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Abstract
In this paper, by taking CA−simulation function and Proinov type function into account, we set up a new
contraction mapping called Suzuki−Proinov Z∗R

E∗(α)−contraction, including both rational expressions that
possess quadratic terms and E−type contractions. Furthermore, we demonstrate a common fixed point theorem
through the mappings endowed with triangular α−admissibility in the setting of modular b−metric spaces.
Besides that, we achieve some new outcomes that contribute to the current ones in the literature through the
main theorem, and, as an application, we examine the existence of solutions to a class of functional equations
emerging in dynamic programming.
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How to cite this article: A. Büyükkaya, M. Öztürk, On Suzuki−Proinov Type Contractions in Modular b−Metric Spaces with an Application,
Commun. Adv. Math. Sci., 7(1) (2024) 27-41.

1. Introduction and Preliminaries
The symbol N is used throughout the research to represent all positive natural numbers, whereas R+ represents the set of all

non-negative real numbers.
Fixed point theory is a significant mathematical technique that finds applications in various scientific research areas. This

theory has played a crucial role in creating several significant concepts and approaches and is an exciting area of ongoing study
and advancement, which acts as an intermediary connecting topology and analysis and is commonly used in pure and applied
mathematics. For the past several years, researchers in this field have been exploring potential applications of this field to a
wide range of physically relevant engineering challenges. On the other hand, the metric fixed point theory is very attractive on
account of the Banach Fixed Point Theorem or Banach Contraction Principle, which was conferred by S. Banach [1] in 1922.
In this theorem, there is an answer about the existence and uniqueness of fixed point of contraction mappings in the setting
of complete metric space. Further, many studies have been done to enhance this theorem’s impressiveness, and it underwent
several changes and generalizations as time progressed, see [2]-[5]. Simultaneously, in this direction, many authors try to obtain
a more general metric space structure and diverse contractive conditions or both of them. Herewith, many new topological
structures and contraction mappings have emerged. The notation of b-metric is one of the popular generalizations of the metric
function, which was depicted by Bakhtin [6] and mainly, Czerwik [7, 8] in 1993 and 1998, as noted below.
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Definition 1.1. [7] A function ρ : U×U→ R+ is a b−metric with τ ≥ 1 on a non−empty set U provided that the following
axioms hold, for all λ ,ζ ,z ∈U:

(ρ1) ρ (λ ,ζ ) = 0⇔ λ = ζ ,

(ρ2) ρ (λ ,ζ ) = ρ (ζ ,λ ) ,

(ρ3) ρ (λ ,ζ )≤ τ [ρ (λ ,z)+ρ (z,ζ )] .

Thereupon, we say that the pair (U,ρ) is a b−metric space, and, by choosing τ = 1, b−metric is reduced to ordinary metric.

Also, except for the continuity, other topological features of b−metric can be defined as in metric ones. For continuity, the
subsequent lemma can be a guide in b−metric.

Lemma 1.2. [9] Let (U,ρ) be a b−metric space with τ ≥ 1 and {λy} and {ζy} be convergent to λ and ζ , respectively. Then

1
τ2 ρ (λ ,ζ )≤ liminf

y→∞
ρ (λy,ζy)≤ limsup

y→∞

ρ (λy,ζy)≤ τ
2
ρ (λ ,ζ ) .

Especially, if λ = ζ , then lim
y→∞

ρ (λy,ζy) = 0. Also, for z ∈U, we have

1
τ

ρ (λ ,z)≤ liminf
y→∞

ρ (λy,z)≤ limsup
y→∞

ρ (λy,z)≤ τρ (λ ,z) .

On the other hand, in 2010, Chistyakov [10, 11] put forth a novel concept which is known as modular metric space.

Definition 1.3. [10, 11] A function µ : (0,∞)×U×U→ [0,∞], defined by µ (σ ,λ ,ζ ) = µσ (λ ,ζ ), is called a modular metric
on a non-void set U if it satisfies the below statements for all λ ,ζ ,z ∈U:

(µ1) µσ (λ ,ζ ) = 0 for all σ > 0⇔ λ = ζ ,

(µ2) µσ (λ ,ζ ) = µσ (ζ ,λ ) for all σ > 0,

(µ3) µσ+χ (λ ,ζ )≤ µσ (λ ,z)+µχ (z,ζ ) for all σ ,χ > 0.

If instead of (µ1), the condition

(µ ′1) µσ (λ ,λ ) = 0 for all σ > 0

is fulfilled, then µ is said to be a (metric) pseudomodular on U.
By using the constant τ ≥ 1, the axiom (µ3) is revised with the following one by M. E. Ege and C. Alaca [12], and in this

case, the function µ is entitled as modular b−metric:

(µ ′3) µσ+χ (λ ,ζ )≤ τ
[
µσ (λ ,z)+µχ (z,ζ )

]
for all σ ,χ > 0.

Consequently, the pair (U,µ) is a modular b−metric space, which denotes M[MS .
Note that the notation of modular b−metric and modular metric coincide when τ = 1. Also, considering modular b−metric

µ on U, a modular set is specified by

Uµ =
{

ζ ∈U : ζ
µ∼λ

}
,

where
µ∼ is a binary relation on U identified by λ ∼ ζ ⇔ lim

σ→∞
µσ (λ ,ζ ) = 0 for λ ,ζ ∈U. Moreover, the set

U∗µ = {λ ∈U : ∃σ = σ (λ )> 0 such that µσ (λ ,λ0)< ∞} (λ0 ∈U)

is mentioned as M[MS (around λ0).
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Example 1.4. [12] Consider the space

`p =

{
(λy)⊂ R :

∞

∑
j=1
|λy|p < ∞

}
0 < p < 1,

σ ∈ (0,∞) and µσ (λ ,ζ ) = d(λ ,ζ )
σ

such that

d (λ ,ζ ) =

(
∞

∑
j=1
|λy−ζy|p

) 1
p

, λ = λy, ζ = ζy ∈ `p.

Eventually, one can conclude that (U,µ) is an M[MS .

Example 1.5. [13] Consider the equality µσ (λ ,ζ ) = (ωσ (λ ,ζ ))s, where (U,ω) is a modular metric space and s ≥ 1.
Thereupon, take into Jensen inequality account, together with the convexity of the function P (λ ) = λ s for λ ≥ 0, we get

(a + b)s ≤ 2s−1 (as + bs)

for a,b ∈ R+. Hence, (U,µ) is an M[MS with τ = 2s−1.

Definition 1.6. [12] Let U∗µ be an M[MS and {λy}y∈N ∈U∗µ be a sequence.

(c1) The sequence {λy}y∈N is µ−convergent to λ ∈U∗µ ⇔ µσ (λy,λ )→ 0, as y→ ∞ for all σ > 0.

(c2) The {λy}y∈N in U∗µ is a µ−Cauchy sequence if lim
y,m→∞

µσ (λy,λm) = 0 for all σ > 0.

(c3) The space U∗µ is called µ−complete provided that any µ−Cauchy sequence in U∗µ is µ−convergent to the point of U∗µ .

(c4) P : U∗µ → U∗µ is a µ−continuous mapping if µσ (λy,λ )→ 0, provided to µσ (P λy,P λ )→ 0 as y→ ∞.

Further, for more detail on modular b−metric, see [14]-[17].
As an auxiliary function, the class of simulation functions (briefly, SF ) was identified by Khojasteh et al. [18] in 2015, as

noted below.

Definition 1.7. [18] Let Ξ : [0,∞)× [0,∞)→ R be a mapping. If the axioms

(Ξ1) Ξ(0,0) = 0,

(Ξ2) Ξ(`,k )< k − ` for all `,k > 0,

(Ξ3) if {`y}, {ky} are sequences in (0,∞) such that lim
y→∞

`y = lim
y→∞

ky > 0, then limsup
y→∞

Ξ(`y,ky)< 0

are fulfilled, then, Ξ is an SF , and Z represents the set of all SF . Also, note that, from (Ξ2), we have Ξ(`,`)< 0 for all
` > 0.

Definition 1.8. [18] A self-mapping P : U→U on a metric space (U,d) is called Z-contraction with respect to Ξ ∈ Z provided
that, for all λ ,ζ ∈U, the subsequent inequality hold:

Ξ(d (P λ ,P ζ ) ,d (λ ,ζ ))≥ 0.

Moreover, Banach contraction mapping can be expressed via SF Ξ ∈ Z for which Ξ(`,k ) = γk − ` for all `,k ∈ [0,∞) and
γ ∈ [0,1).

The following expression was used for the first time by Fulga and Proca [19] in 2017 and subsequently referred to as
E−contraction or E type contraction:

E (λ ,ζ ) = d (λ ,ζ )+ |d (λ ,P λ )−d (ζ ,P ζ )| , (1.1)

whenever (U,d) is a complete metric space and λ ,ζ ∈U. Also, some studies involve such contraction; see [20]-[22]. One of
them was presented by A. Fulga and E. Karapınar [23] via SF in 2018, as indicated below:
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Theorem 1.9. [23] Let P be a self-mapping on a complete metric space (U,d). If there exists Ξ ∈ Z satisfying, for all λ ,ζ ∈U,

Ξ(d (P λ ,P ζ ) ,E (λ ,ζ ))≥ 0,

where E (λ ,ζ ) is defined as in (1.1), then P owns a fixed point.

In 2014, A.H. Ansari [24] proposed C−class functions as characterized in the subsequent definition.

Definition 1.10. [24] A continuous function A : [0,∞)× [0,∞)→ R is entitled C−class function if, for all `,k ∈ [0,∞), the
below statements hold:

(A1) A (`,k )≤ `;

(A2) A (`,k ) = ` implies that either `= 0 or k = 0.

Let C−class functions symbolize as C .

In 2018, Radenovic et al. [25] identified the idea of CA−SF by means of the C−class functions and SF .

Definition 1.11. [25] A mapping Ω : [0,∞)2→ R is referred to as CA−SF if the conditions

(Ω1) Ω(`,k )≤A (k , `) for all `,k > 0, where A : [0,∞)× [0,∞)→ R is a C−class functions,

(Ω2) if {`y} ,{ky} ∈ (0,∞) are sequences such that lim
y→∞

`y = lim
y→∞

ky > 0 and ky < `y, then limsup
y→∞

Ω(`y,ky)< CA

are provided.

Presume that Z ∗ symbolizes the family of all CA−SF .

Definition 1.12. [25] A mapping A : [0,∞)× [0,∞)→ R has the property CA , if CA ≥ 0 exists such that

(1) A (`,k )> CA implies ` > k ,

(2) A (`,`)≤ CA for all ` ∈ [0,∞).

The following theorem has a new precondition added to a contractive mapping and was proved by Suzuki [26] in 2009.
Herewith, many authors have mentioned this notation as a Suzuki-type contraction.

Theorem 1.13. [26] Let P : U → U be a self-mapping on a compact metric space (U,d). If, for all distinc λ ,ζ ∈ U, the
statement

1
2

d (λ ,P λ )< d (λ ,ζ )⇒ d (P λ ,P ζ )< d (λ ,ζ )

is hold, then, P owns a unique fixed point.

Very recently, Proinov [27] demonstrated a novel fixed point theorem by introducing some auxiliary functions, and
subsequently, via this theorem, many significant results were obtained.

Definition 1.14. [27] Let P : U→ U be a self mapping on a metric space (U,d) and F ,Q : (0,∞)→ R are two functions that
provide the following features:

(i) F is non-decreasing,

(ii) Q (s)< F (s) for all s > 0,

(iii) limsup
s→s0+

Q (s)< F (s0+) for any s0 > 0.

If, for all λ ,ζ ∈U and d (P λ ,P ζ )> 0, the inequality

F (d (P λ ,P ζ ))≤ Q (d (λ ,ζ ))

is fulfilled, then P is called Proinov type contraction.
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Theorem 1.15. [27] Let P : U→U be a Proinov type contraction on a complete metric space (U,m). Then, P admits a unique
fixed point.

Various fixed point results involving Proinov type contraction appear in the literature. Some examples are in [28]-[35].
In 2012, Samet et al. [36] introduced the class of α−admissible mappings, and subsequently, many new notations appear

via this mapping.

Definition 1.16. Let P ,S : U→ U be two mappings and α : U×U→ R be a function. Then, we have the following ideas.

(α1) [36] If α (λ ,ζ )≥ 1 implies α (P λ ,P ζ )≥ 1, then P is α−admissible,

(α2) [37] if α (λ ,P λ )≥ 1 implies α
(

P λ ,P 2ζ
)
≥ 1, then, P is α−orbital admissible,

(α3) [37] together with (α2), if α (λ ,ζ )≥ 1andα (ζ ,P ζ )≥ 1implyα (λ ,P ζ )≥ 1, then, P is triangular α−orbital admissible,

(α4) [38] together with (α1), if α (λ ,z)≥ 1 and α (z,ζ )≥ 1 imply α (λ ,ζ )≥ 1, then P is triangular α− admissible,

(α5) [39] together with (α4), if α (λ ,ζ )≥ 1 implies α (P λ ,Sζ )≥ 1 and α (SP λ ,PSζ )≥ 1, then, the pair (P ,S) is triangular
α−admissible.

Lemma 1.17. [37] Let P : U→ U be a triangular α−orbital admissible mapping. Assume that a λ0 ∈ U exists such that
α (λ0,P λ0)≥ 1. Construct a sequence {λy} by λy+1 = P λy. Then we have α (λy,λm)≥ 1 for all y,m ∈ N with y< m.

2. Main Results
Primarily, it is necessary to mention the below conditions to guarantee the existence and uniqueness of fixed points in

M[MS owing to not having to be finite.

(C1) µσ (λ ,P λ )< ∞ for all σ > 0 and λ ∈U∗µ ,

(C2) µσ (λ ,ζ )< ∞ for all σ > 0 and λ ,ζ ∈U∗µ .

Next, we establish a new contraction mapping by defining Suzuki−Proinov Z∗R
E∗(α)−contraction w.r.t Ω in the sense of

M[MS , as follows.

Definition 2.1. Let U∗µ be an M[MS with constant τ ≥ 1 and let P ,S : U∗µ → U∗µ and α : U∗µ ×U∗µ → R be mappings. Then,
we say that P and S are Suzuki−Proinov Z∗R

E∗(α)−contraction if there exists a CA−SF Ω ∈Z ∗ such that

1
2τ

min{µσ (λ ,P λ ),µσ (ζ ,Sζ )} ≤ µσ (λ ,ζ )

implies

Ω

(
α (λ ,ζ )F

(
τ

6
µσ (P λ ,Sζ )2

)
,Q (E∗ (λ ,ζ )R (λ ,ζ ))

)
≥ CA , (2.1)

where the functions F ,Q : (0,∞)→ R are hold the below requirement:

(c1) F is lower semi-continuous and non-decreasing;

(c2) Q (s)< F (s) for all s > 0;

(c3) limsup
s→s0+

Q (s)< F (s0+) for any s0 > 0,

and also,

E∗ (λ ,ζ ) = µσ (λ ,ζ )+ |µσ (λ ,P λ )−µσ (ζ ,Sζ )|

and

R (λ ,ζ ) =
µσ (λ ,P λ )µσ (λ ,Sζ )+ [µσ (λ ,ζ )]

2 +µσ (λ ,P λ )µσ (λ ,ζ )

µσ (λ ,P λ )+µσ (λ ,ζ )+µσ (λ ,Sζ )

for all distinct λ ,ζ ∈U∗µ , µσ (P λ ,Sζ )> 0 and for all σ > 0.
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Theorem 2.2. Let U∗µ be a µ−complete M[MS with constant τ ≥ 1 and P and S be a Suzuki−Proinov Z∗R
E∗(α)−contraction

w.r.t. Ω. Assume that the following conditions hold:

(i) the pair (P ,S) is triangular α−admissible,

(ii) there exists λ0 ∈U∗µ such that α (λ0,P λ0)≥ 1,

(iii) P ,S are µ−continuous,

(iv) there exists λ ,ζ ∈CFix(P ,S), where CFix (P ,S) represents set of common fixed points of P and S , such that α (λ ,ζ )≥ 1.

In case of satisfying (C1), there there exists λ ∗ ∈ U∗µ such that λ ∗ ∈ CFix (P ,S). Also, additionally, if (C2) is hold, then
CFix (P ,S) = {λ ∗}.

Proof. Let λ0 ∈U∗µ be a specified point such that α (λ0,P λ0)≥ 1. Construct an iterative sequence {λy}y∈N in Uµ
∗ such that

λ2y+1 = P λ2y and λ2y+2 = Sλ2y+1, for all y ∈ N.

On the other hand, regarding that (P ,S) is triangular α−admissible, we derive

α (λ0,λ1) = α (λ0,P λ0)≥ 1 ⇒

 α (P λ0,Sλ1) = α (λ1,λ2)≥ 1
and
α (SP λ0,PSλ1) = α (Sλ1,P λ2) = α (λ2,λ3)≥ 1.

Likewise, we get

α (λ2,λ3)≥ 1 ⇒

 α (P λ2,Sλ3) = α (λ3,λ4)≥ 1
and
α (SP λ2,PSλ3) = α (Sλ3,P λ4) = α (λ2,λ3)≥ 1.

Thereby, recursively, we conclude that

α (λ2y,λ2y+1)≥ 1. (2.2)

Also, if there is some y0 ∈ N such that λy0 = λy0+1, then CFix (P ,S) = {y0}. Thereupon, we presume that λk 6= λk+1 for all
k ∈ N, which indicates that µσ (λk,λk+1)> 0 for all σ > 0. Next, we assume that k = 2y for some y ∈ N. Because

1
2τ

min{µσ (λ2y,P λ2y),µσ (λ2y+1,Sλ2y+1)}= 1
2τ

min{µσ (λ2y,λ2y+1),µσ (λ2y+1,λ2y+2)}

≤ µσ (λ2y,λ2y+1),

from (2.1) and (Θ1), we have

CA ≤Ω

(
α (λ2y,λ2y+1)F

(
τ6µσ (P λ2y,Sλ2y+1)

2
)
,Q (E∗ (λ2y,λ2y+1)R (λ2y,λ2y+1))

)
= Ω

(
α (λ2y,λ2y+1)F

(
τ6µσ (λ2y+1,λ2y+2)

2
)
,Q (E∗ (λ2y,λ2y+1)R (λ2y,λ2y+1))

)
< A

(
Q (E∗ (λ2y,λ2y+1)R (λ2y,λ2y+1)) ,α (λ2y,λ2y+1)F

(
τ6µσ (λ2y+1,λ2y+2)

2
))

,

and by (c2), (2.2) and the properties CA , we yield

F
(

τ6µσ (λ2y+1,λ2y+2)
2
)
≤ α (λ2y,λ2y+1)F

(
τ6µσ (λ2y+1,λ2y+2)

2
)
< Q (E∗ (λ2y,λ2y+1)R (λ2y,λ2y+1))

< F (E∗ (λ2y,λ2y+1)R (λ2y,λ2y+1)) ,

(2.3)

where

E∗ (λ2y,λ2y+1) = µσ (λ2y,λ2y+1)+ |µσ (λ2y,P λ2y)−µσ (λ2y+1,Sλ2y+1)|

= µσ (λ2y,λ2y+1)+ |µσ (λ2y,λ2y+1)−µσ (λ2y+1,λ2y+2)|
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and

R (λ2y,λ2y+1) =
µσ(λ2y,P λ2y)µσ (λ2y,Sλ2y+1)+[µσ(λ2y,λ2y+1)]

2
+µσ(λ2y,P λ2y)µσ(λ2y,λ2y+1)

µσ(λ2y,P λ2y)+µσ(λ2y,λ2y+1)+µσ (λ2y,Sλ2y+1)

=
µσ(λ2y,λ2y+1)µσ (λ2y,λ2y+2)+[µσ(λ2y,λ2y+1)]

2
+µσ(λ2y,λ2y+1)µσ(λ2y,λ2y+1)

µσ(λ2y,λ2y+1)+µσ(λ2y,λ2y+1)+µσ (λ2y,λ2y+2)

=
µσ(λ2y,λ2y+1)[µσ (λ2y,λ2y+2)+µσ(λ2y,λ2y+1)+µσ(λ2y,λ2y+1)]

µσ(λ2y,λ2y+1)+µσ(λ2y,λ2y+1)+µσ (λ2y,λ2y+2)

= µσ (λ2y,λ2y+1) .

Denote µσ (λy,λy+1) by κy. Now, if max{κ2y,κ2y+1}= κ2y+1, then, we get E∗ (λ2y,λ2y+1) = κ2y+1 and R (λ2y,λ2y+1) =
κ2y. Thereupon, (2.3) turns into

F
(

κ
2
2y+1

)
≤ F

(
τ

6
κ

2
2y+1

)
< Q (κ2y+1.κ2y)< F (κ2y+1.κ2y) ,

such that, by utilizing the function F ’s characteristics, we conclude that κ2y+1 < κ2y. However, this contradicts our assumptions.
Thereby, we achieve max{κ2y,κ2y+1}= κ2y, which implies that E∗ (λ2y,λ2y+1) = 2κ2y−κ2y+1. Then, (2.3) becomes

F
(

κ
2
2y+1

)
≤ F

(
τ

6
κ

2
2y+1

)
< Q ((2κ2y−κ2y+1.)κ2y)< F ((2κ2y−κ2y+1.)κ2y) , (2.4)

by (c1), we obtain that

κ2
2y+1

< (2κ2y−κ2y+1.)κ2y ⇔ κ2
2y+1

< 2κ2
2y
−κ2yκ2y+1 < 2κ2

2y
−κ2

2y+1

⇔ 2κ2
2y+1

< 2κ2
2y

⇔ κ2y+1 < κ2y.

Likewise, one concludes that κ2y < κ2y−1. So, we say that that {κy}y∈N = {µσ (λy,λy+1)}y∈N is a non-increasing sequence
of non-negative real numbers. Also, a similar consequence can be obtained when k is an odd number. Then, there exists p≥ 0
such that lim

y→∞
κy = p. Assume on the contrary, we aim to show that p > 0. Then, by (2.4), we have

F
(

p2
)
≤ lim

y→∞
F
(

κ2
2y+1

)
< lim

y→∞
Q ((2κ2y−κ2y+1.)κ2y)< lim

y→∞
F ((2κ2y−κ2y+1.)κ2y) = F

(
p2
)
,

which emerges a contradiction, which means that, for all σ > 0,

lim
y→∞

µσ (λy,λy+1) = 0. (2.5)

Now, it is required to indicate {λy}y∈N is a µ−Cauchy sequence. Rather, presume that {λy}y∈N is not a µ−Cauchy sequence.
Then, for at least a ε > 0 and yh > mh > h whenever h ∈ N∪{0} and let yh be the smallest index such that the following
expressions are provided:

µσ

(
λ2mh ,λ2yh

)
≥ ε and µσ

(
λ2mh ,λ2yh−2

)
< ε, for all σ > 0. (2.6)

By using (2.5), (2.6) and (µ ′3), we yield

ε ≤ µ4σ

(
λ2mh ,λ2yh

)
≤ τµ2σ

(
λ2mh ,λ2mh+1

)
+ τ2µσ

(
λ2mh+1,λ2yh+2

)
+τ3µσ/2

(
λ2yh+2,λ2yh+1

)
+ τ3µσ/2

(
λ2yh+1,λ2yh

)
such that

limsup
h→∞

µσ

(
λ2mh+1,λ2yh+2

)
≥ ε

τ2 . (2.7)
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Also, we get

µσ

(
λ2mh ,λ2yh+1

)
≤ τµσ/2

(
λ2mh ,λ2yh−2

)
+ τ2µσ/4

(
λ2yh−2,λ2yh−1

)
+τ3µσ/8

(
λ2yh−1,λ2yh

)
+ τ3µσ/8

(
λ2yh ,λ2yh+1

)
.

(2.8)

Thereby, by taking the limit superior in (2.8) and using (2.5), we obtain that

limsup
h→∞

µσ

(
λ2mh ,λ2yh+1

)
≤ τε. (2.9)

Also, from the (2.5) and (2.6), we achieve that

µσ

(
λ2mh ,λ2yh+2

)
≤ τµσ/2

(
λ2mh ,λ2yh−2

)
+ τ2µσ/4

(
λ2yh−2,λ2yh−1

)
+τ3µσ/8

(
λ2yh−1,λ2yh

)
+ τ4µσ/16

(
λ2yh ,λ2yh+1

)
+ τ4µσ/16

(
λ2yh+1,λ2yh+2

)
and letting h → ∞, we attain

limsup
h→∞

µσ

(
λ2mh ,λ2yh+2

)
≤ τε. (2.10)

Furthermore, if yh > mh > h for sufficiently large h ∈ N, we assert

1
2τ

min
{

µσ

(
λ2yh ,P λ2yh

)
,µσ

(
λ2mh−1,Sλ2mh−1

)}
≤ µσ

(
λ2yh ,λ2mh−1

)
. (2.11)

Given the fact that, yh > mh and {µσ (λy,λy+1)}y≥1 is non-decreasing, we acquire

µσ

(
λ2yh ,P λ2yh

)
= µσ

(
λ2yh ,λ2yh+1

)
≤ µσ

(
λ2mh ,λ2mh+1

)
≤ µσ

(
λ2mh−1,λ2mh

)
= µσ

(
λ2mh−1,Sλ2mh−1

)
.

Hence,

1
2τ

min
{

µσ

(
λ2yh ,P λ2yh

)
,µσ

(
λ2mh−1,Sλ2mh−1

)}
=

1
2τ

µσ

(
λ2yh ,P λ2yh

)
=

1
2τ

µσ

(
λ2yh ,λ2yh+1

)
.

According to (2.5), there exists h1 ∈ N such that for any h > h1,

µσ

(
λ2yh ,λ2yh+1

)
<

ε

2τ
.

Also, there exists h2 ∈ N such that for any h > h2,

µσ

(
λ2mh−1,λ2mh

)
<

ε

2τ
.

Hence, for any h > max{h1,h2} and yh > mh > h , we get

ε ≤ µ2σ

(
λ2yh ,λ2mh

)
≤ τµσ

(
λ2yh ,λ2mh−1

)
+ τµσ

(
λ2mh−1,λ2mh

)
≤ τµσ

(
λ2yh ,λ2mh−1

)
+ τ

ε

2τ
.

So, one can conclude that
ε

2τ
≤ µσ

(
λ2yh ,λ2mh−1

)
.

Thus, we deduce that for any h > max{h1,h2} and yh > mh > h ,

µσ

(
λ2yh ,λ2yh+1

)
<

ε

2τ
≤ µσ

(
λ2yh ,λ2mh−1

)
which implies that (2.11) is hold. Also, by using that (P ,S) is triangular α−admissible pair, we can write α

(
λ2mh ,λ2yh+1

)
≥ 1.

Therefore, from (2.1), we conclude that

CA ≤Ω

(
α
(
λ2mh ,λ2yh+1

)
F
(

τ6µσ

(
P λ2mh ,Sλ2yh+1

)2
)
,Q
(

E∗
(
λ2mh ,λ2yh+1

)
R
(
λ2mh ,λ2yh+1

)))
= Ω

(
α
(
λ2mh ,λ2yh+1

)
F
(

τ6µσ

(
P λ2mh ,Sλ2yh+1

)2
)
,Q
(

E∗
(
λ2mh ,λ2yh+1

)
R
(
λ2mh ,λ2yh+1

)))
< A

(
Q
(

E∗
(
λ2mh ,λ2yh+1

)
R
(
λ2mh ,λ2yh+1

))
,α
(
λ2mh ,λ2yh+1

)
F
(

τ6µσ

(
P λ2mh ,Sλ2yh+1

)2
))

,
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and by the properties of CA and (c2), we deduce that

F
(

τ6µσ

(
P λ2mh ,Sλ2yh+1

)2
)
≤ α

(
λ2mh ,λ2yh+1

)
F
(

τ6µσ

(
P λ2mh ,Sλ2yh+1

)2
)

< Q
(

E∗
(
λ2mh ,λ2yh+1

)
R
(
λ2mh ,λ2yh+1

))
< F

(
E∗
(
λ2mh ,λ2yh+1

)
R
(
λ2mh ,λ2yh+1

))
,

(2.12)

where

E∗
(
λ2mh ,λ2yh+1

)
= µσ

(
λ2mh ,λ2yh+1

)
+
∣∣µσ

(
λ2mh ,P λ2mh

)
−µσ

(
λ2yh+1,Sλ2yh+1

)∣∣
= µσ

(
λ2mh ,λ2yh+1

)
+
∣∣µσ

(
λ2mh ,λ2mh+1

)
−µσ

(
λ2yh+1,λ2yh+2

)∣∣ (2.13)

and

R
(
λ2mh ,λ2yh+1

)
=

µσ

(
λ2mh

,P λ2mh

)
µσ

(
λ2mh

,Sλ2yh+1

)
+
[
µσ

(
λ2mh

,λ2yh+1

)]2
+µσ

(
λ2mh

,P λ2mh

)
µσ

(
λ2mh

,λ2yh+1

)
µσ

(
λ2mh

,P λ2mh

)
+µσ

(
λ2mh

,λ2yh+1

)
+µσ

(
λ2mh

,Sλ2yh+1

)

=
µσ

(
λ2mh

,λ2mh+1

)
µσ

(
λ2mh

,λ2yh+2

)
+
[
µσ

(
λ2mh

,λ2yh+1

)]2
+µσ

(
λ2mh

,λ2mh+1

)
µσ

(
λ2mh

,λ2yh+1

)
µσ

(
λ2mh

,λ2mh+1

)
+µσ

(
λ2mh

,λ2yh+1

)
+µσ

(
λ2mh

,λ2yh+2

) .

(2.14)

Next, letting h → ∞ in (2.12), (2.13) and (2.14), and also, by using (2.5), (2.7), (2.9) and (2.10), we acquire that

F
(
τ2ε2

)
= F

(
τ6
(

ε

τ2

)2
)
≤ limsup

y→∞

F
(

τ6µσ

(
P λ2mh ,Sλ2yh+1

)2
)

< limsup
y→∞

Q
(

E∗
(
λ2mh ,λ2yh+1

)
R
(
λ2mh ,λ2yh+1

))
< limsup

y→∞

F
(

E∗
(
λ2mh ,λ2yh+1

)
R
(
λ2mh ,λ2yh+1

))
≤ F

(
τε. (τε)2

τε+τε

)
= F

(
τ2ε2

2

)
.

This causes a contradictory, that is, {λy}y∈N is a µ−Cauchy sequence on a µ−complete M[MS . Thereby, a point λ ∗ exists in
U∗µ such that

lim
y→∞

λy = λ
∗. (2.15)

Considering the continuity of the mappings and (2.15), we get

P λ ∗ = P
(

lim
y→∞

λ2y

)
= lim

y→∞
P λ2y = lim

y→∞
λ2y+1 = λ ∗

= lim
y→∞

λ2y+2 = lim
y→∞

Sλ2y+1

= S
(

lim
y→∞

λ2y+1

)
= Sλ ∗.

Thereupon, we conclude that λ ∗ is a common fixed point of P and S . Finally, we prove that the point λ ∗ is unique. For this,
there is λ̂ , which is another common fixed point, such that λ ∗ 6= λ̂ . So, from the condition (iv), we deduce that α

(
λ ∗, λ̂

)
≥ 1.

Hence, since

0 =
1

2τ
min

{
µσ (λ ∗,P λ

∗) ,µσ

(
λ̂ ,S λ̂

)}
≤ µσ

(
λ
∗, λ̂
)
,
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by using (2.1) and (Θ1), we gain

CA ≤Ω

(
α

(
λ ∗, λ̂

)
F
(

τ6µσ

(
P λ ∗,S λ̂

)2
)
,Q
(

E∗
(

λ ∗, λ̂
)

R
(

λ ∗, λ̂
)))

= Ω

(
α

(
λ ∗, λ̂

)
F
(

τ6µσ

(
λ ∗, λ̂

)2
)
,Q
(

E∗
(

λ ∗, λ̂
)

R
(

λ ∗, λ̂
)))

< A

(
Q
(

E∗
(

λ ∗, λ̂
)

R
(

λ ∗, λ̂
))

,α
(

λ ∗, λ̂
)

F
(

τ6µσ

(
λ ∗, λ̂

)2
))

and by Definition 1.12 and (c2), we get

F
(

τ6µσ

(
λ ∗, λ̂

)2
)
≤ α

(
λ ∗, λ̂

)
F
(

τ6µσ

(
λ ∗, λ̂

)2
)
< Q

(
E∗
(

λ ∗, λ̂
)

R
(

λ ∗, λ̂
))

< F
(

E∗
(

λ ∗, λ̂
)

R
(

λ ∗, λ̂
))

,

(2.16)

where

E∗
(

λ
∗, λ̂
)
= µσ

(
λ
∗, λ̂
)
+
∣∣∣µσ (λ ∗,P λ

∗)−µσ

(
λ̂ ,S λ̂

)∣∣∣= µσ

(
λ
∗, λ̂
)

and

R
(

λ
∗, λ̂
)
=

µσ (λ ∗,P λ ∗)µσ

(
λ ∗,S λ̂

)
+
[
µσ

(
λ ∗, λ̂

)]2
+µσ (λ ∗,P λ ∗)µσ

(
λ ∗, λ̂

)
µσ (λ ∗,P λ ∗)+µσ

(
λ ∗, λ̂

)
+µσ

(
λ ∗,S λ̂

) =
µσ

(
λ ∗, λ̂

)
2

.

Consequently, considering the above equalities, the inequality (2.16) turns into

F
(

τ
6
µσ

(
λ
∗, λ̂
)2
)
< F

µσ

(
λ
∗, λ̂
)
.
µσ

(
λ ∗, λ̂

)
2

= F

µσ

(
λ ∗, λ̂

)2

2

 ,

which causes a contradiction. In turn, we achieve that λ ∗ = λ̂ , which means that CFix (P ,S) = {λ ∗}. This ends the proof.

3. Consequences
In this part of the study, we discuss some of the implications of the fundamental observation. Primarily, if the restriction

1
2τ

min{µσ (λ ,P λ ),µσ (ζ ,Sζ )} ≤ µσ (λ ,ζ )

is ignored, Theorem 2.2 yields the subsequent consequence.

Corollary 3.1. Let U∗µ be a µ−complete M[MS with τ ≥ 1, α : U∗µ ×U∗µ → R be a function and P ,S : U∗µ → U∗µ be two
self-mappings. Assume that the following assertions are true:

(i) there exists CA−SF Ω ∈Z ∗ such that

Ω

(
α (λ ,ζ )F

(
τ

6
µσ (P λ ,Sζ )2

)
,Q (E∗ (λ ,ζ )R (λ ,ζ ))

)
≥ CA ,

where F ,Q , E (λ ,ζ ) and R (λ ,ζ ) are defined as in Definition 2.1 for all distinct λ ,ζ ∈U∗µ , µσ (P λ ,Sζ )> 0 and for all
σ > 0,

(ii) the pair (P ,S) is triangular α−admissible and there exists λ0 ∈U∗µ such that α (λ0,P λ0)≥ 1,

(iii) P ,S are µ−continuous,
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(iv) there exist λ ,ζ ∈CFix(P ,S) such that α (λ ,ζ )≥ 1.

Under the conditions (C1) and (C2), λ ∗ ∈U∗µ exists such that CFix (P ,S) = {λ ∗}.
Moreover, take into α (λ ,ζ ) = 1 account in Corollary 3.1, the next result is determined.

Corollary 3.2. Let U∗µ be a µ−complete M[MS with τ ≥ 1 and P ,S : U∗µ → U∗µ be two self-mappings there exists CA−SF
Ω ∈Z ∗ such that

Ω

(
F
(

τ
6
µσ (P λ ,Sζ )2

)
,Q (E∗ (λ ,ζ )R (λ ,ζ ))

)
≥ CA ,

where F ,Q , E (λ ,ζ ) and R (λ ,ζ ) are defined as in Definition 2.1 for all distinct λ ,ζ ∈U∗µ , µσ (P λ ,Sζ )> 0 and for all σ > 0.
Thereupon, together with (C1) and (C2), we conclude that CFix (P ,S) = {λ ∗}.
Corollary 3.3. Let U∗µ be a µ−complete M[MS with a constant τ ≥ 1, α : U∗µ ×U∗µ →R be a function and P : U∗µ →U∗µ be a
self-mapping. Assume that the below requirements are met:

(i) there exists CA−SF Ω ∈Z ∗ such that

1
2τ

µσ (λ ,P λ )≤ µσ (λ ,ζ )

implies

Ω

(
α (λ ,ζ )F

(
τ

6
µσ (P λ ,P ζ )2

)
,Q (E∗ (λ ,ζ )R (λ ,ζ ))

)
≥ CA ,

where the functions F ,Q are as indicated in Definition 2.1 and also, E (λ ,ζ ) as in (1.1) and

R (λ ,ζ ) =
µσ (λ ,P λ )µσ (λ ,P ζ )+ [µσ (λ ,ζ )]

2 +µσ (λ ,P λ )µσ (λ ,ζ )

µσ (λ ,P λ )+µσ (λ ,ζ )+µσ (λ ,P ζ )

for all distinct λ ,ζ ∈U∗µ , µσ (P λ ,P ζ )> 0 and for all σ > 0,

(ii) P is a triangular α−orbital admissible mapping and there exists λ0 ∈U∗µ such that α (λ0,P λ0)≥ 1,

(iii) P is µ−continuous,

(iv) there exist λ ,ζ ∈ Fix(P ) such that α (λ ,ζ )≥ 1.

So, under the conditions (C1) and (C2), P has a unique fixed point.

Proof. Letting P = S in Theorem 2.2, and by Lemma 1.17, we achieve the desired results.

Corollary 3.4. Let U∗µ be a µ−complete M[MS with a constant τ ≥ 1, α : U∗µ ×U∗µ → R be a function and P ,S : U∗µ → U∗µ
be two self-mappings. Assume that the following assertions are true:

(i) there exists CA−SF Ω ∈Z ∗ such that

1
2τ

min{µσ (λ ,P λ ),µσ (ζ ,Sζ )} ≤ µσ (λ ,ζ )

implies

α (λ ,ζ )F
(

τ
6
µσ (P λ ,Sζ )2

)
≤ Q (E∗ (λ ,ζ )R (λ ,ζ )),

where F ,Q , E (λ ,ζ ) and R (λ ,ζ ) are defined as in Definition 2.1 for all distinct λ ,ζ ∈U∗µ , µσ (P λ ,Sζ )> 0 and for all
σ > 0;

(ii) the pair (P ,S) is triangular α−admissible and there exists λ0 ∈U∗µ such that α (λ0,P λ0)≥ 1,

(iii) P ,S are µ−continuous,

(iv) there exists λ ,ζ ∈CFix(P ,S) such that α (λ ,ζ )≥ 1.

Thereupon, CFix (P ,S) = {λ ∗} provided that (C1) and (C2) are met.

Proof. Letting CA−SF Ω ∈Z ∗ with the properties CA in Definition 1.12.

Remark 3.5. Note that all of the results can be again evaluated with respect to Ξ ∈ Z in place of CA−SF Ω ∈Z ∗. Besides,
as in Corollary 3.3, different results can be obtained when P = S .
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4. An Application to Dynamic Programming
We assume that Λ and Φ are Banach spaces, Σ ⊆ Λ and ϒ ⊆ Φ such that Σ and ϒ are state space and decision space,

respectively. Consider the system of functional equations:

q(λ ) = max
ζ∈ϒ

{ f (λ ,ζ )+G(λ ,ζ ,q(ξ (λ ,ζ )))} , λ ∈ Σ

where f : Σ×ϒ→ R and G : Σ×ϒ×R→ R are bounded, ξ : Σ×ϒ→ Σ. Let Uµ = B(Σ) denotes the space of all bounded
real-valued functions on Σ. Consider the metric defined by

µσ (ς ,ϖ) =
1
σ

max
λ∈Σ

|ς(λ )−ϖ(λ )|2, for all ς ,ϖ ∈ Λ and σ > 0.

Then, Uµ is a µ−complete M[MS with τ = 2. Moreover, let P : Uµ → Uµ be given by

P ς (λ ) = sup
ζ∈ϒ

{ f (λ ,ζ )+G(λ ,ζ ,ς (ξ (λ ,ζ )))} , (4.1)

where λ ∈ Σ and ς ∈Uµ . If the functions f and G are bounded, then Λ and Φ are well-defined.

Theorem 4.1. Let P : Uµ → Uµ be an operator defined by (4.1) and suppose that the following conditions are hold:

(i) f and G are bounded;

(ii) for ∀ς ,ϖ ∈Uµ , ∀λ ∈ Σ, ∀ζ ∈ ϒ, there exists δ ∈ (0,1) such that

|G(λ ,ζ ,ς (λ ))−G(λ ,ζ ,ϖ (λ ))|< δ
1/4 |ς (λ )−ϖ (λ )| .

Then, the function equation (4.1) has a bounded solution; that is, P has a fixed point.

Proof. Let ε ∈ R+ be arbitrary, λ ∈ Σ and ς ∈Uµ . Assume that P ς 6= ς . Then, ζ1,ζ2 ∈ ϒ exist such that

P ς (λ )< f (λ ,ζ1)+G(λ ,ζ1,ς (ξ (λ ,ζ1)))+ ε, (4.2)

ϖ (λ )< f (λ ,ζ2)+G(λ ,ζ2,ϖ (ξ (λ ,ζ1)))+ ε, (4.3)

P ς (λ )≥ f (λ ,ζ2)+G(λ ,ζ2,ς (ξ (λ ,ζ2))) , (4.4)

ϖ (λ )≥ f (λ ,ζ1)+G(λ ,ζ1,ϖ (ξ (λ ,ζ1))) . (4.5)

Then, from (4.2) and (4.5), we yield that

P ς (λ )−ϖ (λ )< G(λ ,ζ1,ς (ξ (λ ,ζ1)))−G(λ ,ζ1,ϖ (ξ (λ ,ζ1)))+ ε

≤ |G(λ ,ζ1,ς (ξ (λ ,ζ1)))−G(λ ,ζ1,ϖ (ξ (λ ,ζ1)))|+ ε

< δ 1/4 |ς (λ )−ϖ (λ )|+ ε.

Likewise, from (4.3) and (4.4), we get

ϖ (λ )−P ς (λ )< G(λ ,ζ2,ϖ (ξ (λ ,ζ2)))−G(λ ,ζ2,ς (ξ (λ ,ζ2)))+ ε

≤ |G(λ ,ζ2,ϖ (ξ (λ ,ζ2)))−G(λ ,ζ2,ς (ξ (λ ,ζ2)))|+ ε

< δ 1/4 |ς (λ )−ϖ (λ )|+ ε.
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Hence, by considering the above inequalities, we conclude that

|P ς (λ )−ϖ (λ )|< δ
1/4 |ς (λ )−ϖ (λ )|+ ε,

and, for an arbitrary ε

|P ς (λ )−ϖ (λ )| ≤ δ
1/4 |ς (λ )−ϖ (λ )| .

So, we have

µσ (P ς (λ ) ,ϖ (λ )) =
1
σ
|P ς (λ )−ϖ (λ )|2 ≤ 1

σ
δ

1/2|ς (λ )−ϖ (λ )|2 = δ
1/2

µσ (ς (λ ) ,ϖ (λ )) . (4.6)

Now, in Theorem 2.2, we take Ω(`,k ) = γk −` with γ ∈ (0,1), CA = 0 and A (`,k ) = `−k , and also, α (λ ,ζ ) = 1, F (s) = s,
Q (s) = s

2 and lastly S = I, which means that

E∗ (ς (λ ) ,ϖ (λ )) = µσ (ς (λ ) ,ϖ (λ ))+µσ (ς (λ ) ,P ς (λ ))

and

R (ς (λ ) ,ϖ (λ )) =
µσ (ς (λ ) ,ϖ (λ )) [2µσ (ς (λ ) ,P ς (λ ))+µσ (ς (λ ) ,ϖ (λ ))]

µσ (ς (λ ) ,P ς (λ ))+2µσ (ς (λ ) ,ϖ (λ ))
.

Thereby, by a simple calculation, Theorem 2.2 turns into

µσ (P ς (λ ) ,ϖ (λ ))2 ≤ γ

128 E∗ (ς (λ ) ,ϖ (λ ))R (ς (λ ) ,ϖ (λ ))

≤ γ

128 [µσ (ς (λ ) ,ϖ (λ ))+µσ (ς (λ ) ,P ς (λ ))µσ (ς (λ ) ,ϖ (λ ))] .

(4.7)

Consequently, from the inequality (4.6), we deduce that

µσ (P ς (λ ) ,ϖ (λ ))2 ≤ δ µσ (ς (λ ) ,ϖ (λ ))2

≤ δ [µσ (ς (λ ) ,ϖ (λ ))+µσ (ς (λ ) ,P ς (λ ))µσ (ς (λ ) ,ϖ (λ ))] ,

which means that, by taking δ = γ

128 ∈ (0,1), (4.7) is satisfied, that is, all the conditions of Theorem 2.2 are met. Thus, we gain
that P has a fixed point, i.e., the functional equation (4.1) has a bounded solution.
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