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Abstract: Examination of spaces in the field of functional analysis, especially revealing their 

topological and algebraic structures, is very important in terms of forming a basis for studies in the 

field of pure mathematics and applied sciences. In this context, topology, which was widely used only 

in the field of geometry at the beginning, gave a solid foundation to the fields in which it was used by 

causing methodological changes in all branches of mathematics over time. Frechet-Coordinate space 

(FK space) is a concept that has a functional role in fields such as topological sequence spaces and 

summability. Topological vector spaces are described as linear spaces defined by a topology that 

provides continuous vector space operations. If this vector space has a complete metric space 

structure, it is called Frechet space, and if it has a topology with continuous coordinate functions, it is 

called Frechet-Coordinate (FK) space. The theory of FK spaces has gained more importance in recent 

years and has found applications in various fields thanks to the efforts of many researchers. If the 

topology of an FK space can be derived from the norm, this space is called as a BK space. In this 

study, 𝑐𝑠0
𝜆(𝛥), 𝑐𝑠𝜆(𝛥), and 𝑏𝑠𝜆(𝛥) difference sequence spaces are defined, and it is revealed that 

these spaces are BK spaces. In addition, considering the topological properties of these spaces, some 

spaces that are isomorphic and their duals have been determined. 

 

 

Yeni Tip Topolojik Dizi Uzaylarının Karakterizasyonu ve Bazı Özellikleri 
 

 

Anahtar 

Kelimeler 

BK uzayları, 

Fark dizi 

uzayları, 

Frechet-

koordinat 

uzayları, 

Schauder 

bazı, 

Topolojik 

dizi 

uzayları. 

Öz: Fonksiyonel analiz alanında uzayların incelenmesi, özellikle topolojik ve cebirsel yapılarının 

ortaya konulması, pür matematik ve uygulamalı bilimler alanındaki çalışmalara temel oluşturması 

açısından oldukça önemlidir. Bu bağlamda başlangıçta sadece geometri alanında yaygın olarak 

kullanılan topoloji, zamanla matematiğin tüm dallarında metodolojik değişikliklere neden olarak 

kullanıldığı alanlara sağlam bir temel kazandırmıştır. Frechet-Koordinat uzayı (FK uzayı), topolojik 

dizi uzayları ve toplanabilirlik gibi alanlarda işlevsel rolü olan bir kavramdır. Topolojik vektör 

uzayları, sürekli vektör uzayı işlemlerini sağlayan bir topoloji tarafından tanımlanan lineer uzaylar 

olarak tanımlanır. Bu vektör uzayı tam bir metrik uzay yapısına sahipse Frechet uzayı, sürekli 

koordinat fonksiyonlarına sahip bir topolojiye sahipse Frechet-Koordinat (FK) uzayı olarak 

adlandırılır. FK uzayları teorisi, son yıllarda daha da önem kazanmış ve birçok araştırmacının çabaları 

sayesinde çeşitli alanlarda uygulama alanı bulmuştur. Bir FK uzayının topolojisi normdan 

türetilebiliyorsa, bu uzaya BK uzayı denir. Bu çalışmada ise 𝑐𝑠0
𝜆(𝛥), 𝑐𝑠𝜆(𝛥)  ve 𝑏𝑠𝜆(𝛥)  fark dizi 

uzayları tanımlanmıştır ve bu uzayların BK uzayları olduğu sonucuna ulaşılmıştır. Ayrıca bu uzayların 

topolojik özellikleri dikkate alınarak bu uzaylara izomorf olan bazı uzaylar ve bu uzayların dualleri 

belirlenmiştir. 
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1. INTRODUCTION AND PRELIMINARIES 

 

The main motivation point in the studies conducted in 

functional analysis and topology is to obtain the 

expansions and generalizations of spaces, to reveal their 

various properties and finally to form a new space. 

Researchers working in this field have used various 

methods to serve this purpose. By using the domain of 

an infinite triangular matrices, which is one of these 

methods, on standard sequence spaces, many new 

sequence spaces have been created by using Cesaro 

matrix and Nörlund matrix (see the papers [1], [2]). 

Sequence spaces are one of the subjects that have been 

the focus of attention of many researchers due to the 

topological and algebraic structure they contain. Much 

researches have been made on the basis of the properties 

of these sequence spaces and their contribution to the 

field. Especially in studies in the field of summability 

theory, topological sequence spaces and difference 

sequence spaces have contributed to obtaining functional 

results. 

The concept of difference sequence space has been 

introduced by Kızmaz in [3] as follows: 

Suppose that 𝑋 = 𝑙∞, 𝑐, 𝑐0. Then,  

𝑋(Δ) = {𝑥 = (𝑥𝑘) ∈ 𝑤: Δ𝑥 = (Δ𝑥𝑘) = (𝑥𝑘 − 𝑥𝑘+1)
∈ 𝑋} 

will be called the difference sequence space. 

In [5], this sequence spaces have been extended by Et as 

following: 

𝑋(Δ2) = {𝑥 = (𝑥𝑘) ∈ 𝑤: Δ
2𝑥 = (Δ2𝑥𝑘) = (𝑥𝑘 − 𝑥𝑘+1)

∈ 𝑋}. 
By a similar methodology, the authors have given 

modification of these spaces for the integer 𝑚 as: 

𝑋(Δ𝑚) = {𝑥 = (𝑥𝑘) ∈ 𝑤: Δ
𝑚𝑥 ∈ 𝑋} 

where Δ0𝑥 = (𝑥𝑘Δ
𝑚𝑥 = (Δ𝑚𝑥𝑘 − Δ

𝑚𝑥𝑘+1) and Δ𝑚𝑥𝑘 =

∑𝑚𝑣=0 (−1)
𝑣 (
𝑚
𝑣
) 𝑥𝑘+𝑣 . 

On all of these efforts, another motivated generalization 

has been established by Et and Esi (see [7]) as follows: 

Suppose that 𝑣 = (𝑣𝑘)  is a sequence for complex 

numbers. 

𝑋(Δ𝑣
𝑚) = {𝑥 = (𝑥𝑘) ∈ 𝑤: Δ𝑣

𝑚𝑥 ∈ 𝑋} 
where 𝑚, 𝑘 ∈ ℕ 

Δ𝑣
0𝑥 = 𝑣𝑘𝑥𝑘Δ𝑣

𝑚𝑥 = (Δ𝑣
𝑚𝑥𝑘 − Δ𝑣

𝑚𝑥𝑘+1) 
and 

Δ𝑣
𝑚𝑥𝑘 =∑

𝑚

𝑖=0

(−1)𝑖 (
𝑚
𝑖
) 𝑣𝑘+𝑖𝑥𝑘+𝑖 . 

Sequence spaces are an important concept in 

mathematical analysis and play a methodologically 

functional key role in the work of many researchers. 

Although it was known as a branch of topology used 

only in geometry in the beginning, it has become a 

structure that contributes to all pure and applied sciences 

in time. The theory of FK spaces is a structure used in 

sequence spaces, summability, and matrix 

transformations as a topological subject. Topological 

vector spaces are linear spaces with a topology that 

enables continuous vector space operations. If this vector 

space has a complete metric space structure, it is called 

Frechet space, and if it also has a topology with 

continuous coordinate functions, it is called Frechet-

Coordinate space (FK space). 

By 𝜔, we mean the vector space containing all real- or 

complex-valued sequences that are topologized through 

coordinatewise convergence. Any vector subspace of 𝜔 

is said to be a sequence space. A sequence space 𝑋 with 

a locally convex topology 𝜏 is referred to as a 𝐾-space if 

the inclusion mapping (𝑋, 𝜏) → 𝜔 is continuous when 𝜔 

has the topology of coordinatewise convergence. 

Additionally, if 𝜏  is complete and metrizable, (𝑋, 𝜏)  is 

referred to be an 𝐹𝐾-space. A 𝐵𝐾-space is an 𝐹𝐾-space 

with a normable topology. For further results on these 

concepts, see the papers [4-14]. 

2. MATRIX TRANSFORMATIONS 

 

In this section, we will present some lemmas related to 

the matrix transformations by introducing matrix 

transformations in the sequence spaces. 

Definition 1 ([13]) Suppose that 𝐴 = (𝑎𝑛𝑘) is a infinite 

matrix with real or complex terms and 𝑥 = (𝑥𝑘)  is a 

sequence. For 𝑛 ∈ 𝑁,  the following sequences are 

convergent 

(𝐴𝑥)𝑛 =∑𝑎𝑛𝑘

∞

𝑘=0

𝑥𝑘 

then, the sequence ((𝐴𝑥)𝑛) is called the transformation 

sequence obtained by the matrix 𝐴 of the sequence (𝑥𝑘). 
In the sequel of the paper, every negative index term 

such as 𝜆−1 and 𝑥−1 will be assumed to be equal to zero. 

Lemma 2.1 ([16])  𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠0: 𝑙1) if and only if 

the following condition holds:  

               sup
𝑁,𝐾∈Ϝ

|∑𝑛∈𝑁 ∑𝑘∈𝐾 (𝑎𝑛𝑘 − 𝑎𝑛,𝑘+1)| < ∞. (2.1) 

Lemma 2.2  ([16])   𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠: 𝑙1) if and only if 

the following condition holds:  

            sup
𝑁,𝐾∈Ϝ

|∑𝑛∈𝑁 ∑𝑘∈𝐾 (𝑎𝑛𝑘 − 𝑎𝑛,𝑘−1)| < ∞. (2.2) 

Lemma 2.3 ([16])  𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑠: 𝑙1) if and only if 

the following condition holds: ∀𝑘 ∈ ℕ  

              lim
𝑘
𝑎𝑛𝑘 = 0. (2.3) 

Lemma 2.4  ([16]) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠0: 𝑐) if and only if 

the condition  

             sup
𝑛
∑𝑘 |𝑎𝑛𝑘 − 𝑎𝑛,𝑘+1| < ∞ (2.4) 

will be held and for ∀𝑘 ∈ ℕ, the following limit will be 

existed 

              lim
𝑘
(𝑎𝑛𝑘 − 𝑎𝑛,𝑘+1). (2.5) 

Lemma 2.5 ([16])  𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠: 𝑐) if and only if the 

following condition holds: ∀𝑘 ∈ ℕ  

             lim
𝑘
𝑎𝑛𝑘  is exist. (2.6) 

Lemma 2.6 ([16])  𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑠: 𝑐) if and only if 

the following condition holds: ∀𝑘 ∈ ℕ 

              ∑𝑘 |𝑎𝑛𝑘 − 𝑎𝑛,𝑘−1| is convergent. (2.7) 

Lemma 2.7  ([16]) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠0: 𝑙∞) if and only if 

the condition that is given in (2.4) is satisfied.  

Lemma 2.8  ([16]) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠0: 𝑙∞) if and only if  

             sup
                 𝑛

∑𝑘 |𝑎𝑛𝑘 − 𝑎𝑛,𝑘−1| < ∞. (2.8) 

Lemma 2.9  ([16]) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑠: 𝑙∞) if and only if 

the conditions of (2.3) and (2.4) are satisfied.  

Lemma 2.10  ([16]) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠0: 𝑙𝑝) if and only if  

            sup
𝑘
∑𝑛 |∑𝑘∈𝐾 (𝑎𝑛𝑘 − 𝑎𝑛,𝑘+1)|

𝑝
< ∞ (2.9) 

for 1 < 𝑝 < ∞. 
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Lemma 2.11  ([16]) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑐𝑠: 𝑙𝑝) if and only if  

               sup
𝑘
∑𝑛 |∑𝑘∈𝐾 (𝑎𝑛𝑘 − 𝑎𝑛,𝑘−1)|

𝑝
< ∞ (2.10) 

for 1 < 𝑝 < ∞. 

Lemma 2.12  𝐴 = (𝑎𝑛𝑘) ∈ (𝑏𝑠: 𝑙𝑝)  if and only if the 

conditions of (2.3) and (2.9) are satisfied. 

3. DIFFERENCE SEQUENCE SPACES 

 

In this section, we will define the sequence spaces 

𝑐𝑠0
𝜆(Δ), 𝑐𝑠𝜆(Δ)  and 𝑏𝑠𝜆(Δ) , then we will show that 

these spaces are BK-spaces. In addition, we will 

calculate the Schauder bases of 𝑐𝑠0
𝜆(Δ), 𝑐𝑠𝜆(Δ)  spaces 

and obtain the duals of 𝑐𝑠0
𝜆(Δ), 𝑐𝑠𝜆(Δ) and 𝑏𝑠𝜆(Δ). 

Definition 2 ([3]) Suppose that 𝛥𝑥 = (𝑎𝑘 − 𝑎𝑘+1)  for 

any sequence 𝑥 ∈ 𝑤.  Assume that 𝑋  is any sequnce 

space, the difference sequence spaces can be defined as:  

                  Δ𝑥 = {𝑥 = (𝑥𝑘) ∈ 𝑤: Δ𝑥 ∈ 𝑋}. 
In [17], Mursaleen ve Noman have defined the spaces 

𝑐0
𝜆 , 𝑐𝜆  and 𝑙∞

𝜆  by using the domain of ∧= (𝜆𝑛𝑘)  for 

∀𝑛, 𝑘 ∈ 𝑁 

                 𝜆𝑛𝑘 = {
𝜆𝑘−𝜆𝑘−1

𝜆𝑛
, 0 ⩽ 𝑘 ⩽ 𝑛,

0, 𝑘 > 𝑛,
 (3.1) 

 on 𝑐0, 𝑐  and 𝑙∞  where 𝜆 = (𝜆𝑘)  is an increasing 

sequence with the following assumptions:  

0 < 𝜆0 < 𝜆1 < 𝜆2… , ve lim
𝑘→∞

𝜆𝑘 = ∞ 

Then, in [4], the authors established the following 

sequence spaces as follows: 

𝑐𝑠𝜆 = {𝑥 = (𝑥𝑘) ∈ 𝑤: lim
𝑚→∞

∑

𝑚

𝑛=0

1

𝜆𝑛
∑

𝑛

𝑘=0

(𝜆𝑘

− 𝜆𝑘−1)𝑥𝑘 , 𝑒𝑥𝑖𝑠𝑡}, 

𝑐𝑠0
𝜆 = {𝑥 = (𝑥𝑘) ∈ 𝑤: lim

𝑚→∞
∑

𝑚

𝑛=0

1

𝜆𝑛
∑

𝑛

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1)𝑥𝑘

= 0}, 

𝑏𝑠𝜆 = {𝑥 = (𝑥𝑘) ∈ 𝑤: sup
𝑚
|∑

𝑚

𝑛=0

1

𝜆𝑛
∑

𝑛

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1)𝑥𝑘|

< ∞} 

by using the domain of  ∧= (𝜆𝑛𝑘) on 𝑐𝑠, 𝑐𝑠0 and 𝑏𝑠. 
Now, it is time to define the difference sequence spaces 

of 𝑐𝑠0
𝜆(Δ), 𝑐𝑠𝜆(Δ)  and 𝑏𝑠𝜆(Δ)  by using the sequence 

spaces 𝑐𝑠0
𝜆 , 𝑐𝑠𝜆 and 𝑏𝑠𝜆 with matrix transformations: 

𝑐𝑠0
𝜆(Δ) = {𝑥 = (𝑥𝑘): lim

𝑚→∞
∑

𝑚

𝑛=0

1

𝜆𝑛
∑

𝑛

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1)(𝑥𝑘

− 𝑥𝑘−1) = 0}, 

𝑐𝑠𝜆(Δ) = {𝑥 = (𝑥𝑘): lim
𝑚→∞

∑

𝑚

𝑛=0

1

𝜆𝑛
∑

𝑛

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1)(𝑥𝑘

− 𝑥𝑘−1) exist}, 

𝑏𝑠𝜆(Δ) = {𝑥 = (𝑥𝑘): sup
𝑚
|∑

𝑚

𝑛=0

1

𝜆𝑛
∑

𝑛

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1)(𝑥𝑘

− 𝑥𝑘−1)| < ∞}. 

Let us define a new matrix as for 𝑛, 𝑘 ∈ 𝑁: 

𝜆𝑛𝑘 =

{
 
 

 
 
(𝜆𝑘 − 𝜆𝑘−1) − (𝜆𝑘+1 − 𝜆𝑘)

𝜆𝑛
, 𝑘 < 𝑛,

𝜆𝑛 − 𝜆𝑛−1
𝜆𝑛

, 𝑘 = 𝑛,

0, 𝑘 > 𝑛

 

that is obtained by multiplying ∧= (𝜆𝑛𝑘) and difference 

matrix. 

Here, we can consider these new difference sequence 

spaces as the domain of ∧= (𝜆𝑛𝑘)  on the sequence 

spaces, namely: 𝑐𝑠0
𝜆(Δ) = (𝑐𝑠0)∧ , 𝑐𝑠

𝜆(Δ) = (𝑐𝑠)∧ ,

𝑏𝑠𝜆(Δ) = (𝑏𝑠)∧. 

(⊼ 𝑥)𝑛 =
1

𝜆𝑛
∑𝑛𝑘=0 (𝜆𝑘 − 𝜆𝑘−1)(𝑥𝑘 − 𝑥𝑘−1). (3.2) 

Theorem 3.1 The spaces 𝑐𝑠0
𝜆(𝛥), 𝑐𝑠𝜆(𝛥)  and 𝑏𝑠𝜆(𝛥) 

are linear spaces. Besides, the spaces are 𝐵𝐾 −spaces 

with the following norm:  

‖𝑥‖𝑏𝑠𝜆(Δ) = ‖⊼ 𝑥‖𝑏𝑠 = sup
𝑚
|∑

𝑚

𝑛=0

(⊼ 𝑥)𝑛|. 

 Proof. Firstly, we will prove that 𝑐𝑠0
𝜆(Δ)  is a linear 

space. For 𝑥, 𝑦 ∈ 𝑐𝑠0
𝜆(Δ) and 𝛼, 𝛽 scalars, we will show 

that 𝛼𝑥 + 𝛽𝑦 ∈ 𝑐𝑠0
𝜆(Δ). Let us consider  

𝑐𝑠0
𝜆(Δ) = {𝑥 = (𝑥𝑘) ∈ 𝑤:⊼ 𝑥 ∈ 𝑐𝑠0} 

and ⊼ 𝑥, ⊼ 𝑦 ∈ 𝑐𝑠0. For all 𝑚 ∈ 𝑁, we can write  

∑

𝑚

𝑛=0

⊼𝑛 (𝛼𝑥 + 𝛽𝑦) 

               = ∑

𝑚

𝑛=0

1

𝜆𝑛
∑

𝑛

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1)(𝛼𝑥𝑘 + 𝛽𝑦𝑘 − 𝛼𝑥𝑘−1

− 𝛽𝑦𝑘−1) 

= 𝛼∑

𝑚

𝑛=0

1

𝜆𝑛
∑

𝑛

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1)(𝑥𝑘 − 𝑥𝑘−1) 

+𝛽∑

𝑚

𝑛=0

1

𝜆𝑛
∑

𝑛

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1)(𝑦𝑘 − 𝑦𝑘−1) 

= 𝛼∑

𝑚

𝑛=0

⊼𝑛 (𝑥) + 𝛽∑

𝑚

𝑛=0

⊼𝑛 (𝑦). 

If we set 𝑚 → ∞ in the last step, we have  

lim
𝑚→∞

∑

𝑚

𝑛=0

⊼𝑛 (𝛼𝑥 + 𝛽𝑦) = 0. 

Then, we obtain ⊼ (𝛼𝑥 + 𝛽𝑦) ∈ 𝑐𝑠0, namely 𝛼𝑥 + 𝛽𝑦 ∈

𝑐𝑠0
𝜆(Δ). This implies that 𝑐𝑠0

𝜆(Δ) is alinear space. By a 

similar argument, one can show that 𝑐𝑠𝜆(Δ) is a linear 

space. We omit the details. It is clear to show that 

𝑏𝑠𝜆(Δ) is a linear space as following:  

sup
𝑚
|∑

𝑚

𝑛=0

⊼𝑛 (𝛼𝑥 + 𝛽𝑦)| 
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= sup
𝑚
|∑

𝑚

𝑛=0

1

𝜆𝑛
∑

𝑛

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1)(𝛼𝑥𝑘 + 𝛽𝑦𝑘 − 𝛼𝑥𝑘−1

− 𝛽𝑦𝑘−1)| 

⩽ |𝛼|sup
𝑚
|∑

𝑚

𝑛=0

1

𝜆𝑛
∑

𝑛

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1)(𝑥𝑘 − 𝑥𝑘−1)| 

+|𝛽|sup
𝑚
|∑

𝑚

𝑛=0

1

𝜆𝑛
∑

𝑛

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1)(𝑦𝑘 − 𝑥𝑦𝑘−1)| 

= |𝛼|sup
𝑚
|∑

𝑚

𝑛=0

⊼𝑛 (𝑥)| + |𝛽|sup
𝑚
|∑

𝑚

𝑛=0

⊼𝑛 (𝑦)| 

for 𝑥, 𝑦 ∈ 𝑏𝑠𝜆(Δ)  and 𝛼, 𝛽  scalars. Then, from the 

definition of 𝑏𝑠𝜆(Δ) , we can write ⊼ 𝑥,⊼ 𝑦 ∈ 𝑏𝑠 . 

Therefore, for ⊼ 𝑥,⊼ 𝑦 ∈ 𝑏𝑠, we provide 

sup
𝑚
|∑

𝑚

𝑛=0

⊼𝑛 (𝛼𝑥 + 𝛽𝑦)| < ∞. 

This completes the proof. Also, one can say that these 

spaces are 𝐵𝐾 −spaces. 

Theorem 3.2 The sequence spaces 𝑐𝑠0
𝜆(𝛥), 𝑐𝑠𝜆(𝛥) and 

𝑏𝑠𝜆(𝛥)  are isometrically isomorphic to the sequence 

spaces 𝑐𝑠0, 𝑐𝑠  and 𝑏𝑠,  respectively, namely 𝑐𝑠0
𝜆(𝛥) ≅

𝑐𝑠0, 𝑐𝑠
𝜆(𝛥) ≅ 𝑐𝑠 and 𝑏𝑠𝜆(𝛥) ≅ 𝑏𝑠. 

Proof. Assume that 𝑋 = {𝑐𝑠, 𝑐𝑠0, 𝑏𝑠}  and 𝑋𝜆(Δ) =

{𝑐𝑠𝜆(Δ), 𝑐𝑠0
𝜆(Δ), 𝑏𝑠𝜆(Δ)}. To prove the result, we must 

show the existence of linear, injective and surjective 

mapping as:  

𝑇: 𝑋𝜆(Δ) → 𝑋 

𝑥 → 𝑇(𝑥) =⊼ (𝑥) = 𝑦. 

For 𝑥 = (𝑥𝑗), 𝑢 = (𝑢𝑗) ∈ 𝑋
𝜆(Δ)  and 𝛼, 𝛽  scalars, we 

cam write  

𝑇(𝛼𝑥 + 𝛽𝑢) =⊼ (𝛼𝑥 + 𝛽𝑢) 
= 𝛼 ⊼ (𝑥) + 𝛽 ⊼ (𝑢) 
= 𝛼𝑇(𝑥) + 𝛽𝑇(𝑢). 

Then, 𝑇 is linear. 

Let we prove that 𝑇 is injective. We must prove that if 

𝑇𝑥 = 𝜃, then 𝑥 = 𝜃. If we assume that 𝑇𝑥 = 𝜃, then we 

have 

𝑘 = 0, 𝑥0 = 0, 
𝑘 = 1, 𝑥1 = 0, 

⋮ 
𝑘 = 𝑛,  𝑥𝑛 = 0. 

This implies that 𝑥 = 𝜃. 
Let us consider 𝑦 = (𝑦𝑘) ∈ 𝑋  and the sequence 𝑥 =

(𝑥𝑘(Δ)) is defined as: 

𝑥𝑘(Δ): = ∑
𝑘
𝑗=0 ∑

𝑗
𝑖=𝑗−1 (−1)

𝑗−𝑖 𝜆𝑖

𝜆𝑗−𝜆𝑗−1
𝑦𝑖 ;  (𝑘 ∈ 𝑁). (3.3) 

Then, for ∀𝑘 ∈ 𝑁, we have 

𝑥𝑘(Δ) − 𝑥𝑘−1(Δ) = ∑

𝑘

𝑖=𝑘−1

(−1)𝑘−𝑖
𝜆𝑖

𝜆𝑘 − 𝜆𝑘−1
𝑦𝑖 . 

By using (3.2), for ∀𝑛 ∈ ℕ, we get 

(⊼ 𝑥)𝑛 =
1

𝜆𝑛
∑

𝑛

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1)(𝑥𝑘 − 𝑥𝑘−1) 

=
1

𝜆𝑛
∑

𝑛

𝑘=0

∑

𝑘

𝑖=𝑘−1

(−1)𝑘−𝑖𝜆𝑖𝑦𝑖 = 𝑦𝑛 

Therefore, we obtain ⊼ 𝑥 = 𝑦 . Since 𝑦 = (𝑦𝑘) ∈ 𝑋  we 

provide ⊼ 𝑥 ∈ 𝑋. 𝑇 is surjective. Finally, by using 

‖𝑇𝑥‖𝑏𝑠 = ‖𝑦(𝜆)‖𝑏𝑠 = ‖⊼ 𝑥‖𝑏𝑠 = ‖𝑥‖𝑏𝑠𝜆(Δ) 

we conclude that 𝑇 is a linear, bijective and surjective 

mapping.  

The Schauder basis of 𝑐𝑠0
𝜆(Δ)  ve 𝑐𝑠𝜆(Δ)  will be 

presented in the following result. 

Remark 1 Suppose that 𝛼𝑘(𝜆) = (⊼ 𝑥)𝑘 for ∀𝑘 ∈ 𝑁. Let 

us define the sequence 𝑏(𝑘)(𝜆) = {𝑏𝑛
(𝑘)(𝜆)}

𝑛=0

∞

 as 

𝑏𝑛
(𝑘)(𝜆) =

{
 
 

 
 
0, 𝑛 < 𝑘,

𝜆𝑘
𝜆𝑘 − 𝜆𝑘−1

, 𝑛 = 𝑘,

𝜆𝑘
𝜆𝑘 − 𝜆𝑘−1

−
𝜆𝑘

𝜆𝑘+1 − 𝜆
, 𝑛 > 𝑘,

 

for 𝑘 ∈ 𝑁. In this case, the sequence {𝑏(𝑘)(𝜆)}
𝑘=0

∞
 is the 

Schauder basis of the spaces 𝑐𝑠0
𝜆(Δ) and 𝑐𝑠𝜆(Δ). Thus, 

∀𝑥 ∈ 𝑐𝑠0
𝜆(Δ) or the sequence 𝑐𝑠𝜆(Δ) has a unique form 

as follows:  

𝑥 =∑

𝑘

𝑎𝑘(𝜆)𝑏
(𝑘)(𝜆). 

4. THE INCLUSION RELATIONS 

 

In this section, we will present some inclusion relations 

of the spaces 𝑐𝑠0
𝜆(Δ), 𝑐𝑠𝜆(Δ) and 𝑏𝑠𝜆(Δ). 

Theorem 4.1 The inclusion relations hold as  

𝑐𝑠0
𝜆(Δ) ⊂ 𝑐𝑠𝜆(Δ) ⊂ 𝑏𝑠𝜆(Δ). 

Proof. It is obvious that 𝑐𝑠0
𝜆(Δ) ⊂ 𝑐𝑠𝜆(Δ) ⊂ 𝑏𝑠𝜆(Δ). To 

prove the sharpness of these inclusion relations, let us 

consider the following sequence:  

𝑥𝑘 =∑

𝑘

𝑖=0

1

(𝑖+2)(𝑖+3)
𝜆𝑖 −

1

(𝑖+1)(𝑖+2)
𝜆𝑖−1

𝜆𝑖 − 𝜆𝑖−1
,        (∀𝑘 ∈ ℕ). 

For 𝑛 ∈ ℕ, we can write   

(Λ̅𝑥)𝑛 =
1

𝜆𝑛
∑

𝑛

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1)(𝑥𝑘 − 𝑥𝑘−1) 

=
1

𝜆𝑛
∑

𝑛

𝑘=0

(
1

(𝑘 + 2)(𝑘 + 3)
𝜆𝑘 −

1

(𝑘 + 1)(𝑘 + 2)
𝜆𝑘−1) 

=
1

(𝑛 + 2)(𝑛 + 3)
. 

Then, for 𝑚 ∈ ℕ, we have  

∑

𝑚

𝑛=0

(Λ̅𝑥)𝑛 =
1

2
−

1

𝑚 + 3
. 

If we set 𝑚 → ∞, we get 

∑

∞

𝑛=0

(Λ̅𝑥)𝑛 =
1

2
. 

This shows that Λ̅𝑥 ∈ 𝑐𝑠, 𝑐𝑠0 . We conclude that 

𝑐𝑠0
𝜆(Δ) ⊂ 𝑐𝑠𝜆(Δ) is sharp. 

Now, to show the sharpness of the inclusion 𝑐𝑠𝜆(Δ) ⊂
𝑏𝑠𝜆(Δ), we can write  

𝑦𝑘 =∑

𝑘

𝑖=0

(−1)𝑖 (
𝜆𝑖 + 𝜆𝑖−1
𝜆𝑖 − 𝜆𝑖−1

),        (∀𝑘 ∈ ℕ). 

For all 𝑛 ∈ ℕ, we have  
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∑

𝑚

𝑛=0

(Λ̅𝑦)𝑛 =∑

𝑚

𝑛=0

1

𝜆𝑛
∑

𝑛

𝑘=0

(−1)𝑘(𝜆𝑘 + 𝜆𝑘−1) 

=∑

𝑚

𝑛=0

(−1)𝑛. 

Then, Λ̅𝑦 ∈ 𝑏𝑠, 𝑐𝑠. This implies that 𝑐𝑠𝜆(Δ) ⊂ 𝑏𝑠𝜆(Δ) is 

sharp.  

Theorem 4.2 The inclusion 𝑐𝑠𝜆(𝛥) ⊂ 𝑐0
𝜆(𝛥) is sharp.  

Proof. Since, we know that when 𝑥 ∈ 𝑐𝑠𝜆(Δ), Λ̅𝑥 ∈ 𝑐𝑠 

therefore Λ̅𝑥 ∈ 𝑐0.  The inclusion 𝑐𝑠𝜆(Δ) ⊂ 𝑐0
𝜆(Δ)  is 

valid. 

To demonsrate the sharpness of the inclusion relation, 

we define the sequence as  

𝑥𝑘 =∑

𝑘

𝑖=0

1

𝑖 + 1
;        (𝑘 ∈ ℕ). 

Therefore, we have  

Δ𝑥 = (𝑥𝑘 − 𝑥𝑘−1) = (
1

𝑘 + 1
) ∈ 𝑐0 

and Δ𝑥 ∈ 𝑐0
𝜆. This implies that 𝑥 ∈ 𝑐0

𝜆(Δ). 
For all 𝑛 ∈ ℕ, we get 

(Λ̅𝑥)𝑛 =
1

𝜆𝑛
∑

𝑛

𝑘=0

𝜆𝑘 − 𝜆𝑘−1
𝑘 + 1

 

⩾
1

𝜆𝑛(𝑛 + 1)
∑

𝑛

𝑘=0

(𝜆𝑘 − 𝜆𝑘−1) 

=
1

𝑛 + 1
. 

Then, Λ̅𝑥 ∉ 𝑐𝑠  and so 𝑥 ∉ 𝑐𝑠𝜆(Δ) . Since 𝑥  belongs to 

𝑐0
𝜆(Δ) spaces but not to 𝑐𝑠𝜆(Δ), we can write 𝑐𝑠𝜆(Δ) ⊂

𝑐0
𝜆(Δ). 

5. DUAL SPACES 

 

In this section, we will determine the 𝛼−, 𝛽 −  and 

𝛾 − duals of the sequence spaces 𝑐𝑠0
𝜆(Δ), 𝑐𝑠𝜆(Δ)  and 

𝑏𝑠𝜆(Δ). 

Theorem 5.1 For 𝑛, 𝑘 ∈ ℕ  the matrix 𝐵𝜆 = (𝑏𝑛𝑘
𝜆 )  can 

be defined as  

𝑏𝑛𝑘
𝜆 =

{
 
 

 
 (

𝜆𝑘
𝜆𝑘 − 𝜆𝑘−1

−
𝜆𝑘

𝜆𝑘+1 − 𝜆𝑘
) 𝑎𝑛 , 𝑘 < 𝑛,

𝜆𝑛
𝜆𝑛 − 𝜆𝑛−1

𝑎𝑛 , 𝑘 = 𝑛,

0, 𝑘 > 𝑛.

 

Then, we have {𝑐𝑠0
𝜆(Δ)}

𝛼
= {𝑏𝑠𝜆(Δ)}

𝛼
= 𝑓1

𝜆  and 

{𝑐𝑠𝜆(Δ)}
𝛼
= 𝑓2

𝜆  where  

𝑓1
𝜆 = {𝑎 = (𝑎𝑛) ∈ 𝑤: sup

𝑁,𝐾∈ℱ
|∑𝑛∈𝑁 ∑𝑘∈𝐾 (𝑏𝑛𝑘

𝜆 −

𝑏𝑛,𝑘+1
𝜆 )| < ∞} (5.1) 

and  

𝑓2
𝜆 = {𝑎 = (𝑎𝑛) ∈ 𝑤: sup

𝑁,𝐾∈ℱ
|∑𝑛∈𝑁 ∑𝑘∈𝐾 (𝑏𝑛𝑘

𝜆 −

𝑏𝑛,𝑘−1
𝜆 )| < ∞}. (5.2) 

 Proof. Let 𝑎 = (𝑎𝑛) ∈ 𝑤. Then, by using  the relation 

(3.3) we have  

𝑎𝑛𝑥𝑛 =∑

𝑛

𝑘=0

∑

𝑘

𝑗=𝑘−1

(−1)𝑘−𝑗
𝜆𝑗

𝜆𝑘 − 𝜆𝑘−1
𝑎𝑛𝑦𝑗 

=∑

𝑛

𝑘=0

(
𝜆𝑘

𝜆𝑘 − 𝜆𝑘−1
𝑦𝑘 −

𝜆𝑘−1
𝜆𝑘 − 𝜆𝑘−1

𝑦𝑘−1) 𝑎𝑛 

= ∑

𝑛−1

𝑘=0

(
𝜆𝑘

𝜆𝑘 − 𝜆𝑘−1
−

𝜆𝑘
𝜆𝑘+1 − 𝜆𝑘

) 𝑦𝑘𝑎𝑛 +
𝜆𝑛

𝜆𝑛 − 𝜆𝑛−1
𝑦𝑛𝑎𝑛 

      = (𝐵𝜆𝑦).                                   (5.3) 

Thus, by the equation (5.3) when 𝑥 = (𝑥𝑘) ∈ 𝑐𝑠0
𝜆(Δ) , 

𝑎𝑥 = (𝑎𝑛𝑥𝑛) ∈ ℓ1  if and only if 𝑦 = (𝑦𝑘) ∈ 𝑐𝑠0  with 

𝐵𝜆𝑦 ∈ ℓ1. Namely, 𝑎 = (𝑎𝑛) ∈ {𝑐𝑠0
𝜆(Δ)}

𝛼
if and only if 

𝐵𝜆 ∈ (𝑐𝑠0: ℓ1). By using Lemma 2.1, with the matrix 𝐵𝜆 

instead of 𝐴, we show that 𝑎 = (𝑎𝑛) ∈ {𝑐𝑠0
𝜆(Δ)}

𝛼
 if and 

only if  

             sup
𝑁,𝐾∈ℱ

|∑𝑛∈𝑁 ∑𝑘∈𝐾 (𝑏𝑛𝑘
𝜆 − 𝑏𝑛,𝑘+1

𝜆 )| < ∞. (5.4) 

 Indeed for all 𝑛 ∈ ℕ, if we have  

lim
𝑘
𝑏𝑛𝑘
𝜆 = 0 

then the condition of Lemma 2.3 holds. This implies that 

{𝑐𝑠0
𝜆(Δ)}

𝛼
= {𝑏𝑠𝜆(Δ)}

𝛼
= 𝑓1

𝜆. 

Similarly, by using the equation (5.3) it is obvious that 

𝑎 = (𝑎𝑛) ∈ {𝑐𝑠
𝜆(Δ)}

𝛼
 if and only if 𝐵𝜆 ∈ (𝑐𝑠: ℓ1) . 

Consequently, if we set the matrix 𝐵𝜆  instead of the 

matrix 𝐴   in Lemma 2.2, 𝑎 = (𝑎𝑛) ∈ {𝑐𝑠
𝜆(Δ)}

𝛼
 if and 

only if  

           sup
𝑁,𝐾∈ℱ

|∑𝑛∈𝑁 ∑𝑘∈𝐾 (𝑏𝑛𝑘
𝜆 − 𝑏𝑛,𝑘−1

𝜆 )| < ∞. (5.5) 

Thus, we provide {𝑐𝑠𝜆(Δ)}
𝛼
= 𝑓2

𝜆 . This completes the 

proof.  

Theorem 5.2  For all 𝑘 ∈ ℕ and  

�̅�𝑘(𝑛) = 𝜆𝑘 [
𝑎𝑘

𝜆𝑘 − 𝜆𝑘−1

+ (
1

𝜆𝑘 − 𝜆𝑘−1
−

1

𝜆𝑘+1 − 𝜆𝑘
) ∑

𝑛

𝑗=𝑘+1

𝑎𝑗] 

  (𝑘 < 𝑛), 

let us define the sets of 𝑓3
𝜆, 𝑓4

𝜆, 𝑓5
𝜆, 𝑓6

𝜆, 𝑓7
𝜆  and 𝑓8

𝜆  as 

follows  

𝑓3
𝜆 = {𝑎 = (𝑎𝑘) ∈ 𝑤: sup

𝑛
∑

𝑛−2

𝑘=0

|�̅�𝑘(𝑛) − �̅�𝑘+1(𝑛)| < ∞}, 

𝑓4
𝜆 = {𝑎 = (𝑎𝑘) ∈ 𝑤: sup

𝑘
|

𝜆𝑘
𝜆𝑘 − 𝜆𝑘−1

𝑎𝑘| < ∞}, 

𝑓5
𝜆 = {𝑎 = (𝑎𝑘) ∈ 𝑤: lim

𝑛→∞
(�̅�𝑘(𝑛)

− �̅�𝑘+1(𝑛))   exist    (𝑘 ∈ ℕ)}, 

𝑓6
𝜆 = {𝑎 = (𝑎𝑘) ∈ 𝑤:∑

∞

𝑗=𝑘

𝑎𝑗     exist    (𝑘 ∈ ℕ)}, 

𝑓7
𝜆 = {𝑎 = (𝑎𝑘) ∈ 𝑤:∑

∞

𝑘=0

|�̅�𝑘(𝑛)

− �̅�𝑘+1(𝑛)|   convergent}, 

 𝑓8
𝜆 = {𝑎 = (𝑎𝑘) ∈ 𝑤: lim

𝑘→∞
(

𝜆𝑘

𝜆𝑘−𝜆𝑘−1
𝑎𝑘)     convergent}. 

  

Then, we have {𝑐𝑠0
𝜆(Δ)}

𝛽
= 𝑓3

𝜆 ∩ 𝑓4
𝜆 ∩ 𝑓5

𝜆, {𝑐𝑠𝜆(Δ)}
𝛽
=

𝑓3
𝜆 ∩ 𝑓4

𝜆 ∩ 𝑓6
𝜆 and {𝑏𝑠𝜆(Δ)}

𝛽
= 𝑓6

𝜆 ∩ 𝑓7
𝜆 ∩ 𝑓8

𝜆.  
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Proof. Assume that 𝑎 = (𝑎𝑘) ∈ 𝑤 be a sequence and for 

all 𝑛, 𝑘 ∈ ℕ the matrix 𝑇𝜆 = (𝑡𝑛𝑘
𝜆 ) is given as  

(𝑡𝑛𝑘
𝜆 ) = {

�̅�𝑘(𝑛) 𝑘 < 𝑛,
𝜆𝑛

𝜆𝑛 − 𝜆𝑛−1
𝑎𝑛 𝑘 = 𝑛,

0 𝑘 > 𝑛.

 

Then, we consider  

∑

𝑛

𝑘=0

𝑎𝑘𝑥𝑘 =∑

𝑛

𝑘=0

[∑

𝑘

𝑗=0

∑

𝑗

𝑖=𝑗−1

(−1)𝑗−𝑖
𝜆𝑖

𝜆𝑗 − 𝜆𝑗−1
𝑦𝑖] 𝑎𝑘 

=∑

𝑛−1

𝑘=0

𝜆𝑘 [
𝑎𝑘

𝜆𝑘 − 𝜆𝑘−1

+ (
1

𝜆𝑘 − 𝜆𝑘−1

−
1

𝜆𝑘+1 − 𝜆𝑘
) ∑

𝑛

𝑗=𝑘+1

𝑎𝑗] 𝑦𝑘  

+
𝜆𝑛

𝜆𝑛 − 𝜆𝑛−1
𝑎𝑛𝑦𝑛 

=∑

𝑛−1

𝑘=0

�̅�𝑘(𝑛)𝑦𝑘 +
𝜆𝑛

𝜆𝑛 − 𝜆𝑛−1
𝑎𝑛𝑦𝑛 

= (𝑇𝜆𝑦)𝑛;         (𝑛 ∈ ℕ).                                             (5.6) 

From the equation (5.6) when 𝑥 = (𝑥𝑘) ∈ 𝑐𝑠0
𝜆(Δ), 𝑎𝑥 =

(𝑎𝑛𝑥𝑛) ∈ 𝑐𝑠 if and only if when 𝑦 = (𝑦𝑘) ∈ 𝑐𝑠0, 𝑇𝜆𝑦 ∈

𝑐 . Namely, 𝑎 = (𝑎𝑛) ∈ {𝑐𝑠0
𝜆(Δ)}

𝛽
 if and only if 𝑇𝜆 ∈

(𝑐𝑠0: 𝑐). Thus, from Lemma 2.4, we have  

                   sup
𝑛
∑𝑛−2𝑘=0 |�̅�𝑘(𝑛) − �̅�𝑘+1(𝑛)| < ∞, (5.7) 

                     sup
𝑛
|

𝜆𝑛

𝜆𝑛−𝜆𝑛−1
𝑎𝑛| < ∞ (5.8) 

and we get 

lim
𝑛→∞

(�̅�𝑘(𝑛) − �̅�𝑘+1(𝑛))    (there exist for 𝑘 ∈ ℕ). (5.9) 

Then, {𝑐𝑠0
𝜆(Δ)}

𝛽
= 𝑓3

𝜆 ∩ 𝑓4
𝜆 ∩ 𝑓5

𝜆 . 

Similarly, from the equation of (5.6), 𝑎 = (𝑎𝑛) ∈

{𝑐𝑠𝜆(Δ)}
𝛽

 if and only if 𝑇𝜆 ∈ (𝑐𝑠: 𝑐). Then, we get (5.7) 

and (5.8) from Lemma 2.5. From the condition (2.6), we 

have  

                    ∑∞𝑗=𝑘 𝑎𝑗   there exist for all (k ∈ ℕ). (5.10) 

This implies that {𝑐𝑠0
𝜆(Δ)}

𝛽
= 𝑓3

𝜆 ∩ 𝑓4
𝜆 ∩ 𝑓6

𝜆. 

Finally, from the equation (5.6) 𝑎 = (𝑎𝑛) ∈ {𝑏𝑠
𝜆(Δ)}

𝛽
 

if and only if  𝑇𝜆 ∈ (𝑏𝑠: 𝑐). Then for all 𝑛 ∈ ℕ, since  

lim
𝑘→∞

𝑡𝑛𝑘
𝜆 = 0 

the condition that is given in Lemma 2.6 holds. Also, by 

the condition (2.6) we can see that (5.10) is valid. From 

(2.7), we can write  

                  ∑∞𝑘=0 |�̅�𝑘(𝑛) − �̅�𝑘+1(𝑛)|  convergent, (5.11) 

                 lim
𝑘→∞

(
𝜆𝑛

𝜆𝑛−𝜆𝑛−1
𝑎𝑛)  exist. (5.12) 

We conclude that {𝑏𝑠𝜆(Δ)}
𝛽
= 𝑓6

𝜆 ∩ 𝑓7
𝜆 ∩ 𝑓8

𝜆 .  

 

6. CONCLUSION 

As a result, we defined non-absolute type difference 

sequence spaces 𝑐𝑠0
𝜆(Δ) , 𝑐𝑠𝜆(Δ)  and 𝑏𝑠𝜆(Δ)  based on 

the definitions of 𝑐𝑠0
𝜆 , 𝑐𝑠𝜆  and 𝑏𝑠𝜆  sequence spaces 

defined by Kaya and Furkan in 2015, and the difference 

sequence space defined by Kızmaz (1981), and show 

that the difference sequence spaces 𝑐𝑠0
𝜆(Δ), 𝑐𝑠𝜆(Δ) and 

𝑏𝑠𝜆(Δ)  are BK-spaces. Additionally, it is defined that 

these spaces are isomorphic to the spaces, 𝑐s0, 𝑐s and 𝑏s 
respectively, and their Schauder basis are given. Also, 

the classes of matrix transformations from the spaces, 

𝑐𝑠0
𝜆(Δ) , 𝑐𝑠𝜆(Δ)  and 𝑏𝑠𝜆(Δ)  to the spaces 𝑙∞, 𝑐  and 𝑐0 

are characterized, where 1 ≤ 𝑝 ≤ ∞ . Finally, some 

inclusion relations are examined and the 𝛼 −, 𝛽 − and 

𝛾 −duals of these sequence spaces are calculated. This 

article provides a significant contribution to the field of 

functional analysis and topology by establishing that the 

sequence spaces 𝑐𝑠0
𝜆(Δ) , 𝑐𝑠𝜆(Δ)  and 𝑏𝑠𝜆(Δ)  are BK 

spaces. The implications of this result extend to applied 

sciences and topology, offering a new perspective on 

sequence space theory and its practical applications. This 

work opens new avenues for studying topological 

sequence spaces and their properties, with potential 

applications in diverse fields. 
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