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ABSTRACT During the nineties, the Rössler’s have reported in their famous book “Chaos in Physiology,”
that “physiology is the mother of Chaos.” Moreover, several researchers have proved that Chaos is a generic
characteristic of systems in physiology. In the context of disease, like for example growth of cancer cell
populations, Chaos often refers to irregular and unpredictable patterns. In such cases, Chaos signatures
can be used to prove the existence of some pathologies. However, for other physiological behaviors, Chaos
is a form of order disguised as disorder and can be a signature of healthy physiological functions. This is
for example the case of human brain behavior. As the boundary between health and disease is not always
clear-cut in chaotic systems in physiology, some conditions may involve transitions between ordered and
chaotic states. Understanding these transitions and identifying critical points can be crucial for predicting
Healthy vs. pathological Chaos. Using recent advances in physiological Chaos and disease dynamics, this
survey paper tries to answer the crucial question: when Chaos be a sign of health or disease?
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INTRODUCTION

In Chaos theory, Chaos dynamics refer to a complex, unpredictable,
and random behavior within a system. The concept of Chaos is
often associated with nonlinear and complex dynamics showing
inherent sensitivity to initial conditions where small effects lead
to large and unexpected consequences (Sprott 2003; Lassoued and
Boubaker 2016; Devaney 2018; Lozi 2023). While in the vast litera-
ture, Chaos theory and its applications to various fields, including
mathematics, physics, engineering and so on have been extensively
discussed (Boubaker and Jafari 2018), its application in medicine
remains both intriguing and challenging. Figure 1 shows the pro-
duction per year as well as the production by country or territory
for a literature review done in January 2024 via the Scopus database
using the keyword “Chaos”.

The investigation shows the considerable number of journal
papers published in the field. It is found 40.169 journal papers
written in English with a peak of production in 2023. The search
also reveals that China, United States and India are the three coun-
tries with the highest production in the field. Figure 2 presents
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the classification of production by subject area. It is noticed that
mathematics, physics, and engineering are the fields with the high-
est production. To my surprise, among this considerable number
of papers dedicated to Chaos theory, I found only 883 articles de-
voted for medicine and 638 documents for neurosciences. This
little production stands for simply 3.8% of the total. The produc-
tion per year related to these two categories is shown in Figure 3
and Figure 4, respectively. In the opposite way, it is important to
note here that the most cited paper in all categories presented in
Figure 2 is the paper titled “Approximate entropy as a measure
of system complexity,” published in 1991 by Pincus presenting an
application of Chaos theory to the analysis of heart rate data, and
its effectively discriminated between healthy and sick groups of
neonates (Pincus 1991).

This observation is consistent with the statements of Rössler in
his famous book “Chaos in Physiology” published in 1994 in which
he has reported that “the physiology is the mother of Chaos” and
that “It appears that physiology has a particularly high affinity to
Chaos” (Rossler and Rossler 1994). It was during the nineties that
researchers have proved that Chaos is a regular characteristic for
systems in physiology (Mackey and An Der Heiden 1984; Mpitsos
et al. 1988; Glass et al. 1988; da Silva 1991; Goldberger et al. 1990;
Elbert et al. 1994)
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Figure 1 Data from Scopus database. Query: KEY (Chaos) AND
(LIMIT-TO (SRCTYPE, «j»)) AND (LIMIT-TO (LANGUAGE,
«English»)). (a)Production per year, (b) Production by country or
territory.

Figure 2 Data from Scopus database: Documents by subject area.
Query: KEY (Chaos) AND (LIMIT-TO (SRCTYPE, «j»)) AND (LIMIT-
TO (LANGUAGE, «English»)). The category “Other (10.1%)” in-
cludes medicine and neurosciences with 3.7%.

In this framework, I should note that cardiovascular system,
with a specific focus on heart rate variability (HRV), was the pio-
neering area of application of Chaos theory in physiology recog-
nizing that the heart rate does not exhibit a constant rhythm over
time (Leaning et al. 1983; Pincus and Goldberger 1994; Mansier et al.
1996). Early investigations within Chaos in physiological control
systems had also considered respiratory control model (Flower
et al. 1993), blood pressure regulation (Persson 1996; Wagner et al.
1996), autonomic nervous system dynamics (Korn and Faure 2003)
and neuroendocrine system (Lipsitz and Goldberger 1992). Let us

recognize here that the study of Chaos in physiology is a complex
and evolving field, and the understanding of its implications in
medicine is continually expanding. Researchers use mathematical
models, computational simulations, and empirical observations
to explore the dynamic nature of physiological systems and their
relationship to human health (Lassoued and Boubaker 2020).

Chaotic behavior in physiology was often associated within cer-
tain pathological conditions and may be linked to disease (Cross
and Cotton 1994). For example, for the glucose-insulin regula-
tory system numerous anomalies are perceived in form of chaotic
dynamics such as hypoglycemia, hyperinsulinemia, and type 2
diabetes (Rajagopal et al. 2020). The chaotic pathological signatures
of migraine headache (Bayani et al. 2018), the epileptic seizures
(Panahi et al. 2017, 2019) and the attention deficit hyperactivity dis-
order (Ansarinasab et al. 2023) are recently considered. Complex
dynamics for type 1 diabetes (Ginoux et al. 2018) and cancer model
(Xuan et al. 2022) are also studied.

On another side, Chaos can be a normal and healthy aspect
of certain physiological processes like for example the heartbeat,
the respiratory patterns, and the neural activity which often show
complex irregular patterns falling under the umbrella of Chaos
dynamics. These dynamics can contribute to the adaptability and
resilience of the organism (Golbin and Umantsev 2006; Goldberger
and West 1987). As physiological systems are highly intercon-
nected and dynamic, Chaos theory can help us appreciate the
complexity of these interactions, perturbations, or changes. Some
complex dynamics of the system can lead to unpredictable conse-
quences, which may have implications for health or disease.

Figure 3 Data from Scopus database: Production per year in the
field of medicine. Query: KEY (Chaos) AND (LIMIT-TO (SRCTYPE,
«j»)) AND (LIMIT-TO (LANGUAGE, «English»)) AND (LIMIT-TO
(SUBJAREA, «MEDI»))

In this paper, after reviewing the fundamental basics in mod-
eling and control in physiology, I will try to answer the three
following key questions:

1. How does manifest pathological Chaos in physiological con-
trol systems and what are the motivation behind studying
these dynamics?

2. What are the control systems in physiology showing healthy
chaotic patterns?

3. How can we distinguish between healthy and pathological
Chaos?
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Figure 4 Data from Scopus database: Production per year in the
field of neurosciences. Query: KEY (Chaos) AND (LIMIT-TO (SRC-
TYPE, «j»)) AND (LIMIT-TO (LANGUAGE, «English»)) AND (LIMIT-
TO (SUBJAREA, «NEUR»))

This paper is organized as follows: the following section intro-
duces fundamentals in modeling and control in physiology. In
section 3, main pathological and healthy chaotic systems are re-
viewed and discussed. Finally, general principles and approaches
to help differentiate between healthy and pathological chaotic dy-
namics are exposed.

FUNDAMENTALS IN MODELING AND CONTROL IN PHYSI-
OLOGY

This section will expose motivations and used approaches for mod-
elling dynamic systems in physiology. It also introduces the impor-
tance of the principle of Homeostasis in controlling physiological
systems.

Motivations
Modeling and controlling complex physiological systems is a new
research area compared to other applications in control systems
like robotics, aeronautics, and industrial systems. The results
of this new research field are of huge importance as they can
be used to understand the complexity of physiological systems,
to establish a diagnosis and to forecast the dynamics of some
diseases (Lassoued and Boubaker 2020). Furthermore, in many
cases, certain failures in the body process require external control
laws to normalize the performances of the body (Boubaker 2020) or
use of artificial organs and robotic assistive technologies (Boubaker
2023).

Modelling in physiology
Modelling in physiology can be organized via three main ap-
proaches: the compartment modelling approach, the equivalent
modeling approach and the data driven modelling approach (see
(Lassoued and Boubaker 2020) and related references).

Compartmental modeling approachy It is one of the oldest ap-
proaches used for modelling physiological systems (Enderle and
Bronzino 2012). The related basic equations are expressed as fol-
lows (Lassoued and Boubaker 2020):

dxi
dt

= fi0 +
n

∑
j=1
j ̸=i

( fij − f ji)− f0i ; xi(0) = x0i ; i = 1, 2, . . . , n

(1)
where xi denotes the amount of material in compartment i and

xi0 represents the related initial value. f ji is the mass flow rate of

compartment j from compartment i. Figure 5 shows its arrange-
ment. The index zero represents the environment of the physiolog-
ical system (Lassoued and Boubaker 2020). Applications of this ap-
proach can be found in (Alvarez-Arenas et al. 2019; Yousefnezhad
et al. 2021; Rajeswari and Vijayakumar 2023; Giakoumi et al. 2023;
Boudin et al. 2023; McKnight et al. 2013). Figure 6 describes the
example of the insulin-independent two-compartment model.

Figure 5 Basics in compartmental modelling approach (Lassoued
and Boubaker 2020).

Figure 6 Insulin-independent two-compartment model for describ-
ing glucose kinetics. First compartment holds the vascular space.
Arrowed solid lines are flows, hollow arrow is glucose application
(infusion or dose), and broken line sampling (McKnight et al. 2013).

Equivalent modeling approach By such an approach, physiological
variables are modelled via physical mechanisms such as electrical
or mechanical components (see Table.1). Figure 7. shows an ex-
ample of an equivalent electronic circuit of blood-vessels system
(Lassoued and Boubaker 2020). Figure 8. shows an example of the
equivalent electronic circuit for a short segment of squid giant axon
proposed by Hodgkin and Huxley (Hodgkin and Huxley 1952).
Furthermore, an example of a physiological system modelled by
an equivalent electronic circuit for the cardiovascular system is
found in (Ismail et al. 2018; Zhang et al. 2020).

Data driven modeling approach It is here an empirical approach
that does not imply mathematical modelling derived from physi-
cal systems but machine learning and deep learning modeling ap-
proaches using time series data. Applications of such an approach
can be found in many recent papers (see for example (Dutta et al.
2018; Paoletti et al. 2019) for diabetes management, (Fong et al. 2018;
Yoo et al. 2022) for immune system modelling, (Dritsas and Trigka
2023) for cardiovascular disease modelling and (Khan et al. 2022)
for brain disease modelling).

Classification of mathematical models Dynamical systems in
physiology can be described using lumped models described by
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■ Table 1 Physical, mechanical, and electrical analogues (Lassoued and Boubaker 2020).

Physiological Mechanical analogues Electrical analogues

measurements Name Notation Symbol Name Notation Symbol

Pressure Force F - Voltage V -

Volume Displacement x - Charge q -

Flow Velocity v = dx
dt - Current I = dq

dt -

Viscous drag Viscous resistance B = F
v Resistance R = V

I

Compliance Compliance C′ = x
F Capacitance C =

q
V

Figure 7 Equivalent electronic circuit of blood-vessels system (Las-
soued and Boubaker 2020).

Figure 8 Electrical equivalent circuit for a short segment of squid
giant axon proposed by Hodgkin and Huxley. The capacitor repre-
sents the capacitance of the cell membrane; the two variable resis-
tors represent voltage-dependent Na+ and K + conductance, the
fixed resistor represents a voltage-independent leakage conduc-
tance, and the three batteries represent reversal potentials for the
corresponding conductance (Fang and Wang 2021).

ordinary differential equations or distributed parameter mod-
els described by partial differential equations (Shi et al. 2011).
They can be also described by deterministic or stochastic mod-
els, continuous-time, or discrete-time models or by, parametric or
non-parametric models.

Many recent papers have described physiological systems using
fractional-order derivatives. Some other papers have included
time-delays in mathematical models. In fact, “fractional calculus is
recognized as one suitable option to increase the accuracy of the
mathematical models and to provides a memory effect into the time
evolution of the system since its future solutions will depend on
all past times and not only from recent event” (Fernández-Carreón
et al. 2022).

Homeostasis principle
“In physiology, control refers to the process of stabilizing a physio-
logical variable to a specified set point, either by reversing pertur-
bations via negative feedback closed loops or via anticipatory open
loops. In the human body, the control process is designed by Home-
ostasis” (Lassoued and Boubaker 2020). Homeostasis principle
was discovered by Walter Bradford Cannon in 1929 (Cannon 1929).
A literature survey of this principle can be found in (Chapelot
and Charlot 2019). “The Homeostasis principle is the property of a
physiological system to regulate its internal environment to a given
set point in presence of a specific stimulus producing changes in
that variable” (Lassoued and Boubaker 2020).

As shown by Figure 9, the control activity in the body is guar-
anteed by the arrangement of the control center (composed by
nervous and endocrine systems), sensors and effectors. Figure 10
gives several examples of Homeostasis. The example of tempera-
ture regulation in the human body is described by Figure 11. As
reported in (Houk 1988), three basic control strategies guarantying
Homeostasis exist: negative feedback, feedforward, and adaptive
control. These approaches are summarized in Figure 12. Figure
13 and Figure 14 present the two examples of postural balance
homeostasis and glucose homeostasis, respectively, using feed-
back control laws. For further examples of physiological systems
using feedforward and adaptive control, the reader can refer to
(Lassoued and Boubaker 2020).

Figure 9 Homeostasis principle (Lassoued and Boubaker 2020).
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Figure 10 Homeostasis examples including energy and fluid bal-
ances (Lassoued and Boubaker 2020).

Figure 11 Human temperature Homeostasis (Lassoued and
Boubaker 2020).

Figure 12 Basic control strategies in Homeostasis principle (Las-
soued and Boubaker 2020).

CHAOS IN PHYSIOLOGY

According to classical concepts of physiological control, healthy
systems are self-regulated to reduce variability and keep physiolog-
ical constancy. However, contrary to the predictions of homeosta-
sis, the output of a wide range of systems fluctuates in a complex
manner that is underpinned by non-linear mechanisms and the
low dimensional dynamics of Chaos. Chaos supplies new concepts
and methods of analysis that help to understand the dynamics of
neural networks in both health and disease that complement exist-
ing approaches and may lead to new investigative opportunities
(Kernick 2005).

Figure 13 Postural balance via feedback control laws; (A) schematic
model (B) Block diagram (Lassoued and Boubaker 2020).

Figure 14 Scheme of the main mechanisms of glucose homeostasis.
Colored dashed arrows are control signals (glucose or hormone
concentrations) that regulate glucose fluxes or insulin and glucagon
secretion. The scheme does not show adaptive control mechanisms
(e.g., insulin secretion upregulation with insulin resistance) (Mari
et al. 2020).

Really, Peng et al. were between the first researchers claiming
that the classical theory of homeostasis, according to which stable
physiological processes seek to maintain constancy and its more
recently proposed modifications under the rubric of hemodynam-
ics, need to be revised and extended to account explicitly for this
far from equilibrium behavior (Peng et al. 1994).

Nonlinear dynamics in physiology
In (Goldberger et al. 2002), Goldberger et al., have given an ex-
haustive list of nonlinear dynamics that a physiological system can
generate. These complex behaviors include abrupt changes (like
bifurcations, bistability and multistability), hysteresis, nonlinear os-
cillations (including limit cycles, phase-resetting, entrainment. . . ),
scale invariant (including fractal and multi-fractal scaling, long
range correlation, self-organized criticality), nonlinear waves (like
spirals, scrolls, solitons) and deterministic Chaos.

Even controlled via Homeostasis principle, it is proved in many
other research papers that physiological controlled systems are, at
least, capable of the four kinds of behaviors described by Figure 15
(Lassoued and Boubaker 2020; Uthamacumaran 2021). These dy-
namics can include fixed point, limit cycle, limit torus and strange
attractor behavior. It is important to note that the term Chaos in
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physiology does not imply randomness in the traditional sense but
rather a complex and often nonlinear behavior that deviates from
typical physiological patterns (Kernick 2005; Coffey 1998). Study-
ing these chaotic dynamics is crucial for understanding diseases
mechanisms and developing targeted interventions.

Healthy chaotic patterns
Chaotic physiological systems in healthy organisms refer to sys-
tems that show complex, unpredictable behavior despite being
in a state of normal health. It is important to note that Chaos in
physiological systems does not always imply dysfunction; rather,
it reflects the inherent complexity and dynamic nature of these
systems. It is important to emphasize that Chaos in these sys-
tems is often related to their adaptability and responsiveness to
changing internal and external conditions as healthy and stable
living systems are set up as chaotic and fractal in nature (Golbin
and Umantsev 2006; Goldberger and West 1987; Korolj et al. 2019).
While Chaos might be present in healthy physiological systems, it
is typically controlled and contributes to the overall stability and
resilience of the organism. It is proved in many research papers
that a healthy dose of Chaos is always necessary (Korolj et al. 2019).
I give below some examples.

Figure 15 Various behaviors shown by complex systems in phys-
iology (Lassoued and Boubaker 2020). (A) Fixed point; (B) Limit
Cycle; (C) Limit Torus; (D) Strange attractor.

Chaos in healthy cardiovascular and respiratory systems The
cardiovascular system is composed of the heart and vessels. Its
main function is to pump the blood in the body in order to supply
all tissues and organs with oxygen and other nutrients (Formaggia
et al. 2010). The earliest model of this system was proposed in
(Grodins 1959). The modeling of this system was then determined
via different point of view (Golbin and Umantsev 2006; Gois and
Savi 2009; Noble et al. 2012; Cheffer et al. 2021; Yadav and Jadhav
2021). For example, in (Golbin and Umantsev 2006), the authors
prove via the cardiac Hodgkin– Huxley equation that hearts are
poised near the edge of Chaos. They find that the potassium ion-
channel and the sodium ion-channel are memristors.

In (Zhang et al. 2020; Coffey 1998), the authors prove that car-
diac Chaos is prevalent in healthy heart, and a decrease in such
Chaos may be indicative of congestive heart failure. Let us note

that during intense physical exercise, the interaction between the
cardiovascular and respiratory systems can also show chaotic be-
havior. This complexity is often seen as a normal adaptive response
to the increased demands on the body (Golbin and Umantsev 2006;
Goldberger and West 1987). The HRV may show a more irregular
pattern during exercise, and this variability is often considered a
sign of a healthy cardiovascular system (Pincus and Goldberger
1994; Mansier et al. 1996).

Chaos in healthy neural activity in the brain Neural networks in
the brain often display complex patterns of activity (Poon and
Merrill 1997). Some level of Chaos in neural activity is considered
healthy and necessary for cognitive function. Indeed, neuronal
firing patterns and the interactions between different brain regions
contribute to the complexity of brain function. This complexity is
not only normal but is also thought to be essential for cognitive
processes such as learning, memory, information processing and
adaptability (Xuan et al. 2022; Pritchard and Duke 1995; Breakspear
2017; Kavakci 2021). The concept of Chaos in neural dynamics is
often explored through the study of brain waves. For example,
it is proved that the EEG frequencies of aging subjects show a
loss of low-voltage fast waves and an increase in slow waves with
diffussion of slow periodicity. Measures of complexity using frac-
tals and Chaos theory always help to assess age-related anatomic
and physiologic changes and predict pathologies (Goldberger et al.
2002).

Healthy Chaos in gait and locomotion system Human movement
and locomotion involve a complex interplay of muscles, joints, and
neural signals. Walking, for example, is not a perfectly regular
and predictable activity. Gait patterns show variability and chaotic
dynamics, allowing individuals to adapt to changes in terrain and
keep balance. This variability is considered a sign of a healthy and
adaptable motor control system (Müller et al. 2017).

Healthy chaos in immune system According to (Heltberg et al.
2019), Chaos in bodily regulation can optimize our immune system
and can have of great significance for avoiding serious diseases
such as cancer and diabetes.

Heltberg et al. (2019) show how chaotic dynamics create a het-
erogeneous population of cell states and describe how this can
be beneficial in multi-toxic environments. The dynamics of the
transcription factor of the immune system when driven by an ex-
ternal periodic signal and exhibiting chaotic signals are described
by Figure 16.

Figure 16 Dynamics emerging from a transcription factor of the
immune system when driven by a periodic tumor necrosis factor
(TNF) signal exhibiting chaotic output signals when amplitude of
external signals increase (Heltberg et al. 2019).
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Chaos in disease
Chaos in the context of disease often refers to irregular and unpre-
dictable patterns or behaviors within physiological systems (Cross
and Cotton 1994). There are diverse ways in which chaotic dynam-
ics contribute to the complexity and unpredictability of various
diseases across different physiological systems. Understanding
these chaotic patterns is essential for developing effective diagnos-
tic and therapeutic strategies. Here are examples where chaotic
dynamics may be seen in the context of various diseases.

Cardiovascular and respiratory disorders Cardiac fibrillation,
with its complex and disordered patterns, can be seen as a man-
ifestation of Chaos in space and time within the heart muscle
(Garfinkel et al. 1997; Cheffer et al. 2021). The chaotic electrical activ-
ity can disrupt the normal pumping function of the heart, leading
to compromised blood circulation (Gupta et al. 2020, 2021; Gupta
2023). On the other hand, other studies focusing on chronic ob-
structive pulmonary disease, and asthma have shown the chaotic
behavior within these diseases. In this framework, (Mansour et al.
2023) have proposed a new chaotic system that investigates the
connection between weather patterns and respiratory illness.

Cancer progression Cancers are complex systems, consisting of
groups of adaptive malignant cells that self- organize in time and
space, far from thermodynamic equilibrium (Uthamacumaran
2021). They are considered as of the most curious physiologic
problems in these last years. The growth and spread of cancer
cells can show chaotic patterns (Fong et al. 2018; Yoo et al. 2022;
Sedivy and Mader 1997; Debbouche et al. 2022; Uthamacumaran
2020; Naik et al. 2020). Tumor growth is influenced by complex
interactions between cancer cells, the immune system, and the
surrounding microenvironment, resulting in unpredictable disease
progression (Russo et al. 2021). Several mathematical models were
proposed to predict the evolution of this disease. They are based
on the Volterra–Lotka type prey– predator models. One of the most
interesting models was proposed by Itik and Banks in (Itik and
Banks 2010). The non-dimensional model considering a three-cell
population is described by:

dx1
dt

= x1(1 − x1)− a1x1x2 − a2x1x3

dx2
dt

= a3x2(1 − x2)− a4x1x2

dx3
dt

=
a5x1x3
x1 + a6

− a7x1x3 − a8x3

(2)

where x1 represents the number of tumor cells, x2 indicates the
number of host cells, x3 refers to the number of effectors cells in the
single tumor compartment and ai (i = 1, ..., 8) are system’s param-
eters. Let us note that a patient is healthy when the effector cells
are equal to zero, more precisely when the chaotic-cancer system
converges to an equilibrium point. Several papers have proved
that entropy in individual cells change with cancer induction and
increasing anaplasticity (See (Uthamacumaran 2021) and related
papers).

Recent works in this field have considered fractional-order dif-
ferential systems to describe cancer models. The most recent model
is described by (Karaca 2023):

Dγ
t x1 = x1(1 − x1)− a1x1x2 − a2x1x3

Dγ
t x2 = a3x2(1 − x2)− a4x1x2

Dγ
t x3 =

a5x1x3
x1 + a6

− a7x1x3 − a8x3

(3)

where Dγ
t is the Caputo-Fabrizio-Caputo fractional derivative

and 0 < γ ≤ 1 is the fractional order. Figure 17 describes the
numerical simulation for the model (3).

Figure 17 Numerical simulation for cancer model via Atangana-
Baleanu-Caputo fractional operator. (A): Simulation in the three
dimensional-space; (B): projected onto x2(t)-x3(t) planes, respec-
tively (Karaca 2023).

Metabolic disorders It was proved through several research works
that metabolic disorders including obesity, hyperglycemia, hy-
pertension, dyslipidemia, hypercholesterolemia, hypertriglyc-
eridemia, non- alcoholic fatty liver disease and type I and type
II diabetes have complex dynamic patterns. Diabetes involves
dysregulation of blood glucose levels, and the metabolic Chaos
associated with insulin resistance and impaired insulin secretion
can lead to erratic fluctuations in blood sugar levels (Ginoux et al.
2018; Rajeswari and Vijayakumar 2023; Dutta et al. 2018; Paoletti
et al. 2019; Shabestari et al. 2019; Borah et al. 2021).

One of the most interesting integer-order models for human
glucose-insulin regulatory system is described by (Shabestari et al.
2019):

dx1
dt

= a1x2(t − τ1)x3(t − τ)− a2x1 + a3x3(t − τ1)

dx2
dt

=
a4
x3

− a5x1(t − τ2) + a6

dx3
dt

= a7(x2 − x̂2)(T − x3) + a8x3(T − x3)− a9x3

(4)

where x1, x2, x3 and x̂2 are the insulin level, glucose level, beta-
cells number and the glucose metabolism considering its basal
state, respectively. τ1 is the delay for the insulin production, be-
cause of blood glucose level rising. The delay between augmented
insulin level and glucose reduction is τ2. Figure 18. Shows the
bifurcation diagrams for the glucose-insulin system (4) depending
on the bifurcation delays τ1 and τ2 and showing routes to Chaos.

Fractional-order modelling of glucose-insulin biological sys-
tems was also considered by some researchers (see for example (Ra-
jagopal et al. 2020; Munoz-Pacheco et al. 2020; Fernández-Carreón
et al. 2022)). In (Fernández-Carreón et al. 2022), the authors de-
rived the fractional-order model corresponding to the integer-order
model (5) as follow:

Dγ
t x1 = a1x2(t − τ1)x3(t − τ)− a2x1 + a3x3(t − τ1)

Dγ
t x2 =

a4
x3

− a5x1(t − τ2) + a6

Dγ
t x3 = a7(x2 − x̂2)(T − x3) + a8x3(T − x3)− a9x3

(5)

By using the fractional-order operator and representing the
phase portraits and bifurcations diagrams, the authors conclude
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that numerical simulations remain in good agreement with the
theoretical findings and that a memory profile, can provide im-
proved accuracy of the physiological disorders. Furthermore, in
(Munoz-Pacheco et al. 2020), the authors who proposed an elec-
tronic realization of the fractional glucose-insulin regulatory model
confirm that the use of fractional-order modelling for chaotic sys-
tems is more interesting for embedded technologies.

Figure 18 Bifurcation diagram for the glucose-insulin system (5)
depending on the bifurcation delays τ1 and τ2 and showing routes to
Chaos (Shabestari et al. 2019).

Neurological disorder Neurological disorders are conditions that
affect the nervous system, which includes the brain, spinal cord,
and peripheral nerves. These disorders can result from abnor-
malities in the structure, function, or chemistry of the nervous
system and often lead to a variety of symptoms affecting move-
ment, sensation, cognition, or other functions. Examples of specific
neurological disorders showing chaotic patterns, contributing to
the characteristic motor symptoms are Alzheimer’s disease (Khan
et al. 2022), neurodegenerative diseases like Parkinson’s disease
and Huntington’s disease (Yulmetyev et al. 2006; Borah et al. 2021;
Shabestari et al. 2019) and Epilepsy (Panahi et al. 2017, 2019; Sar-
badhikari and Chakrabarty 2001).

However, the application of chaos theory to these diseases is
still an area of ongoing research, and the nature of the dynamics
may vary between individuals. Between neurological diseases
I can also cite migraines attacks involving severe headaches of-
ten accompanied by nausea, sensitivity to light, and sound. The
triggers and the unpredictable nature of migraine attacks are also
examples of chaotic behavior in the nervous system (Bayani et al.
2018; Kernick 2005; Khan et al. 2022). Other examples of neuronal
diseases can also be cited such as the chaotic model of memristive

nature of autapsis when an axon is injured. This involves poison-
ing in ion channels or heterogeneity in a local area of the axon for
which signal transmission may be interrupted or blocked during
neuronal communication (Muni et al. 2022).

Viral diseases impacting the immune system There are many fatal
diseases impacting the immune system like HIV/AIDS, Hepatitis
C (HCV) and Herpes Simplex Virus (HSV) which are caused by
virus. For example, HIV-1 infection is a hazardous disease that can
lead to cancer, AIDS, and other serious illnesses. The progression
of HIV to AIDS involves chaotic dynamics in the immune system.
The virus attacks and depletes CD4 T cells, disrupting the body’s
ability to mount an effective immune response (Borah et al. 2021; Ye
et al. 2009; Duarte et al. 2018). The related model can be described
by (Naik et al. 2020):

dx1
dt

= x1[a1

(
1 − x1 + x2 + x3

a2

)
− a3x2]

dx2
dt

= x2[a4

(
1 − x1 + x2 + x3

a2

)
− a5x1 − a6x3]

dx3
dt

= a6x2x3 − a7x3

(6)

where x1 is the population number of cancer cells, x2 represents
the number of healthy cells, x3 refers to the number of HIV-infected
cells ai (i = 1, ..., 7) are system’s parameters. Once again, stability
investigations and results obtained in (Naik et al. 2020) indicate
that fractional models are better predictors, among others.

HOW DISTINGUISHING BETWEEN HEALTHY AND DIS-
EASE CHAOS?

Distinguishing between healthy Chaos and chaotic patterns associ-
ated with disease is a complex task that often requires a thorough
understanding of the specific physiological system under consid-
eration. Interdisciplinary collaboration, combining ability from
clinicians, researchers, and data scientists, is essential for a compre-
hensive assessment of chaotic dynamics in physiological systems.
This collaborative approach enables a more nuanced interpretation
of Chaos, considering both the specific characteristics of the sys-
tem under study and the broader clinical context. Here are some
general principles and approaches to help differentiate between
healthy and pathological chaotic dynamics.

Temporal Patterns
In physiology, there are several types of physiological signals that
can be collected. They include the electroencephalogram (EEG)
measuring the electrical activity of the brain, the electrocardiogram
(ECG) recording the electrical activity of the heart, Electromyogram
(EMG) recording the electrical activity of muscles, the Electroder-
mal Activity (EDA) measuring the electrical activity of the skin,
the Oxygen Saturation (SpO2) measuring the percentage of oxygen
in the blood, the body Temperature, the respiratory rate, the blood
pressure, the blood glucose, the bioelectrical impedance analysis
(BIA), the Capnography measuring the concentration of carbon
dioxide in exhaled air and so on (Shirmohammadi et al. 2016).
Examining the temporal patterns and dynamics of physiological
systems over time is especially important (Stam 2005).

We should recognize that time series often hold "hidden infor-
mation" including chaotic signals for a wide range of physiological
systems. Healthy Chaos often shows short-term dynamics within a
stable overall pattern. In contrast, chaotic patterns associated with
disease may be characterized by sustained instability, irregularities,
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or a lack of right regulation (Goldberger et al. 2002). Nonlinear
analysis of time series of physiological signals such as EEG and
HRV signals can be used to support the diagnosis of many diseases
like cardiovascular diseases (Poon and Merrill 1997).

Integration of multiple parameters
Combining information from multiple physiological parameters
can supply a more comprehensive understanding. Examining the
interactions between different systems and their chaotic patterns
can reveal insights into overall health or the presence of disease
(Poon and Merrill 1997; Borah et al. 2021; Stam 2005; Garland 2013;
Cashin and Yorke 2016).

Using quantitative measures
Employing quantitative measures can supply objective assess-
ments of Chaos. Analyzing specific parameters, such as largest
Lyapunov exponent, fractal dimensions, Hausdorff dimension
D, correlation dimension D2, wavelet transform modulus max-
ima, time asymmetry/irreversibility parameters, Renyi’s entropy
(REN), Shannon spectral, entropy and so on can offer insights into
the nature of chaotic behavior and whether it aligns with healthy
or pathological patterns (Faust and Bairy 2012; Müller et al. 2017;
Pereda et al. 2005).

Integration of imaging techniques
Utilizing advanced imaging techniques (Choquet et al. 2021), such
as functional magnetic resonance imaging (MRI) and electroen-
cephalography (EEG), can supply insights into the spatial and
temporal patterns of chaotic behavior within the body. It can en-
hance the understanding of Chaos dynamics within a physiological
system. Recent advancements in deep learning, particularly convo-
lutional networks, have rapidly become the preferred methodology
for analyzing medical images, facilitating tasks like disease seg-
mentation, classification, and pattern quantification of a range of
diseases including Alzheimer’s, breast cancer, brain tumors, glau-
coma, heart murmurs, retinal microaneurysms, colorectal liver
metastases, and more (Rasool and Bhat 2023).

Baseline variability, population-based Comparisons, and genetic
factors
Healthy physiological systems often show a certain degree of vari-
ability or Chaos within a defined range. Understanding the normal
range of variability for a given parameter, such as heart rate, neural
activity, or hormone levels, is crucial. Deviations that fall outside
the normal range may show pathology. Furthermore, comparing
individual physiological patterns to population-based norms can
be informative (Poon and Merrill 1997).

Deviations that are consistent with a healthy range in the pop-
ulation may suggest adaptive Chaos, while patterns that diverge
significantly may show disease-related Chaos. Genetic and epige-
netic factors play a role in deciding the baseline characteristics of
physiological systems. Understanding how genetic and epigenetic
factors influence chaotic patterns can contribute to distinguishing
between healthy and pathological dynamics (Sedivy and Mader
1997).

Adaptability and responsiveness to interventions
Healthy chaotic patterns are often associated with adaptability and
responsiveness to internal and external stimuli (Cross and Cotton
1994). Interventions or modifications, such as lifestyle changes,
medications, or therapeutic approaches, can supply valuable in-
formation. These adaptive responses contribute to the system’s

ability to support homeostasis. In contrast, chaotic patterns in
disease may be maladaptive, resulting in dysfunction or failure to
respond appropriately to challenges (Golbin and Umantsev 2006).
Indeed, healthy systems often have a reserve ability that allows
them to adapt to stressors and challenges. Assessing the functional
reserve ability of a physiological system can help distinguish be-
tween adaptive, healthy Chaos and dysfunction. Showing specific
associated with healthy or pathological chaotic patterns can be use-
ful. Certain biomarkers may say adaptive responses in a healthy
context or dysregulation in the presence of disease.

Contextual understanding, functional outcome, and clinical symp-
toms

Understanding the purpose and context of chaos within a system
is important. For example, chaotic neural activity during certain
cognitive processes is normal (Tsuda 2015), but chaotic patterns in
neural activity associated with seizures may say pathology (Tsat-
saris et al. 2016; Kavakci 2021). Furthermore, symptoms and signs
associated with disease should not be overlooked. The presence
of abnormal clinical symptoms, in conjunction with chaotic phys-
iological patterns, may say pathology. Assessing the functional
outcome of chaotic dynamics is crucial. Healthy chaotic behavior
contributes to the proper functioning of physiological systems,
supporting best performance. Chaotic patterns associated with
disease may lead to impaired function, symptoms, and negative
health outcomes.

Examining network analysis

Utilizing network analysis techniques can help understand the con-
nectivity and interactions within a physiological system. Indeed
Healthy and stable living systems are proved as chaotic and fractal
in nature. A few of the most accessible examples include neurons
and neural networks, heart rate variability, and the branching vas-
culature (Korolj et al. 2019). Healthy chaotic networks often exhibit
organized complexity, while aging and disease-related may disrupt
normal network dynamics (Alves et al. 2017). Lets’ note for ex-
ample that physiologic aging is associated with a generalized loss
of such complexity in the network showing loss of complex vari-
ability in multiple physiologic processes including cardiovascular
control, pulsatile hormone release, and electroencephalographic
potentials and leading to an impaired ability to adapt to physio-
logic stress (Peng et al. 1994; Alves et al. 2017; Goldberger et al. 2002;
Uthamacumaran 2021).

CONCLUSION

In this paper, after reviewing basics in modeling and control in
physiology, I have examined through a state of art pathological vs
healthy chaotic patterns in physiological systems. I have listed a
number of principles and approaches to help differentiate between
healthy and pathological chaotic dynamics. In all examples, the
presence of chaos does not always show dysfunction or disease.
Instead, it can reflect the intrinsic adaptability of physiological
systems. Researchers have studied these chaotic dynamics to bet-
ter understand the baseline behavior of healthy systems, which
can provide valuable insights for distinguishing normal variations
from patterns associated with pathology. Several prospectives can
be suggested for this complex research domain including improv-
ing the performance of disease diagnostic models and exploring a
new paradigm for intelligent assisted disease diagnosis (Liu et al.
2024; Rasool and Bhat 2023), diseases prediction (Mansour et al.
2023) and disease’s optimal control (Mohammadi and Hejazi 2023).
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