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Abstract
Simplicial distributions provide a framework for studying quantum contextuality, a gen-
eralization of Bell’s non-locality. Understanding extremal simplicial distributions is of
fundamental importance with applications to quantum computing. We introduce a rank
formula for twisted simplicial distributions defined for 2-dimensional measurement spaces
and provide a systematic approach for describing extremal distributions.
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1. Introduction
The theory of simplicial distributions introduced in [17] is a framework for describing

quantum contextuality, a fundamental feature of quantum theory generalizing Bell’s non-
locality [4,13]. In this framework, measurements and outcomes are represented by spaces
modeled by combinatorial objects called simplicial sets [7]. This framework generalizes
the theory of non-signaling distributions formulated in the language of sheaf-theory [1] by
elevating sets of measurements and outcomes to spaces of measurements and outcomes.
Simplicial distributions constitute a polytope whose vertices (extreme distributions) are
of fundamental importance in quantum foundations [3, 10, 20, 21]. Non-contextual distri-
butions are described by a subpolytope whose facets are given by the Bell inequalities. In
this paper, we introduce graph-theoretic methods to identify the contextual vertices of the
polytope of twisted simplicial distributions. Our approach will introduce a notion of rank
for simplicial distributions to detect whether a distribution is a vertex.

A simplicial distribution on a scenario consisting of a space X of measurements and
space Y of outcomes is a simplicial set map of the form

p : X → D(Y )
where D(Y ) is a simplicial set that models the space of distributions on the outcome
space. In this paper we will restrict to the case where X is a simplicial set generated
by 2-dimensional simplices σ1, σ2, · · · , σN , and Y is the nerve space of the additive group
Z2 = {0, 1}. Topologically X is a 2-dimensional space obtained by gluing the 2-simplices
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(a) (b)

Figure 1. Triangle σ with faces x = d2σ, y = d0σ and z = d1σ. (a) A twisted
simplicial distribution on σ with β(σ) = 0. The d0-face is given by p0

y = p00 + p10.
(b) A twisted simplicial distribution with β(σ) = 1. The d0-face is given by
p0

y = p01 + p11.

(triangles) along their faces and possibly collapsing some of them. Our choice of the out-
comes space reflects the restriction that our measurements have binary outcomes. More
concretely, a simplicial distribution p consists of a family {pσi : i = 1, 2, · · · , N} of prob-
ability distributions

{pab
σi

∈ R≥0 : a, b ∈ Z2,
∑
a,b

pab
σ = 1}

satisfying a compatibility condition induced by the face relations. Simplicial distributions
on X define a polytope with finitely many vertices. The face relations impose conditions
in the form of marginals, e.g., for the d0-face of a triangle σ, we have

p0
d0σ = p00

σ + p10
σ .

In this paper, we extend our interest to twisted distributions. For a 2-cocycle β : X2 → Z2
we write sDistβ(X) for the polytope of β-twisted simplicial distributions on X. The effect
of the twisting appears only in the d0-face, and the marginalization formula above is
generalized as follows:

p0
d0σ =

{
p00

σ + p10
σ β(σ) = 0

p11
σ + p01

σ β(σ) = 1.

Given a twisted simplicial distribution p, we define a simplicial subset Zp ⊂ X consisting
of simplices on which the distribution is deterministic, i.e., given by a delta-distribution.
The rank of p is defined to be the rank of the matrix consisting of the defining inequalities
of the polytope sDistβ(X) that are tight at p. It is a well-known fact from polytope
theory that the rank of this matrix determines whether a point is a vertex. Our main
result provides a formula for the rank. For a simplicial set X, we will write X◦

n to denote
the subset of non-degenerate simplices. Given a triangle σ, the set of 1-simplices in its
boundary is denoted by ∂σ.

Theorem. Let X be a simplicial set generated by 2-simplices σ1, σ2, · · · , σN such that
each ∂σi consists of either three distinct non-degenerate 1-simplices or two distinct non-
degenerate 1-simplices and a remaining degenerate 1-simplex. Consider a twisted distri-
bution p ∈ sDistβ(X) satisfying the following conditions:

• for each generating 2-simplex σ, pab
σ = 0 for at least one pair (a, b) ∈ Z2

2, and
• every non-degenerate 1-simplex of X̄ = X/Zp belongs precisely to two generating

2-simplices.
Then we have

rank(p) = |(Zp)◦
1| + |X̄◦

2 | − b(X̄, p̄).

The crucial component of the rank formula is b(X, p), a natural number defined for a
twisted simplicial distribution. Our graph-theoretic approach is based on constructing a
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signed graph associated with p and b(X, p) is the number of balanced components in this
graph. Balancedness is an important property for signed graphs. A connected graph is
called balanced if the sign of every circle contained in it, which is simply given by the
product of the signs of the edges in the circle, is positive. In the theorem, we apply this
construction to the quotient space X̄ = X/Zp and the twisted distribution p̄ constructed
in Proposition 2.20 using a cocycle obtained by a cohomology long exact sequence. In the
last section, we demonstrate how to apply the rank formula to describe the vertices of
sDist(X) for the following important scenarios:

• In Section 4.1, we study cycle scenarios whose measurement space consists of a disk
triangulated into N triangles. This scenario is the generalization of the famous
Clauser–Horne–Shimony–Holt (CHSH) scenario [8].

• The scenario whose measurement space is the boundary of a tetrahedron is con-
sidered in Section 4.2. Describing these vertices was a key step in the topological
proof of Fine’s theorem [17], that characterizes non-contextual distributions on the
CHSH scenario.

• The Mermin scenario [15] provides contextual distributions that arise in quantum
theory. In [18], a topological realization is provided where the underlying mea-
surement space is a torus. The vertices of the polytope of twisted distributions for
different cocycles are studied in [16]. We reproduce the vertices in Section 4.3.

As displayed in these examples, the rank formula provides a systematic study of the vertices
of the polytope of twisted distributions. We expect this approach will also be useful in
analyzing more complicated polytopes in the context of classical simulation algorithms for
quantum computation [24]. Some ideas in this direction appear in [9, 16]. The theory of
twisted simplicial distributions is fully developed in [19] beyond the two-dimensional case.

The paper is structured as follows. In Section 2, we introduce simplicial sets focusing
on the 2-dimensional case. We introduce twisted simplicial distributions in this restricted
setting. Our main result of this section, Proposition 2.20, is proved using ideas from
cohomology of simplicial sets and products of twisted distributions. In Section 3, we
develop our graph-theoretical methods and introduce distributions on graphs of interest.
Our rank formula is proved in Theorem 3.15. Section 4 contains the examples of practical
interest where we put the rank formula in work.

2. Simplicial distributions
In this section we recall some basic definitions from [17] on simplicial distributions

and introduce a twisted version in the case of 2-dimensional simplicial sets based on the
exposition in [2]. Our main result is Proposition 2.20, an important ingredient for the
rank formula in Section 3.

2.1. Two-dimensional simplicial sets
A simplicial set X consists of a sequence of sets Xn for n ≥ 0 together with the face

maps di : Xn → Xn−1 and the degeneracy maps sj : Xn → Xn+1 satisfying the simplicial
identities [6, 7]. A simplicial set map f : X → Y consists of functions fn : Xn → Yn

for n ≥ 0 compatible with the face and the degeneracy maps. We will write fσ for the
simplex fn(σ) ∈ Yn for a given n-simplex σ ∈ Xn. With this notation compatibility with
the simplicial structure can be expressed as

difσ = fdiσ and sjfσ = fsjσ.

A simplex is called non-degenerate if it does not lie in the image of a degeneracy map. A
non-degenerate simplex is called generating if it does not lie in the image of a face map.
For a set U of simplices we write U◦ to denote the subset of non-degenerate simplices.
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In this paper we only consider simplicial sets where each Xn is a finite set. We will also
have a restriction on the dimension of the simplicial set. A 1-dimensional simplicial set
is the same as a directed graph with vertex set X0 and edge set X1 (allowing loops and
parallel edges). A 1-simplex can be treated as an arrow

v
x−→ w

with source d1(x) = v and target d0(x) = w. The degenerate 1-simplex s0(v) have both
source and target given by v. A (finite) 2-dimensional simplicial set consists of such a
directed graph specified by (X0, X1, d0, d1, s0) together with a finite set of 2-simplices
σ1, · · · , σN glued to the graph. The gluing is encoded by specifying the faces di(σk) ∈ X1
for i = 0, 1, 2. For example, the standard 2-simplex ∆2 has a single generating 2-simplex
σ glued to the directed graph on the three vertices {0, 1, 2} with edges 0 → 1, 1 → 2 and
0 → 2. The face maps are given by

diσ =


1 y−→ 2 i = 0
0 z−→ 2 i = 1
0 x−→ 1 i = 2.

The degenerate edges 0 s0(0)−−−→ 0, 1 s0(1)−−−→ 1 and 2 s0(2)−−−→ 2 are usually omitted. We will
write ∂σ = {x, y, z} for the set of edges in the boundary. Let f : X → Y be a simplicial
set map where X is generated by the 2-simplices σ1, σ2, · · · , σN . Such a map assigns a
2-simplex fσk

∈ Y2 for each k = 1, · · · , N such that
difσk

= djfσl

whenever diσk = djσl. Therefore to study such maps it suffices to understand the face
maps of Y in dimension 2:

di : Y2 → Y1, i = 0, 1, 2.

For simplicity when we introduce a simplicial set which will appear only in the target of
a simplicial set we will only specify these face maps.

As an important target space we will be considering the nerve of the additive group
Z2 = {0, 1} of integers modulo 2. This is a simplicial set denoted by NZ2 whose n-simplices
are given by n-tuples of elements in Z2. The face maps in dimension 2 are given by

di(a, b) =


b i = 0
a + b i = 1
a i = 2.

(2.1)

Proposition 2.1. Let X be a simplicial set with generating 2-simplices σ1, σ2, · · · , σN .
There is a bijection between simplicial set maps s : X → NZ2 and functions φ : X1 → Z2
satisfying

φ(x) + φ(y) + φ(z) = 0 mod 2
for x, y, z ∈ ∂σi where i = 1, 2, · · · , N .
Proof. See [17, Proposition 3.13]. □

2.2. Simplicial distributions
We will write D(U) for the set of probability distributions on a set U . It consists of

functions p : U → R≥0 with finite support, i.e., |{u ∈ U : p(u) > 0}| < ∞, such that∑
u∈U

p(u) = 1.

Given a function f : U → V and a distribution p ∈ D(U) we define f∗(p) ∈ D(V ) by the
formula

f∗(p)(v) =
∑

u∈f−1(v)
p(u).
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We will write δu for the delta-distribution peaked at an element u ∈ U . Given a simplicial
set Y we can construct a new simplicial set D(Y ) whose set of n-simplices consists of D(Yn).
The face and the degeneracy maps of this simplicial set are given by di(p) = (di)∗(p) and
sj(p) = (sj)∗(p). We will write δ : Y → D(Y ) for the simplicial set map that sends a
simplex to the delta-distribution peaked at that simplex.

Our interest is in the space D(NZ2). The set of n-simplices consists of distributions of
the form

p : Zn
2 → R≥0.

We write pa1···an for the value p(a1, · · · , an). With this notation the face maps in dimension
2 are given by

(dip)0 =


p00 + p10 i = 0
p00 + p11 i = 1
p00 + p01 i = 2.

(2.2)

See Figure (1a).

Definition 2.2. A (simplicial) scenario consists of a pair (X, Y ) of simplicial sets repre-
senting the space of measurements and outcomes, respectively. A simplicial distribution
on the scenario (X, Y ) is a simplicial set map

p : X → D(Y )

We write sDist(X, Y ) for the set of simplicial distributions.

When Y = NZ2 we will simplify the notation and write sDist(X) for the set of simplicial
distributions on X.

Proposition 2.3. Let X be a simplicial set with generating 2-simplices σ1, σ2, · · · , σN .
Then a simplicial distribution p : X → D(NZ2) is given by a collection of distributions
pσk

∈ D(Z2
2) satisfying

dipσk
= djpσl

(2.3)
whenever diσk = djσl. In particular, sDist(X) is a (convex) polytope with finitely many
vertices.

Proof. A simplicial set map p : X → D(NZ2) is determined by its values, i.e., the distri-
butions pσi ∈ D(Z2

2), on the generating simplices. Note that on the remaining simplices
the image is determined by the simplicial structure maps. The only relations imposed
on pσi ’s come from the face maps given in Equation (2.3). Therefore sDist(X) is the
subspace obtained by intersecting [0, 1]4N ⊂ R4N with the linear equations corresponding
to normalization and identifications under the face maps. This subspace is convex and
bounded. Since the set of equations involved is finite there are finitely many extreme
points (vertices). □

Example 2.4. The simplest case is when X = ∆2:

sDist(∆2) = {(p00, p01, p10, p11) ∈ [0, 1]4 : p00 + p01 + p10 + p11 = 1},

which defines a polytope in R3, e.g., by retaining the coordinates (p01, p10, p11).

In general, X is obtained by gluing N of the ∆2’s and sDist(X) is a convex polytope in
R3N cut out by the linear equations (2.3).

Definition 2.5. A simplicial distribution is called a deterministic distribution if it is of
the form δs : X

s−→ Y
δ−→ D(Y ) where s : X → Y is a simplicial set map. We will write

dDist(X, Y ) for the set of deterministic distributions. There is a natural map

Θ : D(dDist(X, Y )) → sDist(X, Y )
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defined by sending d =
∑

s d(s)δs to the simplicial distribution p given by

pσ(θ) =
∑

s:sσ=θ

d(s).

A simplicial distribution p is non-contextual if p is in the image of Θ. Otherwise, p is
called contextual.

When Y = NZ2 we will simply write dDist(X) for the set of deterministic distributions
on X.

Example 2.6. Let us consider X = ∆2. By Proposition 2.1 we have

dDist(∆2)
∼=−→ Z2

2

obtained by sending s : ∆2 → NZ2 to the pair (sd2σ, sd0σ). The corresponding determistic
distribution is given by

(δs
σ)ab =

{
1 (a, b) = (sd2σ, sd0σ)
0 otherwise.

For notational convenience we will write δab when s is specified by (a, b) under the bijection
above. Observe that any simplicial distribution p on the triangle can be written as

p =
∑
a,b

pabδab.

Therefore every p on ∆2 is non-contextual according to Definition 2.5.

Example 2.7. The simplest contextual example can be obtained by identifying any two
edges of the triangle. Formally this is expressed as a push-out diagram

∆1 t ∆1 ∆2

∆1 ∆2/x ∼ z

where the top horizontal map sends the generating simplices of ∆1’s to x = d2σ and
z = d1σ. Then we have

Θ : D({δ00, δ10}) → {(p00, p01, p10, p11) ∈ [0, 1]4 :
∑
a,b

pab = 1, p01 = p11}

and a simplicial distribution p is contextual if and only if p11 > 0. The analysis is similar
for the case where the other pairs of edges are identified.

We can also identify all three edges to obtain ∆2/x ∼ y ∼ z. Then

Θ : D({δ00}) → {(p00, p01, p10, p11) ∈ [0, 1]4 :
∑
a,b

pab = 1, p01 = p10 = p11}

and again p is contextual if and only if p11 > 0.

Example 2.8. Another topological operation we can perform on a single triangle is to
collapse an edge. This is given by a push-out diagram of the form

∆1 ∆2

∆[0] ∆2/z ∼ ∗

Then we have
Θ : D({δ00, δ11})

∼=−→ {(p00, 0, 0, p11) ∈ [0, 1]4 : p00 + p11 = 1}.
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In this case every p is non-contextual. Collapsing two of the edges to obtain ∆2/y ∼ z ∼ ∗
we obtain

Θ : D({δ00})
∼=−→ {(1, 0, 0, 0)}

and again every simplicial distribution is non-contextual. The situation is exactly the
same when all three edges are collapsed.

2.3. Twisted distributions
We will use the more general notion of simplicial distributions introduced in [2].

Definition 2.9. A (simplicial) bundle scenario is a simplicial set map π : E → X. A
simplicial distribution on the bundle scenario f is a simplicial set map p : X → D(E) that
makes the following diagram commute

D(E)

X D(X)

D(π)p

δ

(2.4)

A deterministic distribution on f is a simplicial set map of the form δs : X
s−→ E

δ−→ D(E)
where s : X → E is a section of π.

The earlier notion given in Definition 2.2 can be recovered by considering simplicial
distributions on the bundle scenario given by the projection map

π : Y × X → X

For twisted distributions we will need the notion of twisted products. Twisted products
model principal bundles [14]. Let us write Hn(X) and Hn(X) for the n-th homology and
cohomology groups with coefficients in Z2, respectively. When X is 2-dimensional there
is a well-known classification theorem: the set of isomorphism classes of principal bundles
with fiber NZ2 is in bijective correspondence with the classes in the second cohomology
group H2(X). Let us recall the definition of the n-th cohomology group of a simplicial set
[7]. Given a simplicial set X let us write Cn(X) for the set ZXn

2 of functions α : Xn → Z2.
The coboundary map δn : Cn(X) → Cn+1(X) is defined by

δnα(x) =
n∑

i=0
(−1)iα(dix).

Then Hn(X) is defined as the quotient of the kernel of δn by the image of δn−1. A function
α : Xn → Z2 is called a cocycle if it belongs to the kernel of δn. It is called normalized if
α(x) = 0 for every degenerate n-simplex x.

Definition 2.10. Let β : X2 → Z2 be a normalized 2-cocycle. The twisted product
NZ2 ×β X is the simplicial set whose set of n-simplices is given by (NZ2)n × Xn. The
face map in dimension 2 is given by

di((a, b), σ) =


(b + β(σ), d0σ) i = 0
(a + b, d1σ) i = 1
(a, d2σ) i = 2.

(2.5)

Note that the d0-face is twisted by the cocycle β. The degeneracy maps are as usual.
Projecting onto the second coordinate gives a principal NZ2-bundle

π : NZ2 ×β X → X

We are interested in simplicial distributions on such maps.
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Definition 2.11. A β-twisted distribution is a simplicial distribution on π : NZ2 ×β X →
X. A β-twisted deterministic distribution is a deterministic distribution on π. We will write
sDistβ(X) and dDistβ(X) for the sets of β-twisted simplicial and deterministic distributions
on X, respectively.

Let us unravel the definition of a twisted distribution when X is 2-dimensional generated
by σ1, · · · , σN . A twisted simplicial distribution associates a distribution pσi ∈ D(Z2

2×X2)
with each 2-simplex σi. The commutativity of diagram (2.4) implies that the support of
the distribution is contained in Z2

2 × {σi}. Face maps can be worked out from Equation
(2.5). Only the the d0-face is twisted

(d0pσ)0 =
{

p00 + p10 β(σ) = 0
p11 + p01 β(σ) = 1.

(2.6)

See Figure (1b).
A version of Proposition 2.3 holds for sDistβ(X) once the d0-face is twisted in this

way. We will provide a more explicit description of the resulting polytope. We define the
correlation function

c : X1 → R (2.7)
by c(x) = p0

x − p1
x. The probabilities pab

σ for each 2-simplex σ ∈ X2 can be recovered from
the correlation function.

Lemma 2.12. We have

pab
σ = 1

4
(1 + (−1)ac(x2) + (−1)b+β(σ)c(x0) + (−1)a+bc(x1)). (2.8)

Proof. This formula can be verified using the marginal relations (e.g., d0 face as in Equa-
tion (2.6) and others) and the relation p1

xi
= 1 − p0

xi
. For example, for (a, b) = (0, 0) and

β(σ) = 1 we have
1
4

(1 + c(x2) − c(x0) + c(x1)) = 1
4

(1 + (2px2 − 1) − (2px0 − 1) + (2px1 − 1))

= 1
4

(1 + (2(p00
σ + p01

σ ) − 1) − (2(p11
σ + p01

σ ) − 1) + (2(p00
σ + p11

σ ) − 1))

= p00
σ .

□

Using this result we can provide a more explicit description for the polytope of twisted
simplicial distributions. For a m × d matrix M and a column vector b of size m we will
write

P (M, b) = {t ∈ Rd : Mt ≥ b}
for the corresponding polytope in Rd. Let ⊮ denote a column vector consisting of 1’s.

Proposition 2.13. Let d = |X1| and m = |X2 × Z2
2|. Then

sDistβ(X) = P (M, −⊮)

where M is the m × d matrix defined by

M(σ,ab),x =


(−1)b+β(σ) x = d0σ
(−1)a+b x = d1σ
(−1)a x = d2σ.

Proof. This follows directly from Lemma 2.12. □

Proposition 2.14. We have the following properties.
(1) The set dDistβ(X) is non-empty if and only if [β] = 0.
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(2) There is a bijection
sDistβ(X)

∼=−→ sDistα(X)
when [β] = [α].

Proof. Part (1): The cohomology class [β] vanishes if and only if the principal bundle
NZ2 ×β X → X is trivial. The latter holds if and only if it admits a section. Part
(2): The cohomology classes coincide if and only the corresponding principal bundles are
isomorphic (as principal bundles). This gives a commutative diagram where the top arrow
is an isomorphism

D(NZ2 ×β X) D(NZ2 ×α X)

D(X)

∼=

Therefore the resulting sets of simplicial distributions are in bijective correspondence. □
Example 2.15. Let DN be a simplicial set obtained by gluing N many 2-simplices to
obtain a disk, e.g., as in Figure (2). For a more general definition see [11, Definition
3.1]. Since the resulting space is contractible we have H2(DN ) = 0. Therefore for any
normalized cocycle β : (DN )2 → Z2 we have [β] = 0. By Proposition 2.14 we have
dDistβ(DN ) 6= ∅ and

sDistβ(DN ) ∼= sDist(DN ).
Then the gluing lemma of [17] implies that every p ∈ sDistβ(DN ) is non-contextual.

Figure 2

For a simplicial subset Z ⊂ X and a simplicial distribution on X we write p|Z for the
composite Z

i−→ X
p−→ D(E) where i is the inclusion map. The following simple observation

will be very useful in analyzing the vertices of the polytope of twisted distributions.

Lemma 2.16. ([16]) Let Z ⊂ X be a simplicial subset with a single generating 2-simplex
σ. If two of the faces, say x, y ∈ ∂σ, satisfy px = δa and py = δb for some a, b ∈ Z2 then
p|Z is a deterministic distribution.

Proof. When the distribution is deterministic on two of the edges this forces three of
the four parameters in sDistβ(∆2) ⊂ [0, 1]4 to be zero. Together with the normalization
condition we obtain a unique solution, i.e., a deterministic distribution. □
Example 2.17. The measurement space C̃4 of the Clauser–Horne–Shimony–Holt (CHSH)
scenario consists of four triangles σ1, σ2, σ3, σ4 glued as in Figure (3a). This is a special
case of cycle scenarios we will examine in Section 4.1. It is well-known that the polytope
sDist(C̃4) has two kinds of vertices consisting of the deterministic distributions and contex-
tual distributions known as the Popescu–Rohrlich (PR) boxes [21]; see also [11, Example
3]. PR boxes are characterized by the property that the restriction p|∂C̃4

to the boundary,
which consists of four edges x1, x2, x3, x4, is a deterministic distribution δs such that

4∑
i=1

ai = 1 mod 2
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where δs
xi

= δai for i = 1, 2, · · · , N .

(a) (b)

Figure 3. (a) The measurement space of the CHSH scenario. (b) PR box with
a1 + a2 + a3 + a4 = 1 mod 2. Green color indicates the deterministic edges.

2.4. Product of distributions
In [12] a product is introduced for simplicial distributions. We can extend this product

to 2-dimensional twisted distributions. The convolution product of p, q ∈ D(Zn
2 ) is the

distribution p ∗ q defined by

p ∗ q(c) =
∑

a+b=c

p(a)q(b)

where the sum runs over a, b ∈ Zn
2 such that a + b = c. Using the convolution product we

define a map
sDistα(X) × sDistβ(X) → sDistα+β(X)

by sending (p, q) to the distribution p · q given by

(p · q)σ = pσ ∗ qσ.

Lemma 2.18. The product p · q is an (α + β)-twisted distribution.

Proof. We have

((p · q)d0σ)0 = p0
d0σq0

d0σ + p1
d0σq1

d0σ

=
∑

a

pa(α(σ))
σ

∑
b

qb(β(σ))
σ +

∑
a

pa(α(σ)+1)
σ

∑
b

qb(β(σ)+1)
σ

= (p · q)0(α(σ)+β(σ)) + (p · q)1(α(σ)+β(σ))

= (d0(p · q)σ)0.

Similarly one can verify that p · q is compatible with the remaining simplicial structure
maps. Commutativity of diagram (2.4) follows from the observation that the support of
p · q is contained in Z2

2 × {σi} by definition of the product. □

It is instructive to consider the action of dDistα(X) on sDistβ(X) induced by this prod-
uct. Note that because of part (1) of Proposition 2.14 we assume [α] = 0, or for compu-
tational simplicity α = 0. Then we have

(δab · q)cd
σ = q(c+a)(b+d)

σ (2.9)

where δab ∈ dDist(X) and q ∈ sDistβ(X).
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2.5. Cohomology exact sequence
Let Z ⊂ X be a simplicial subset. Given a normalized 2-cocycle β : X2 → Z2 we will

write β|Z for the pull-back i∗β along the inclusion map i : Z → X. We assume [β|Z ] = 0
so that there exists a normalized 1-cochain s : Z1 → Z2 such that β|Z = δs. We will write

sDistβ(X, s) = {p ∈ sDistβ(X) : p|Z = δs}.

Consider the cofiber sequence
Z

i−→ X
q−→ X/Z

and the associated cohomology long exact sequence

H1(X/Z) → H1(X) → H1(Z) ζ−→ H2(X/Z)
Let ζ(s) denote the 2-cocycle obtained by the snake lemma [22], i.e., first extending s to
X and applying the coboundary:

• Let s̃ : X1 → Zd denote the 2-cochain defined by

s̃(x) =
{

s(x) x ∈ Z1
0 x ∈ X1 − Z1.

• By applying the coboundary map δ : C1(X) → C2(X) we obtain
δs̃(σ) = s̃(d0σ) − s̃(d1σ) + s̃(d2σ)

where σ ∈ X2.
• Since δs̃|Z = 0 it comes from a 2-cochain, which will be denoted by ζ(s) : (X/Z)2 →
Z2.

See also [17, Section 5]

Lemma 2.19. The deterministic distribution δs̃ on X defined by

(δs̃
σ)ab =

{
1 (a, b) = (s̃(d2σ), s̃(d0σ))
0 otherwise

is a δs̃-twisted distribution.

Proof. This is direct verification. □
Proposition 2.20. We have a commutative diagram

D(dDistβ(X, s)) sDistβ(X, s)

D(dDistβ+ζ(s)(X/Z)) sDistβ+ζ(s)(X/Z)

Θ

D(ϕ)∼= ϕ∼=

Θ

where ϕ(p) = δs̃ · p. Both vertical arrows are isomorphisms.

Proof. Let p ∈ sDistβ(X) be such that p|Z = δs for some s satisfying δs = β|Z . By
Lemma 2.18 and 2.19 the distribution δs̃ · p is (β + ζ(s))-twisted and

(δs̃ · p)|Z = δs̃|Z · p|Z = δs · δs = δ0

where δ0 : Z → D(NZ2) is the constant map (with image the unique vertex). Note that
in the last equation we used Equation (2.9). Therefore δs̃ · p factors through the quotient
X/Z. The inverse of ϕ is given by the composite

ϕ−1 : sDistβ+ζ(s)(X/Z) q∗
−→ sDistβ+ds̃(X) δs̃·−−→ sDistβ(X)

The maps ϕ and ϕ−1 restrict to a bijection between dDistβ(X, s) and dDistβ+ζ(s)(X/Z).
□

Corollary 2.21. If ϕ(p) is non-contextual then p is non-contextual.
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(a) (b)

Figure 4. Twisted simplicial distributions on a triangle where x is identified with
z and y is collapsed: (a) β(σ) = 0 and (b) β(σ) = 1. The resulting polytope can
be identified with the unit interval [0, 1]. Here t̄ = 1 − t.

Example 2.22. Let us consider sDist(X) where X = ∆2/x ∼ z; see Example 2.7. We
take Z to be the simplicial subset given by the edge y. If the restriction p|Z is deterministic
then it is either δ0 or δ1. Then by Proposition 2.20 we have an isomorphism

sDist(X, s)
∼=−→ sDistβ(X/y ∼ ∗)

Note that β(σ) = a if pa
y = δa. See Figure (4).

3. Distributions on graphs
Our goal in this section is to describe twisted distributions as distributions on graphs.

This is achieved by associating a graph with a simplicial set. Throughout the paper we
only consider simple graphs, i.e., undirected graphs with no loops and parallel edges. To
land in simple graphs we impose some conditions on the simplicial sets that represent the
measurements. We will restrict to a measurement space X given by a simplicial set

• generated by the 2-simplices σ1, σ2, · · · , σN , and
• each set ∂σk of edges in the boundary consists of either three distinct non-degenerate

edges {x0, x1, x2} or two distinct non-degenerate edges {xi, xj}, where i > j, and
a remaining degenerate edge.

Therefore we have the situation depicted in Figure (5).

Figure 5

3.1. Distributions on graphs
We begin by constructing a bipartite graph associated to the simplicial set X. A

bipartite graph Γ consists of a vertex set V (Γ), partitioned into two sets V 0(Γ) t V 1(Γ),
and an edge set E(Γ) connecting the vertices from these two sets. We will also consider
graphs with a sign given by a function γ : E(Γ) → {±1}.

Definition 3.1. Given a finite 2-dimensional simplicial set X let Γ(X) denote the bipartite
graph with

• vertex set V = X◦
1 t X◦

2 ,
• edge set E consisting of {x, σ} where x ∈ (∂σ)◦.
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Next, we enlarge this graph by including the set of outcomes into the picture. The idea
is to replace each vertex corresponding to σ by four vertices labeled by sab

σ where a, b ∈ Z2.
The new vertices are also connected to the same vertices corresponding to the 1-simplices
in (∂σ)◦. These edges of the graph are also assigned a sign ±1 indicating the outcomes.
See Figure (6) for the local picture over a triangle with two kinds of boundaries, one with
|(∂σ)◦| = 3 and 2.

Definition 3.2. Given a normalized 2-cocycle β : X2 → Z2 we define a signed bipartite
graph Γβ(X) with

• vertex set X◦
1 t (X◦

2 × Z2
2),

• edge set consisting of {x, sab
σ } where x ∈ (∂σ)◦,

• and sign given by
γ(x, sab

σ ) = (−1)sσ(x) (3.1)
where sσ : ∂σ → Z2 is defined by

sσ(x) =


(−1)b+β(σ) x = d0σ
(−1)a+b x = d1σ
(−1)a x = d2σ.

Next, we introduce the notion of a distribution on the bipartite graph associated to
the pair (X, β). The goal is to capture the notion of twisted simplicial distributions as
distributions on graphs. The next definition is motivated by Proposition 2.13.

Definition 3.3. A distribution on Γβ(X) is a function p : X◦
2 × Z2

2 → R≥0 such that∑
a,b

p(sab
σ ) = 1

for every σ ∈ X◦
2 and ∑

a,b

γ(x, sab
σ )p(sab

σ ) =
∑
a,b

γ(x, sab
σ′ )p(sab

σ′ ) (3.2)

for every σ, σ′ ∈ X◦
2 such that x ∈ ∂σ◦ ∩ ∂σ′◦. In addition, for simplices σ ∈ X◦

2 whose
boundary contains a single degenerate edge x′ we also require that

p(s(0+β(σ))(0+β(σ))
σ ) + p(s(1+β(σ))(0+β(σ))

σ ) = 1 x′ = d0σ
p(s00

σ ) + p(s11
σ ) = 1 x′ = d1σ

p(s00
σ ) + p(s01

σ ) = 1 x′ = d2σ.

(3.3)

We write Dist(Γβ(X)) for the set of distributions on the graph Γβ(X).

Equation (3.3) has the following interpretation. As in simplicial distributions we want
px′ = δ0 for each degenerate edge x′. This condition is imposed via this equation separately
since the degenerate edges of X does not appear in the graph Γβ(X). See Figure (6) for the
local picture over a simplex. Definition 3.3 is tailored so that the following identification
can be done.

Proposition 3.4. Sending a twisted distribution p ∈ sDistβ(X) to the distribution on the
graph Γβ(X) defined by

p(sab
σ ) = pab

σ

gives a bijection of convex sets

sDistβ(X)
∼=−→ Dist(Γβ(X)) (3.4)

Proof. Follows from Proposition 2.13. □
We will identify twisted simplicial distributions and distributions on the associated

enlarged graph.
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(a) (b)

Figure 6. Signs on the edges induced by sab
σ are indicated by blue and red color

for +1 and −1, respectively. The probabilities are given by pab = p(sab
σ ). In this

example β(σ) = 0.

3.2. Rank of a distribution
Definition 3.5. Given a distribution p ∈ Dist(Γβ(X)) we consider the induced signed
subgraph Γβ(X, p) ⊂ Γβ(X) determined by the vertex set

X◦
1 t {sab

σ ∈ X◦
2 × Z2

2 : p(sab
σ ) = 0}.

The edge set is determined by the vertices, that is, {x, sab
σ } is an edge if p(sab

σ ) = 0 and
x ∈ ∂σ◦.

Let A(Γβ(X, p)) denote the adjacency matrix of the signed graph. Its rows and columns
are indexed by the vertices of the graph and its entries are 0, ±1 indicating whether there
exists an edge connecting the pair of vertices (taking into account the sign). Since the
graph is bipartite the adjacency matrix has the form

A(Γb) =
(

0 B(Γβ(X, p))
B(Γβ(X, p))T 0

)
where

B(Γβ(X, p))sab
σ ,x =

{
γ(x, sab

σ ) {x, sab
σ } ∈ E(Γβ(X, p))

0 otherwise.

Definition 3.6. The rank of p ∈ Dist(Γβ(X)) is defined to be the rank of the matrix
B(Γβ(X, p)). The rank of a twisted distribution p ∈ sDistβ(X) is the rank of the associated
distribution on the graph.

Corollary 3.7. A twisted distribution p ∈ sDistβ(X) ⊂ R|X◦
1 | is a vertex if and only if

rank(p) = |X◦
1 |.

Proof. This observation follows from the general theory of polytopes; see [5, Theorem
18.1]. □

Note that the polytope sDistβ(X) is not full-dimensional in R|X◦
1 | as its dimension is

given by
d(X) = |X◦

1 | −
∑

σ∈X◦
2

|∂σ − ∂σ◦|.

This dimension count follows from Example 2.4 and 2.8.
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Definition 3.8. Let p ∈ sDistβ(X) be a twisted distribution. A non-degenerate 1-simplex
x is called a deterministic edge if px = δa for some a ∈ Z2. Similarly a non-degenerate
2-simplex σ is called a deterministic triangle if pσ = δab for some (a, b) ∈ Z2

2. We will
write Zp ⊂ X for the simplicial subset generated by the deterministic edges and triangles
with respect to p.

Recall the bijection in Proposition 2.20:

ϕ : sDistβ(X, s) → sDistβ̄(X̄)

where X̄ = X/Zp and β̄ = β + ζ(s). In the next result we show that the rank of p̄ = ϕ(p)
is related to the rank of p.

Lemma 3.9. For p ∈ sDistβ(X) we have

rank(p) = rank(p̄) + |(Z◦
p)1|. (3.5)

Proof. For σ ∈ X◦
2 let us write Γβ(X, p)|σ ⊂ Γβ(X, p) for the induced subgraph on the

vertices ∂σ◦ t ({σ} × Z2
2). We will take the quotient in steps, that is, one deterministic

simplex at a time. By Lemma 2.16 each σ ∈ (Zp)◦
2 satisfies |∂σ◦| = 2 or 3. Therefore we

have

X = X(0) → X(1) → · · · → X(i) → X(i+1) → · · · → X(t−1) → X(t) = X/Zp

where X(i+1) is obtained from X(i) by killing a non-degenerate deterministic edge or a
non-degenerate deterministic triangle. Let us consider these two types of quotients:

(1) Killing a non-degenerate deterministic edge x which does not belong to a deter-
ministic triangle: Let σ be a non-degenerate triangle whose boundary contains x.
Since pσ is not deterministic |∂σ◦| = 3 (by Lemma 2.16). We have

B(Γβ(X, p)|σ) =
[
(−1)s(x) 1 (−1)s(x)+β(σ)

(−1)s(x) −1 (−1)s(x)+β(σ)+1

]
∼

[
0 1 (−1)s(x)+β(σ)

1 0 0

]
where ∼ indicates a sequence of elementary row operations. On the other hand,
we have

B(Γβ̄(X̄, p̄)|σ) =
[

1 (−1)β̄(σ)

−1 (−1)β̄(σ)+1.

]
=

[
1 (−1)s(x)+β(σ)

−1 (−1)s(x)+β(σ)+1

]
∼

[
1 (−1)s(x)+β(σ)

0 0

]
where β̄(σ) = β(σ) + ζ(s)(σ). Therefore we have
rank(B(Γβ(X, p)|σ)) = rank(B(Γβ̄(X̄, p̄)|σ)) + 1. That is, the rank at σ has two
parts. First part comes from the new distribution on the quotient space and the
second part from the deterministic edge. Therefore Equation (3.5) holds.

(2) Killing a non-degenerate deterministic triangle σ: Since pσ is deterministic
B(Γβ(X, p)|σ) is a 3 × 3-matrix of rank 3. This time all the contribution comes
from the deterministic edges and thus Equation (3.5) holds.

When a deterministic edge is killed, either as in (1) or part of a deterministic triangle as in
(2), the corresponding column in B(Γβ(X, p)) can be removed. Once all such columns are
removed the remaining matrix has the same rank as B(Γβ̄(X̄, p̄)) by the local computations
at (1) and (2). □

By this lemma we can assume that p does not give rise to any deterministic simplex
(edge or triangle). Otherwise, we can always take a quotient by the simplicial subset Zp

and use the formula in Lemma 3.9. If ∂σ contains a degenerate edge x′ then p(sab
σ ) = 0

for precisely two of the pairs (a, b) ∈ Z2
2. Note that these pairs are of the form (a, b) and

(a + 1, b + 1). We remove one of these vertices for each such simplex keeping only sab
σ with

a = 0.
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Definition 3.10. Let p ∈ sDistβ(X) be a twisted distribution with no deterministic
simplices (edges or triangles). Let Γ0

β(X, p) denote the induced signed subgraph of Γβ(X, p)
where only the vertex s0b

σ is kept when σ has a degenerate 1-simplex in its boundary
together with the sign defined by

γp(x, σ) = γ(x, sab
σ ) (3.6)

where sab
σ is the unique vertex with p(sab

σ ) = 0 if |∂σ◦| = 3, or s0b
σ if |∂σ◦| = 2.

The sign γp satisfies

∏
x∈∂σ◦

γp(x, σ) =


(−1)β(σ) |∂σ◦| = 3
(−1)a+β(σ)+1 |∂σ◦| = 2, x′ = d1σ
(−1)a+1 |∂σ◦| = 2, x′ = d0σ, or d2σ

(3.7)

where x′ is the unique degenerate edge in the case |∂σ◦| = 2.

Proposition 3.11. Let p ∈ sDistβ(X) be a twisted distribution with no deterministic
simplices. Then

rank(p) = rank(B(Γ0
β(X, p))).

The choice we made in the definition of the graph does not affect the rank.

(a) (b)

Figure 7. (a) The graph Γβ̄(X̄, p̄) where p is a PR box. (b) The subgraph graph
Γ0

β̄
(X̄, p̄).

3.3. The rank formula
We recall some basic definitions about signed graphs following [23]. Let Σ = (V, E) be

a simple (undirected) graph. A path is a sequence of edges e1e2 · · · ek with no repetition
such that ei−1 and ei has a common vertex. If v and w are the vertices of e1 and ek not
common to e2 and ek−1, respectively, then we say the path is from v to w. A path is called
closed if v = w. A circle is the graph determined by a closed path. If Σ comes with a sign
γ : E → {±1} then a circle C given by the sequence e1e2 · · · ek has sign

γ(C) = γ(e1)γ(e2) · · · γ(ek).

If γ(C) = 1 (γ(C) = −1) the circle is called positive (negative).

Definition 3.12. A signed graph Σ is called balanced if every circle in it is positive. We
will write b(Σ) for the number of components of the graph that are balanced.

Recall that a bidirected graph is a graph with a choice of sign η(v, e) = ±1 for each v
incident to an edge e. Given a signed graph (Σ, γ) we can define a bidirected graph (Σ, η)
such that

γ(e) = −η(v, e)η(w, e)
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for every edge e = {v, w}. This bidirected graph is not unique since there are many choices
of bidirections η satisfying this equation. An incidence matrix of (Σ, γ) is a |V |×|E|-matrix
H(Σ) such that

H(Σ)v,e =
{

η(v, e) v ∈ e
0 otherwise.

Theorem 3.13. H(Σ) has rank |V | − b(Σ).

Proof. See [23, Theorem IV.1]. □

We will apply this rank result to bipartite graphs.

Definition 3.14. Let Σ be a signed bipartite graph with vertex set V (Σ) = V 0(Σ) t
V 1(Σ). Suppose that every vertex in V 1(Σ) is incident to exactly two edges. Define a new
bidirected graph (Σ̂, η) with

• vertex set V 0(Σ),
• edge set V 1(Σ), and
• bidirection defined by

η(v, e) = γ(v, e)

where v ∈ V 0(Σ) and e ∈ V 1(Σ) are connected by an edge in Σ.

The vertices incident to an edge in V 1(Σ) are those vertices in V 0(Σ) connected to it
by an edge in Σ. Effectively, to obtain Σ̂ we merge any two edges incident to a vertex in
V 0(Σ) into a single edge. Then using Theorem 3.13 we have

rank(B(Σ)) = rank(H(Σ̂)) = |V 0(Σ)| − b(Σ̂). (3.8)

Note that the rank does not depend on the choice of η since a different choice would
amount to multiplying the corresponding row with −1. If Γ0

β(X, p) satisfies the assumption
of Definition 3.14 we can apply the construction Σ 7→ Σ̂ to the graph Γ0

β(X, p). We define

b(X, p) = b(Γ̂0
β(X, p)). (3.9)

Theorem 3.15. Let X be a simplicial set generated by 2-simplices σ1, σ2, · · · , σN such
that each ∂σi consists of either three distinct non-degenerate 1-simplices or two distinct
non-degenerate 1-simplices and a remaining degenerate 1-simplex. Consider a twisted
distribution p ∈ sDistβ(X) satisfying the following conditions:

• for each generating 2-simplex σ, pab
σ = 0 for at least one pair (a, b) ∈ Z2

2, and
• every non-degenerate 1-simplex of X̄ = X/Zp belongs precisely to two generating

2-simplices.
Then we have

rank(p) = |(Zp)◦
1| + |X̄◦

2 | − b(X̄, p̄).

Proof. By Lemma 3.9, Proposition 3.11, and Equation (3.8) we have

rank(p) = |(Zp)◦
1| + rank(Γ0

β̄
(X̄, p̄)) = |(Zp)◦

1| + |X◦
2 | − b(X, p).

The assumption on p implies that the number of the vertices of Γ̂0
β̄
(X̄, p̄) is given by |X◦

2 |.
□

Note that if the condition pab
σ = 0 fails for at least one pair of outcomes for every non-

degenerate simplex then to compute the rank we can restrict to the simplicial subset for
which this condition holds.
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4. Examples
The rank formula in Theorem 3.15 is very useful in finding the vertices of the polytope of

twisted distributions. We can partition sDistβ(X) by fixing a simplicial subset Z ⊂ X and
considering those twisted distributions p with the property that Zp = Z. Our approach
will be to combine this observation with the following result.

Lemma 4.1. Let p ∈ sDistβ(X) be a vertex. Then
|(Zp)◦

1|−|(Zp)◦
2| ≥ |X◦

1 | − |X◦
2 |.

Proof. By Corollary 3.7 p is a vertex if and only if rank(p) = |X◦
1 |. We have rank(p̄) ≤

|X◦
2 | − |(Zp)◦

2| since Zp is 1-dimensional. Then the result follows from Lemma 3.9. □

Figure 8

The rank formula contains the number of balanced components of the associated graph.
For the computation of the signs of the circle graphs we will use the following formula.
See Figure (8).

Lemma 4.2. Let p ∈ sDistβ(X) and consider γp defined in Equation (3.6). For a non-
degenerate 2-simplex σ whose boundary ∂σ = {x, y, z} contains a deterministic edge, say
z, with pz = δa we have

γp(x, σ)γp(y, σ) = (−1)a+β(σ)+1.

Proof. The distribution pσ ∈ D(Z2
2) is zero if and only if (c, d) satisfies c+d = a+β(σ)+1.

We have γ(x, σ) = (−1)c and γ(y, σ) = (−1d). Hence the formula follows. □

4.1. N-cycle scenario
For N ≥ 2, let C̃N denote the measurement space of the N -cycle scenario defined as

the following simplicial set:
• Generating 2-simplices: σ1, · · · , σN .
• Identifying relations:

di′
1
σ1 = di2σ2, di′

2
σ2 = di3σ3 · · · di′

N
σN = di1σ1

where ik 6= i′
k ∈ {0, 1} for 1 ≤ k ≤ N .

The case N = 4 where the boundary is oriented in the counter-clockwise direction is
depicted in Figure (3a). See also [11, Definition 4.1]. The edges on the boundary will be
denoted by x1, x2, · · · , xN .

Let p ∈ sDistβ(C̃N ) be a vertex. Let us consider the possibilities for Zp.
(1) Zp has a deterministic edge connecting a boundary vertex to the central vertex:

In this case the quotient C̃N /Zp can be identified with a wedge sum of DKi ’s of
Example 2.15 where Ki ≤ N . We know that every twisted distribution on DKi

is non-contextual. Then Corollary 2.21 implies that p is non-contextual, hence a
deterministic distribution. The situation is depicted in Figure (9).
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(a) (b)

Figure 9. (a) Deterministic interior edge. (b) Collapsed scenario.

(2) All deterministic edges of Zp are on the boundary: Note that by the previous case
we know that p would be a deterministic distribution if Zp contained a deterministic
triangle. Assuming that Zp does not contain a deterministic triangle, Lemma 4.1
gives

|(Zp)◦
1| ≥ |X◦

1 | − |X◦
2 | = 2N − N = N.

This forces Zp to be the boundary ∂C̃N of the disk. Assume that p|∂C̃N
= δs.

Then we have
δs

xi
= δai , i = 1, 2, · · · , N

for some ai ∈ Z2. The graph Γ̂0
β̄
(X̄, p̄) is given by a circle C with edges e1, e2, · · · , eN

as in Figure (10a). The sign of the circle is given by

γp̄(C) =
N∏

i=1
γp̄(ei) = (−1)N

N∏
i=1

(−1)ai+β(σi)+1 = (−1)N
N∏

i=1
(−1)β̄(σi)+1 = (−1)[β̄]

and by the rank formula we obtain

rank(p) =
{

2N [β̄] = 1
2N − 1 [β̄] = 0.

(4.1)

Therefore p is a vertex if and only if [β̄] = 1, that is, [β] = 1 +
∑N

i=1 ai.
As a special case let us take [β] = 0. In this case p is a vertex if and only if

∑N
i=1 ai = 1.

When N = 4 this reproduces the PR boxes in Example 2.17.

(a) (b)

Figure 10. (a) The graph Γ̂0
β̄
(C̃4/∂C̃4). (b) When the boundary is collapsed the

resulting space is a sphere.

4.2. Boundary of tetrahedron
Let ∂∆3 denote the simplicial set given by the boundary of a tetrahedron with generating

2-simplices σ1, σ2, σ3, σ4. Let p ∈ sDistβ(∂∆3) be a vertex. Then Lemma 4.1 gives

|(Zp)◦
1| − |(Zp)◦

2| ≥ 4 − 2 = 2
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and we have |(Zp)◦
2| = 0, 1 or 4. The last case gives a deterministic distribution if [β] = 0.

Let us consider the remaining cases.
(1) |(Zp)◦

2| = 0: In this case Γ̂0
β̄
(X̄, p̄) is a circle C with edges e1, e2, e3, e4; see Figure

(11a). Its sign is given by

γp̄(C) =
4∏

i=1
γp̄(ei) = (−1)a+β(σ1)+1(−1)b+β(σ2)+1(−1)a+β(σ3)+1(−1)b+β(σ4)+1 = (−1)[β]

and by the rank formula

rank(p) =
{

6 [β] = 1
5 [β] = 0.

(4.2)

Therefore p is a vertex if and only if [β] = 1.
(2) |(Zp)◦

2| = 1: This case (Figure (11b)) reduces to the cycle scenario C̃3 where p|∂C̃3
is deterministic with a + b + c = 0. Therefore by Equation (4.1), p is a vertex if
and only if [β] = 1.

In the case [β] = 0 we observe that all the vertices are deterministic, which provides an
alternative approach to the computation in [17, Proposition 4.12].

(a) (b)

Figure 11

4.3. Mermin torus
Let T denote the Mermin torus introduced in [16]. Let p ∈ sDistβ(T ) be a vertex. The

distribution p is deterministic if and only if [β] = 0. Let us assume p is not deterministic.
Lemma 4.1 gives

|(Zp)◦
1| − |(Zp)◦

2| ≥ 3
which can only be satisfies if Zp consists of three generating 1-simplices as in Figure (12a)
or two generating triangles as in Figure (12b). In both cases Γ̂0

β̄
(X̄, p̄) is a circle C. We

compute the sign of this circle for each case:
(1) In Figure (12a) we have

γp̄(C) = (−1)a+β(σ1)+1(−1)b+β(σ2)+1(−1)c+β(σ3)+1(−1)a+β(σ4)+1(−1)b+β(σ5)+1(−1)c+β(σ6)+1

= (−1)[β].

Therefore p is a vertex if and only if [β] = 1.
(2) In Figure (12b) we have

γp̄(C) = (−1)a+β(σ1)+1(−1)b+β(σ3)+1(−1)a+b+c+β(σ2)+β(σ5)+β(σ4)+1(−1)c+β(σ6)+1 = (−1)[β]

and p is a vertex if and only if [β] = 1.
Combining these two observations gives the main result of [16]. sDistβ(T ) has only de-
terministic vertices if [β] = 0. On the other hand, if [β] = 1 then there are two kinds of
vertices as given in Figure (12).

influence the work reported in this paper.
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(a) (b)

Figure 12
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