. A a ring R is called unit-regular [5] if for each a ∈ R there exists
a unit u ∈ R such that a = aua. Every unit-regular ring is clearly regular.
Proposition 3.4. (1) Every von Neumann regular ring is IAN.

(2) Every semisimple Artinian ring is IAN.
Proof. (1) Let R be a von Neumann regular ring. Suppose I(R)′ ̸= ∅, and e ∈ I(R)′,
a ∈ N(R). If ea = 0 then ea = 0 = eae. So assume ea ̸= 0. Since R is von Neumann
regular, ea = eabea for some b ∈ R. Then bea ∈ I(R), and ea ̸= 0 implies bea ̸= 0.
Moreover bea ∈ I(R)′ because a ∈ N(R). So R is right IAN. The proof of left IAN is done
symmetrically.

(2) It directly follows from (1). □
The following, which shows that the class of right IAN rings is not closed under subrings,

is an example of practical application of the preceding proposition.
Remark 3.5. (1) The Abelian property passes the extension Dn(A) (n ≥ 2) of a ring A,
i.e., A is Abelian if and only if so is Dn(A), by [9, Lemma 2]. But this is not valid for the
right IAN property as follows. Let R = D2(R0) where R0 = T2(Q). Then R0 is both quasi-
Abelian and IQNN (hence IAN) by [2, Theorem 2.1] and [11, Theorem 3.1], respectively.

Consider E =


(

1 0
0 0

) (
0 1
0 0

)
(

0 0
0 0

) (
1 0
0 0

)
 ∈ I(R)′ and A =


(

0 1
0 0

) (
1 0
0 1

)
(

0 0
0 0

) (
0 1
0 0

)
 ∈ N(R). Then

EA =


(

0 1
0 0

) (
1 0
0 0

)
(

0 0
0 0

) (
0 1
0 0

)
. Assume that there exists F =

(
f c
0 f

)
∈ I(R)′ such that

EA = EAF , where f = (fij), c = (cij) ∈ R. Since F ∈ I(R)′, either f =
(

1 f12
0 0

)
or

f =
(

0 f12
0 1

)
. But

(
0 1
0 0

)
f =

(
0 1
0 0

)
implies f =

(
0 f12
0 1

)
, hence we have

(
0 1
0 0

)
c +(

1 0
0 0

)
f =

(
0 c22 + f12
0 0

)
=
(

1 0
0 0

)
, which is impossible. Thus R is not right IAN.

(2) Mat4(Q) is von Neumann regular by [7, Lemma 1.6], hence Mat4(Q) is IAN by
Proposition 3.4(1). The ring R in (1) is a subring of Mat4(Q). So the class of right IAN
rings is not closed under subrings.

Recall that a ring R is called directly finite (or Dedekind finite) if ab = 1 implies ba = 1
for a, b ∈ R. Right quasi-Abelian rings are directly finite by [2, Theorem 1.9(1)], hence
so are Abelian rings. Thus one may naturally ask whether right IAN rings are directly
finite. However the answer is negative by part (1) of the next example, providing another
example of an IAN ring which is not that one-sided quasi-Abelian. Furthermore, part (2)
shows that the converse of Proposition 3.4(1) need not hold.
Example 3.6. (1) Consider the column finite infinite matrix ring over a field, R say. Then
R is von Neumann regular but not directly finite. So R is IAN by Proposition 3.4(1), but
neither right nor left quasi-Abelian because one-sided quasi-Abelian rings are directly finite
by [2, Theorem 1.9(1)]. This also illuminates that von Neumann regular rings need not
right quasi-Abelian, even if unit-regular rings are quasi-Abelian by [2, Theorem 1.9(3)].

(2) There exists an IAN ring that is not von Neumann regular. Let K be a field and
A = K⟨a, b⟩ be the free algebra with noncommuting indeterminates a, b over K. Let K
be the ideal of A generated by ab, ba, a2 − a, b2; and set R = A/K. Identify the elements
in A with their images in R for simplicity. Then a2 = a and ab = ba = b2 = 0 in R.
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Every element in R is expressed by k0 +k1a+k2b with k1, k2, k3 ∈ K. So, we can obtain
N(R) = {kb | k ∈ K} and I(R)′ = {a}.

This yields I(R)′N(R) = {0} = N(R)I(R)′, so R is IAN.
Now we claim that R is not von Neumann regular. Consider b ∈ R and assume on the

contrary that b = bcb for some c = k0 + k1a + k2b ∈ R with ki ∈ K. But bcb = 0 because
ab = ba = b2 = 0, contrary to b ̸= 0. Thus R is not von Neumann regular.

We will provide methods to construct right IAN rings from given right IAN rings. We
use

∏
γ∈Γ Rγ (resp.,

⊕
γ∈Γ Rγ) to denote the direct product (resp., direct sum) of rings

Rγ .

Proposition 3.7. (1) Let {Ri | i = 1, . . . , n} be a finite family of rings, and R =
∏n

i=1 Ri.
Suppose that Ri is right IAN for all i. Then R is right IAN.

(2) Let {Rγ | γ ∈ Γ} be an infinite family of rings, and R be the subring of
∏

γ∈Γ Rγ

generated by
⊕

γ∈Γ Rγ and 1∏
γ∈Γ Rγ

. Suppose that Rγ is right IAN for all γ ∈ Γ. Then
R is right IAN.

Proof. (1) Note that N(R) =
∏n

i=1 N(Ri) and let Γ = {1, . . . , n}. Let Ri be right IAN
for all i. Consider e = (ei) ∈ I(R)′ and r = (ri) ∈ N(R). Then ri ∈ N(Ri) for all i. If e is
central then er = ere. So assume that e is not central. Then there exists α ∈ Γ such that
eα ∈ I(Rα)′. Since Rα is right IAN, there exists gα ∈ I(Rα)′ such that eαrα = eαrαgα.
Let f = (fi) ∈ I(R) be such that fα = gα and fβ = 1β for all β ∈ Γ\{α}. Then er = erf
because eαrα = eαrαfα and eβrβ = eβrβ1β = eβrβfβ. Clearly f ∈ I(R)′. Therefore R is
right IAN. The proof of (2) can be done by adapting the proof of (1) slightly. □

By applying the proof of Proposition 3.7(1), we can also prove that for {Rγ | γ ∈ Γ},
an infinite family of rings, and the subring R of

∏
γ∈Γ Rγ generated by

⊕
γ∈Γ Rγ and

1∏
γ∈Γ Rγ

, if Rγ is right quasi-Abelian for all γ ∈ Γ then R is right quasi-Abelian.

Both right quasi-Abelian rings and right IQNN rings are right IAN clearly, but Example
2.3 shows that each of the preceding implications is proper. The following example shows
that there exists a right IAN ring that is neither right IQNN nor right quasi-Abelian.

Example 3.8. Let R1 = Mat2(Z) and R2 be the column finite infinite matrix ring over a
field. Then R1 is quasi-Abelian by [8, Theorem 3.4], R2 is IAN by Propositions 3.4(1), and
R2 is neither right nor left quasi-Abelian by Example 3.6(1). Set next R = R1 ×R2. Then
R is right IAN by Proposition 3.7(1). But R is not right quasi-Abelian by [2, Theorem
2.2(2)].

We claim that R is not right IQNN, either. Let e = (e1, ba + (1 − ba)a), c = (c1, b(1 −

ba)) ∈ R where e1 =
(

1 0
q 0

)
, c1 =

(
p p2

−1 −p

)
(as in the proof of Theorem 2.4) and

a = E12 + E23 + · · · + Ei,i+1 + · · · , b = E21 + E32 + · · · + Ei+1,i + · · · . Then e ∈ I(R)′ and

c ∈ N(R) with ec = (
(

p p2

pq p2q

)
, (1 − ba) + b(1 − ba)). Note that

(
p p2

pq p2q

)
/∈ N(R1) and

(1 − ba) + b(1 − ba) ∈ I(R2)′.
Assume on the contrary that there exist d = (d1, d2) ∈ N(R) and f = (f1, f2) ∈ I(R)′

such that ec = df . Since d1f1 = e1c1 /∈ N(R1) and d2f2 = (1 − ba) + b(1 − ba) /∈ N(R2),
(d1, d2) ∈ N(R) implies that f1 ̸= 1R1 and f2 ̸= 1R2 . This forces f1 ∈ I(R1)′ and
f2 ∈ I(R2)′. But there cannot exist d1 ∈ N(R1) and f1 ∈ I(R1)′ such that e1c1 = d1f1, by
the proof of Theorem 2.4. This contradicts the assumption, and therefore R is not right
IQNN.

The arguments above give us the following diagram.
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right quasi-Abelian ring
↗ ↘

• Abelian ring right IAN ring
↘ ↗

right IQNN ring

We see some conditions under which the concepts above are equivalent.
Proposition 3.9. Let R be a ring with I(R)′ nonempty.

(1) Let R be a ring with I(R)′N(R) ⊆ N(R) (resp., N(R)I(R)′ ⊆ N(R)). Then R is
right (resp., left) IAN if and only if R is right (resp., left) IQNN.

(2) Let R be a ring with N∗(R) = N(R). Then we have the following.
(i) R is right (resp., left) IQNN if and only if R is right (resp., left) IAN.
(ii) If R is right quasi-Abelian, then R is right IQNN.

Proof. (1) Let (e, a) ∈ I(R)′×N(R). If R is right IAN, then ea = eaf for some f ∈ I(R)′.
But ea ∈ N(R) by hypothesis, and so R is right IQNN. The converse is obvious. The proof
for the left case is similar.

(2) (i) follows from (1), and (ii) follows from (i). □
The following characterizes the right IAN property of the upper triangular matrix rings

under a specific condition.
Proposition 3.10. Let R be a ring and n ≥ 2.

(1) If R is reduced then Tn(R) is IAN.
(2) Let I(R) = {0, 1}. If Tn(R) is right IAN then R is reduced.

Proof. Write T = Tn(R). (1) This comes from [11, Theorem 3.1].
(2) The proof is almost the same as one of [11, Theorem 3.4], but we write it for

completeness. Let T be right IAN. Assume on the contrary that a2 = 0 for some 0 ̸= a ∈ R.
Consider two matrices E =

∑n−1
i=1 Eii and A = a(

∑n−1
i=1 Eii)+E(n−1)n in T . Then E ∈ I(T )′

and A ∈ N(T ) such that EA = A. Since T is right IAN, there exists F = (fij) ∈ I(T )′

such that EA = EAF = AF . Then fii ∈ I(R) such that afii = a for all i = 1, 2, . . . , n−1.
Since I(R) = {0, 1} and a ̸= 0, fii = 1 for all i = 1, 2, . . . , n − 1. But F ∈ I(T )′, and
F 2 = F implies that fnn = 0 and fij = 0 for all i, j ∈ {1, 2, . . . , n − 1} with i ̸= j;
that is, F = E11 + E22 + · · · + E(n−1)(n−1) + f1nE1n + f2nE2n + · · · + f(n−1)nE(n−1)n.
Thus 1 = af(n−1)n, and so we get 0 ̸= a = a2f(n−1)n = 0, a contradiction. Hence R is
reduced. □

|S| denotes the cardinality of a given set S.
Corollary 3.11. Suppose that R is a noncommutative right IAN ring of minimal cardi-
nality. Then R is isomorphic to T2(Z2).
Proof. If |R| has a cube free factorization then R is commutative by [6, Theorem]. So
|R| ≥ 23 because R is noncommutative. If |R| = 23 then R is isomorphic to T2(Z2) by
[6, Proposition]. But T2(Z2) is right IAN by Proposition 3.10, from which we see that R
is isomorphic to T2(Z2) because R is a right IAN ring of minimal cardinality. □

Notice that, in Proposition 3.10(2), the condition “I(R) = {0, 1}" is not superfluous by
help of [11, Example 3.6], and that the condition “R is reduced" in Proposition 3.10(1)
cannot be weakened to the condition “R is Abelian" as follows.
Example 3.12. Consider the non-reduced commutative ring R = Z4 with I(R) = {0, 1}.
Let T = T2(R) and use the argument of [11, Example 3.2(2)]. Then

I(T )′ =
{(

0 b
0 1

)
,

(
1 b
0 0

)
| b ∈ Z4

}
and N(T ) =

{(
x y
0 z

)
| x, z ∈ {0, 2}, y ∈ Z4

}
.
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For E =
(

1 3
0 0

)
∈ I(T )′ and A =

(
2 1
0 0

)
∈ N(T ), assume that there exists F ∈ I(T )′

such that EA =
(

2 1
0 0

)
= EAF . Then F =

(
1 b
0 0

)
, and it implies 2b = 1, which is

impossible. Thus T is not right IAN.

The following shows an application of Theorem 3.10.

Remark 3.13. A ring R is called π-regular if for each a ∈ R there exist a positive integer
n and b ∈ R such that an = anban. Every von Neumann regular ring is clearly π-regular.
The ring below shows that the condition “von Neumann regular" in Proposition 3.4(1)
cannot be weakened by the condition “π-regular".

Let R0 = D2(F ) where F is a field. Then I(R0) = {0, 1} clearly. Thus R = T2(R0)
is not right IAN by Theorem 3.10(2), since R0 is not reduced. Now we claim that R is

π-regular. Let A =
(

A1 A3
0 A2

)
∈ R with A1 =

(
a b
0 a

)
and A2 =

(
c d
0 c

)
. We handle each

computation case by case.

(Case 1) If a ̸= 0 and c ̸= 0 then A ∈ U(R).

(Case 2) If a ̸= 0 and c = 0 then A1 ∈ U(R0) and A2
2 = 0, and so A2 = A2

(
A−2

1 0
0 0

)
A2.

(Case 3) If a = 0 and c ̸= 0 then A2
1 = 0 and A2 ∈ U(R0), and so A2 = A2

(
0 0
0 A−2

2

)
A2.

(Case 4) If a = 0 and c = 0 then A4 = 0.
Therefore R is π-regular.

Recall that an ideal I of a ring R is said to be idempotent-lifting if idempotents in R/I
can be lifted to R. Nil ideals are idempotent-lifting by [12, Proposition 3.6.1].

Proposition 3.14. For a ring R with I(R)′ nonempty, we have the following results.
(1) If R is right IAN and I is a nil ideal of R, then so is R/I.
(2) If Dn(R) for n ≥ 2 is a right IAN ring, then so is R.

Proof. (1) Suppose that R is right IAN and I is a nil ideal of R. Let r̄ = r + I with
r ∈ R and R̄ = R/I. Since I is nil, I is idempotent-lifting by [12, Proposition 3.6.1] and
N(R̄) = {ā | a ∈ N(R)}. Note I ∩ I(R)′ = ∅.

Let x̄ ∈ I(R̄)′ and ā ∈ N(R̄). Then a ∈ N(R), and there exists e ∈ I(R) such that
ē = x̄. Here x̄ ∈ I(R̄)′ implies e ∈ I(R)′. Since R is right IAN, ea = eaf for some
f ∈ I(R)′. Then f ∈ I(R)′ implies f̄ ̸= 0̄ because I ∩ I(R)′ = ∅. Furthermore, f̄ ̸= 1̄
(otherwise, 0 ̸= 1 − f ∈ I, contrary to I ∩ I(R)′ = ∅). Thus f̄ ∈ I(R̄)′ such that
x̄ā = ēā = ea = eaf = ēāf̄ , showing that R̄ is right IAN.

(2) It comes from (1) and the fact that Dn(R)/I ∼= R for the nilpotent ideal
I = {(aij) ∈ Dn(R) | aii = 0 for all i}

of Dn(R). □
Example 3.15. (1) The condition “I is nil" in Proposition 3.14(1) cannot be dropped
as we see in the following. Let R = T2(Z). Then R is right IAN by Theorem 3.10(1).
Consider the ideal I = T2(4Z) of R. Then R/I ∼= T2(Z4), and I(Z4) = {0, 1}. But T2(Z4)
is not right IAN by Theorem 3.10(2) (because Z4 is not reduced) or Example 3.12. Note
that I is not nil. This example also shows that the class of right IAN rings is not closed
under homomorphic images.

(2) The converse of Proposition 3.14(1) need not hold. Consider the nil ideal I = Z4E12
of R = T2(Z4). Then R/I ∼= Z4 ⊕ Z4 that is Abelian, but R is not right IAN as above.
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(3) The converse of Proposition 3.14(2) need not hold by Remark 3.5(1).

Let A be an algebra (with or without identity) over a commutative ring S. Due to
Dorroh [4], the Dorroh extension of A by S is the Abelian group A×S with multiplication
given by (r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2) for ri ∈ A and si ∈ S. We use A ×dor S
to denote the Dorroh extension of A by S.

Proposition 3.16. Let S be a commutative ring and A be an algebra with identity over
S. Write D = A ×dor S.

(1) Let S be a reduced ring. Then N(D) = (N(A), 0) and D is IAN.
(2) Let ch(A) = 2. Then we have the following.

(i) I(D) = I(A) × I(S) and I(A) = {e + s | (e, s) ∈ I(D)}.
(ii) I(D)′ = {(e1, 0), (e2, 1) | e1, e2 ∈ I(R)\{0}} when I(S)′ = ∅.

(iii) I(D)′ = {(e1, 0), (e2, 1), (e3, s) | e1, e2 ∈ I(R)\{0}, e3 ∈ I(R), s ∈ I(S)′} when I(S)′ ̸=
∅.

(3) Let ch(A) = 2 and suppose that whenever e ∈ I(A)′ and a ∈ N(A), ea = ae′ for
some e′ ∈ I(A)′. Then D is right IAN.

Proof. Note that s ∈ S is identified with s · 1A ∈ A, and so A = {a + s | (a, s) ∈ D}.
(1) Evidently N(D) = (N(A), 0). Let E = (e, s) ∈ I(D)′ and B = (b, 0) ∈ N(D). Then

EB = (eb+sb, 0) = (eb+sb, 0)(1, 0) = EB(1, 0) and BE = (be+sb, 0) = (1, 0)(be+sb, 0) =
(1, 0)BE, noting (1, 0) ∈ I(D)′. Thus D is IAN.

(2) If (a, s) ∈ I(D) then (a, s)2 = (r, s) implies a2 = a, s2 = s because ch(A) = 2, and
hence a ∈ I(A) and s ∈ I(S), showing that I(D) ⊆ I(A) × I(S). Conversely, if (e, t) ∈
I(A) × I(S) then (e, t)2 = (e, t) and so I(A) × I(S) ⊆ I(D). Thus I(D) = I(A) × I(S).

Next, if e ∈ I(A) then (e, 0) ∈ I(D), noting e = e + 0 with 0 ∈ S. Conversely, if
(e, s) ∈ I(D) then e ∈ I(A) and s ∈ I(S) as above, from which we see e + s ∈ I(A). This
gives (i), from which we obtain (ii) and (iii) since 1D = (0, 1).

(3) Let (e, f) ∈ I(D)′ and (a, m) ∈ N(D). Then since ch(A) = 2, e ∈ I(A) by (2). If e
is central in A then (e, f) is central in D. So assume that e is not central. Then e ∈ I(A)′.
Since (a, m) ∈ N(D), a + m ∈ N(A) (in fact, (a, m)k = 0 for some k ≥ 1 implies that
(a + m)k = 0 and mk = 0). By hypothesis, e(a + m) = (a + m)e′ for some e′ ∈ I(A)′.
Note that (e′, f) ∈ I(D)′ by (2). Now we have
(e, f)(a, m) = (e, f)(a, m) = (e(a + m) + fa, fm) = ((a + m)e′ + fa, mf) = (a, m)(e′, f)
and this yields that

(e, f)(a, m) = (e, f)((e, f)(a, m)) = (e, f)((a, m)(e′, f)) = ((e, f)(a, m))(e′, f).
Therefore D is right IAN. □
Let B be a commutative domain with ch(B) = 2 and A = T2(B). Let S = Z2 and

set D = A ×dor S. Then D is an example of Proposition 3.16(3). In fact, I(A)′ = {e =(
1 a
0 0

)
, f =

(
0 b
0 1

)
| a, b ∈ B} and N(A) =

(
0 B
0 0

)
; and for every c ∈ N(A), ec = cE22

and fc = 0 = cE11.
Next we show that the right IAN property does not go up to polynomial rings.

Example 3.17. Let R0 = Mat2(Z). Then R0 is quasi-Abelian (hence IAN) by [8, The-
orem 3.4]. Next set R = R0[x] and note R ∼= Mat2(Z[x]). We will show that Mat2(Z[x])
is not right IAN.

Consider E =
(

1 0
1 0

)
and A =

(
2x −22

x2 −2x

)
in Mat2(Z[x]). Then E ∈ I(Mat2(Z[x])′

and A ∈ N(Mat2(Z[x])) with EA =
(

2x −22

2x −22

)
. Assume on the contrary that EA =
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EAF for some F ∈ I(Mat2(Z[x]))′. Note that EAF is one of EAE3, EAE6, EAE7 by
Lemma2.1(2), where we follow the notation of Lemma 2.1(1).

(Case 1) From EA = EAE3 =
(

2x −22

2x −22

)(
1 t
0 0

)
=
(

2x 2tx
2x 2tx

)
, we obtain −22 = 2tx

and t = − e
x ∈ Z[x], a contradiction.

(Case 2) From EA = EAE6 =
(

2x −22

2x −22

)(
0 0
u 1

)
=
(

−22u −22

−22u −22

)
, we obtain 2x =

−22u and u = −x
2 ∈ Z[x], a contradiction.

(Case 3) From EA = EAE7 =
(

2x −22

2x −22

)(
s t
u 1 − s

)
=
(

2xs − 22u 2xt − 22(1 − s)
2xs − 22u 2xt − 22(1 − s)

)
,

we obtain that 2xs − 22u = 2x and 2xt − 22(1 − s) = −22, entailing 2x(1 − s) = −22u and
xt = −2s, and hence −22u = 2x + x2t. Letting u = a0 + a1x + · · · + anxn with ai ∈ Z,
we get −22(a0 + a1x + · · · + anxn) = 2x + x2t and this yields a0 = 0, −22a1 = 2. Hence
a1 = −1

2 , a contradiction.
Summarizing, such F cannot exist in I(Mat2(Z[x]))′ in any case and, consequently,

Mat2(Z[x]) is not right IAN. Thus R is also not right IAN, as desired.

The following provides simple information for polynomial rings to be right IAN.

Remark 3.18. (1) Let R be a ring and suppose that R[x] is right IAN. We claim that R
is also right IAN. Let e ∈ I(R)′ and a ∈ N(R) be such that ea ̸= 0. Since R[x] is right
IAN, there exists f(x) =

∑m
i=0 fix

i ∈ I(R[x])′ such that ea = eaf(x). Then 0 ̸= f0 ∈ I(R)
and ea = eaf0. Here if f0 = 1 then f(x) = 1 by a simple computation (see the proof of
[10, Lemma 8] for details). Thus f0 ∈ I(R)′ and R is right IAN.

(2) Let R be a reduced ring with I(R) = {0, 1}. We claim that Tn(R)[x] is an IAN ring
for every n ≥ 2. Since R is reduced and I(R) = {0, 1}, we have that I(R[x]) = {0, 1} by
[10, Lemma 8]. Then Tn(R[x]) is IAN by Theorem 3.10(1) since R[x] is reduced. Moreover
since Tn(R)[x] ∼= Tn(R[x]), we have that Tn(R)[x] is IAN.

Acknowledgment. The authors thank the referee deeply for very careful reading of
the manuscript and valuable suggestions in depth that improved the paper by much.

References
[1] H. Chen, Exchange rings with artinian primitive factors, Algebra Represent. Theory.

2, 201–207, 1999.
[2] E.-K. Cho, T.K. Kwak, Y. Lee, Z. Piao and Y. Seo, A structure of noncentral idem-

potents, Bull. Korean Math. Soc. 55, 25–40, 2018.
[3] A.J. Diesl, Nil clean rings, J. Algebra 383, 197–211, 2013.
[4] J.L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38, 85–88,

1932.
[5] G. Ehrlich, Unit-regular rings, Portugal Math. 27, 209–212, 1968.
[6] K.E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math.

Monthly 75, 512–514, 1966.
[7] K.R. Goodearl, Von Neumann Regular Rings, London/UK, Pitman Publishing Lim-

ited, 1979.
[8] J. Huang, T.K. Kwak, Y. Lee and Z. Piao, Structure of idempotents in polynomial

rings and matrix rings, Bull. Korean Math. Soc. 60, 1321–1334, 2023.
[9] C. Huh, H.K. Kim and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl.

Algebra 167, 37–52, 2002.
[10] N.K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223, 477–488,

2000.



On products of idempotents and nilpotents 15

[11] T.K. Kwak, S.I. Lee and Y. Lee, Quasi-normality of idempotents on nilpotents,Hacet.
J. Math. Stat. 48, 1744–1760, 2019.

[12] J. Lambek, Lectures on Rings and Modules, Waltham/USA, Blaisdell Publishing
Company, 1966.

[13] W.K. Nicholson and Y. Zhou, Clean general rings, J. Algebra 291, 297–311, 2005.


