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ABSTRACT In this academic investigation, an innovative mapping approach is applied to complex three
coupled Maccari’s system to unveil novel soliton solutions. This is achieved through the utilization of M-
Truncated fractional derivative with employing the new mapping method and computer algebraic syatem (CAS)
such as Maple. The derived solutions in the form of hyperbolic and trigonometric functions. Our study elucidates
a variety of soliton solutions such as periodic, singular, dark, kink, bright, dark-bright solitons solutions. To
facilitate comprehension, with certain solutions being visually depicted through 2-dimensional, contour, 3-
dimensional, and phase plots depicting bifurcation characteristics utilizing Maple software. Furthermore, the
incorporation of M-Truncated derivative enables a more extensive exploration of solution patterns. Our study
establishes a connection between computer science and soliton physics, emphasizing the pivotal role of soliton
phenomena in advancing simulations and computational modelling. Analytical solutions are subsequently
generated through the application of the new mapping method. Following this, a thorough examination of
the dynamic nature of the equation is conducted from various perspectives. In essence, understanding
the dynamic characteristics of systems is of great importance for predicting outcomes and advancing new
technologies. This research significantly contributes to the convergence of theoretical mathematics and applied
computer science, emphasizing the crucial role of solitons in scientific disciplines.
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INTRODUCTION

In this contemporary era of innovations and development, remark-
able advancements have been noted in the field of soliton theory.
Soliton phenomena, crucial for augmenting computational capabil-
ities in computer systems, hold particular relevance in applications
such as image processing, data analysis and simulations within
diverse domains of computer science together with numerous ap-
plications in nonlinear optics, engineering, deep water waves, fiber
optics, plasma physics, fluid mechanics, mathematical physics, and
particularly in scenarios involving the propagation of nonlinear
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waves. Soliton models play a crucial role in various applications,
including solitary wave-based communication links, fiber-optic,
optical pulse compressors, amplifiers, and numerous other mech-
anisms. Optical solitons play a important role in the realm of
telecommunications, serving as a fundamental cornerstone of the
industry. Their importance in nonlinear optics is underscored by
this distinctive characteristic. Solitons are essentially the outcome
of the interplay between non-linearity, which inclines towards
increasing the wave slope, and dispersion, which tends to sta-
bilize the wave. Nonlinear physical phenomena is significantly
enriched by the presence of precise moving wave solutions in non-
linear partial differential equations (PDEs). Numerous researchers
have unveiled a diverse range of solutions across various non-
linear models, including rogue wave solutions, dromion wave
solutions, soliton solutions, multi soliton solutions, lumps, and
breather solutions. Many efficient techniques have been devel-
oped for acquiring precise wave solutions in case of study the
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non-linear models, such as, the coupled nonlinear Schrödinger
equations (NSEs) and derived the optical soliton solutions by us-
ing the Kudryashov R function technique (Das and Saha Ray 2023),
for time-fractional perturbed (NSEs) obtained some new soliton
solutions with application of the generalized Kudryashov scheme
(Das and Saha Ray 2022), for (NSEs) by the application of modified
auxiliary technique derived optical solutions and some new optical
wave solutions gained by employing the improved tan(ϕ(ζ/2))-
expansion technique to perturbed (NSEs) (Saha Ray and Das 2022),
the F-expantion method (A. Filiz and Sonmezoglu 2014; W. B. Ra-
bie and Hamdy 2023), the Jacobi eliptic function expansion method
(Zayed and AlurrÖ 2015; Zheng and Feng 2014), and many others
have been used in the past.

We employ the new mapping method in our research, a ro-
bust approach for addressing nonlinear evolution equations. This
method, when applied with specific parameter values, enables the
derivation of soliton solutions. New exact soliton solutions de-
rived through this approach align with those obtained through the
trial equation method, the first integral method, and the functional
variable method. Numerous new results are identified, encom-
passing in the form of transcendental functions. The versatility
of this method is evident through its widespread applications in
the literature. For instance, some soliton solutions for two (NSEs)
by the application of new mapping method are investigated by
Zayed et.al (Zayed and AlurrÖ 2017). Zeng et.al (X. Zeng 2008)
developed A new mapping method and discussed its applications
to nonlinear partial differential equations. Zayed et.al (E. M. Za-
yed and Alshehr 2022) investigated Optical wave solutions having
Kudryashovís self-phase modulation by using new mapping ap-
proach.

The versatile and valuable impacts of fractional calculus in
the field of electrical engineering, electrochemistry, control the-
ory, electromagnetism, mechanics, image processing, bioengineer-
ing, physics, finance, fluid dynamics, and many others make it
a valuable tool for study. Fractional derivatives not only keep
the record of the present but also the past, so they are very suit-
able and accurate when the system has long-term memory. It has
several applications in physical science as well as in other areas
such as biology, astrophysics, ecology, geology and chemistry. The
mechanism of non-Newtonian models is elaborated successfully
with the fractional calculus in the past decades due to its simple
and elegant description of the complexity of its behaviour. One
of the important feature and most commonly known name of
non-Newtonian fluid is viscoelastic fluid that which exhibit the
behaviour of elasticity and viscosity. Such types of fluid models
have great implications in various fields namely polymerization,
industrial as well as mechanical engineering and also in the field
of auto mobile industry due to its significance.

Fractional calculus is very helpful in the interpretation of the vis-
coelastic nature of the materials. Taking into account the enormous
mentioned properties, many researchers paid attention to analyse
the fractional behaviour of different models directly or indirectly
in case of derivatives when it is considered as non-integer order
from. Fractional calculus, emerging from the traditional calculus
such as derivative and integral operators, much like fractional
exponents evolving from integer values, constitutes a distinct field
of mathematical study. Certainly. Real-world processes, by and
large, exhibit characteristics of fractional-order systems. The effec-
tiveness of Fractional Calculus (FC) applications can be attributed
to the heigh accuracy of these innovative fractional-order models
as compared to traditional models. The fractional order model
introduces greater degrees of freedom than the corresponding

classical model, contributing to its superior performance. A differ-
ential equation containing fractional integrals, derivatives or both
is described as a Fractional Equation (FE).

Recognition of the importance of such equations has steadily
increased over the past decade. Diverse applications have sur-
faced, including wave propagation in porous media or complex
(Zaslavsky 2002), fractional order modified Duffing systems (Ge
and Ou 2008), Ginzburg–Landau model (Zhu and Gao 2023), regu-
larized symmetric long wave equation flow models in deep water
(Senol 2020), in physical and engineering sciences fractional Boussi-
nesq type equations (Ellahi and Khan 2018), and Korteweg–de
Vries equations taking coefficients variable (Wang and Li 2018).
The spectrum of fractional derivative operators encompasses vari-
ous types, such as Beta-fractional derivative (Rafiq and Kamran
2022), Atangana–Baleanu–Riemann fractional derivative (Khater
and Kumar 2020), Caputo–Fabrizio derivative (Naeem and Zaland
2022), and truncated M-fractional derivatives (Mohammed and
Abouelregal 2023; Alabedalhadi and Alhazmi 2023).

The aim of this paper is to clarify how the soliton solutions
of the complex three coupled Maccari’s system are influenced
by the M-fractional derivative operator, by using the New Map-
ping Method. The importance of the M-fractional derivative lies
in its capacity to incorporate the features of both fractional and
integer order derivatives. This serves as a generalization of nu-
merous fractional derivatives, preserving essential characteristics
of integer-order derivatives. Our findings reveal that employing
straightforward schemes and solvable ordinary differential equa-
tions (ODEs) facilitates the easy derivation of various exact-wave
solutions for complex NLFPDEs.

Notably, the solution of this ODE has been achieved using the
New mapping method technique, the obtained results are novel
compared to existing literature to examine soliton patterns. Follow-
ing this, we have explored the dynamics of the analyzed equation
by employing bifurcation theory. As a result, phase portraits illus-
trates the bifurcation features of the model under various initial
conditions has been conducted. A bifurcation theory refers to a
qualitative transformation to unveil the dynamical system charac-
teristics, provides the modification of involving parameters. The
primary objective of this study is to unveil novel exact soliton solu-
tions for the considerd system with employing the new mapping
method and analyzed the behaviour of differential equations (DEs)
through the bifurcation analysis.

This manuscript is structured as follows: Described the basic
definition and properties of M-fractional derivative in Section 2.
Section 3 presented the fractional model being studied. Section 4
provides an overview of the renowned new mapping method. In
Section 5, wave solutions discovered by employing this method
along with several figures displayed. Section 6 involves the il-
lustration of bifurcation analysis and discussed the behaviour of
fixed points through phase portraits.Finally, Section 7 presents the
comprehensive summary of the obtained results from the study.

FUNDAMENTAL CONCEPTS OF FRACTIONAL CALCULUS

In this part, some basic concepts of the fractional operator used in
this article are given.

Truncated-M Fractional Derivative
Definition 1 The truncated one parameter Mittag-Leffler function
is given below (Vanterler 2018):

iEϖ(G) =
i

∑
j=0

Gj

Γ(ϖj + 1)
,
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where ϖ > 0 and G ∈ C.
Definition 2 Let R : [0, ∞) → R and δ ∈ (0, 1). The truncated

M-derivative of function R of order ϑ is defined by:

Dϑ,ϖ
M R(t) = lim

ε→0

R(t + iEϖ(εt−ϑ))− R(t)
ε

,

for t > 0 and iEϖ(.), where ϖ > 0.
Theorem 1 Suppose that R is a differentiable function of order

ϑ at t0 > 0, where ϑ ∈ (0, 1] and ϖ > 0. Then, R is continuous at
t0.

Theorem 2 Assuming ϑ ∈ (0, 1], ϖ > 0, α, β ∈ R, and R, S are
ϑ-differentiable at t > 0, then:

1- iDϑ,ϖ
M (α R(t) + β S(t)) = rDϑ,ϖ

M (R(t)) + sDϑ,ϖ
M (S(t)).

2- iDϑ,ϖ
M (R(t).S(t)) = R(t)Dϑ,ϖ

M (S(t)) + S(t)Dϑ,ϖ
M (R(t)).

3- iDϑ,ϖ
M ( R(t)

S(t) ) =
R(t)Dϑ,ϖ

M (S(t))−S(t)Dϑ,ϖ
M (R(t))

[S(t)]2 .

4- iDϑ,ϖ
M (δ) = 0, where δ is a constant.

5- If R(t) is differentiable, then iDϑ,ϖ
M (R)(t) = t1−ϑ

Γ(ϖ+1)
dR(t)

dt .

FRACTIONAL GOVERNING MODEL WITH MATHEMATICAL
ANALYSIS

The M-fractional three-coupled nonlinear Maccari’s system, as de-
picted in (Emad and Lanre 2021), elucidates the propagation of
isolated waves within a limited spatial domain. This phenomenon
is relevant to various fields such as hydrodynamics, optical com-
munications and plasma physics.

iDx,γ
M,tΨ + Ψxx + ΠΨ = 0,

iDx,γ
M,tΦ + Φxx + ΠΦ = 0,

iDx,γ
M,tΩ + Ωxx + ΠΩ = 0,

iDx,γ
M,tΠ + Πy +

(
|Ψ + Φ + Ω|2

)
x = 0.

(1)

Let us consider the following transformations:

Ψ(x, y, t) = Ψ(ζ)× exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
)
+ κ
)

,

Φ(x, y, t) = Φ(ζ)× exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
)
+ κ
)

,

Ω(x, y, t) = Ω(ζ)× exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
)
+ κ
)

,

Π(x, y, t) = Π(ζ) where ζ = λ
(

x + y − 2β
r(γ+1)

α tα
)

.

(2)

In this context, the variables κ1, θ, ν, and β represent the unknowns,
with κ serving as the arbitrary constant. Upon substituting Equa-
tion (2) into Equation (1), both the real and imaginary components
are derived such as, Real parts:

λ2Ψ′′ −
(
θ + κ2

1
)

Ψ + ΨΠ = 0,

λ2Φ′′ −
(
θ + κ2

1
)

Φ + ΦΠ = 0,

λ2Ω′′ −
(
θ + κ2

1
)

Ω + ΩΠ = 0,

λ(1 − 2β)Π′ + λ
(
(Ψ + Φ + Ω)2)′ = 0.

(3)

and its imaginary parts:

(−2β + 2κ1)Ψ′ = 0, (−2β + 2κ1)Φ′ = 0, (−2β + 2κ1)Ω′ = 0. (4)

By Equation Eq.(4), imply β = κ1. Integrating the fourth equation
of system (3) yields

Π = − (Ψ + Φ + Ω)2

1 − 2κ1
(5)

Replacing (5) in the system (3), yields
λ2Ψ′′ −

(
θ + κ2

1
)

Ψ − (Ψ+Φ+Ω)2

1−2κ1
Ψ = 0,

λ2Φ′′ −
(
θ + κ2

1
)

Φ − (Ψ+Φ+Ω)2

1−2κ1
Φ = 0,

λ2Ω′′ −
(
θ + κ2

1
)

Ω − (Ψ+Φ+Ω)2

1−2κ1
Ω = 0.

(6)

Taking Φ = κ2Ψ and Ω = cΨ in the system (6), we obtain

λ2Ψ′′ −
(

θ + κ2
1

)
Ψ − (1 + κ2 + c)2

1 − 2κ1
Ψ3 = 0 (7)

OVERVIEW OF THE RECENTLY INTRODUCED NEW MAP-
PING METHOD

Consider the non-linear PDE :

P (Ψ, Ψx, Ψt, Ψxx, Ψt, . . .) = 0 (8)

In this context, where P is a polynomial in Ψ involving its partial
derivatives, specifically the highest order derivatives and nonlinear
terms and Ψ is a function of x and t, i.e, Ψ = Ψ(x, t) which is an
unknown function. The fundamental procedures of the widely
recognized new mapping method (X. Zeng 2008) can be outlined
as follows:
Step 1. The transformation of travelling wave

Ψ(x, t) = Ψ(ς), ς = x − ct (9)

where c represent a constant, after applying the transformation,
Eq. (8) reduces into to the following non-linear (ODE):

G
(
Ψ, Ψ′, Ψ′′, . . .

)
= 0 (10)

Here, G represents a polynomial involving Ψ(ς) and its derivatives
with respect to ς.
Step 2. We assume that the solution to Equation (10) written in the
following form:

Ψ(ς) =
2N

∑
i=0

αiFi(ς) (11)

Here, F(ς) fulfills a first-order nonlinear ordinary differential equa-
tion: (

F′)2
(ς) = pF2(ς) +

1
2

qF4(ς) +
1
3

sF6(ς) + r (12)

In this context, constants αi (where i ranges from 0 to 2N), along
with the constants p, q, s, and r, are to be determined, but both s
and α2N must be non-zero.
Step 3. We ascertain the balancing number N for Equation (11) by
equating the highest-order derivatives with the highest nonlinear
terms in Equation (10).
Step 4. By substituting Eq.(11) together with Eq. (12) into
Eq. (10) and aggregating all the coefficients of Fm (F′)n (where
m = 0, 1, 2, . . .) and (n = 0, 1), subsequent setting of these coef-
ficients to zero leads to a system of algebraic equations. These
equations can be effectively solved using Maple software to deter-
mine the values of unknowns such as, αi (where i = 0, 1, 2, . . . , 2N),
p, q, s, r, and c.
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Step 5. It is widely acknowledged (Zayed and AlurrÖ 2017;
X. Zeng 2008; E. M. Zayed and Alshehr 2022) that Eq. (12) possesses
sets of solutions, outlined as follows:

F1(ς) =4

−
p tanh2

(
ϵ
√
− p

3 ς

)
3q
(

3 + tanh2
(

ϵ
√
− p

3 ς

))


1
2

,

p < 0, q > 0, s =
3q2

16p
, r =

16p2

27q
,

F2(ς) =4

−
p coth2

(
ϵ
√
− p

3 ς

)
3q
(

3 + coth2
(

ϵ
√
− p

3 ς

))


1
2

,

p < 0, q > 0, s =
3q2

16p
, r =

16p2

27q
,

F3(ς) =4

 p tan2
(

ϵ
√

p
3 ς

)
3q
(

3 − tan2
(

ϵ
√

p
3 ς

))


1
2

,

p > 0, q < 0, s =
3q2

16p
, r =

16p2

27q
,

F4(ς) =4

 p cot2
(

ϵ
√

ε
3 ς
)

3q
(

3 − cot2
(

ϵ
√

p
3 ς

))


4
2

,

p > 0, q < 0, s =
3q2

16p
, r =

16p2

27q
,

F5(ς) =

(
−2p

q
(1 + tanh(ϵ

√
pς))

) 1
2

, p > 0, s =
3q2

16p
, r = 0,

F6(ς) =

(
−2p

q
(1 + coth(ϵ

√
pς))

) 1
2

, p > 0, s =
3q2

16p
, r = 0,

F7(ς) =

(
−

6pq sech2(
√

pς)

3q2 − 4ps(1 + ϵ tanh(
√

pς))2

) 4
2

, p > 0, r = 0,

F8(ς) =

(
6pq csch2(

√
pς)

3q2 − 4ps(1 + ϵ coth(
√

pς))2

) 1
2

, p > 0, r = 0,

F9(ς) =

(
−

6p sech2(
√

pς)

3q + 4ϵ
√

3ps tanh(
√

pς)

) 1
2

, p > 0, s > 0, r = 0,

F10(ς) =

(
6p csch2(

√
pς)

3q + 4ϵ
√

3ps coth(
√

pς)

) 1
2

, p > 0, s > 0, r = 0,

F11(ς) =

(
− 6p sec2(

√−pς)

3q + 4ϵ
√
−3ps tan(

√−pς)

) 1
2

, p < 0, s > 0, r = 0,

F12(ς) =

(
− 6p csc2(

√−pς)

3q + 4ϵ
√
−3ps cot(

√−pς)

) 1
2

, p < 0, s > 0, r = 0

F13(ς) =2

(
3p sech2(ϵ

√
pς)

2
√

M − (
√

M + 3q) sech2(ϵ
√

pς)

) 1
2

,

p > 0, q < 0, s < 0, M > 0, r = 0 (13)

F14(ς) =2

(
3p csch2(ϵ

√
pς)

2
√

M + (
√

M − 3q) csch2(ϵ
√

pς)

) 1
2

,

p > 0, q < 0, s < 0, M > 0, r = 0,

F15(ς) =2

(
−3p sec2(ϵ

√−pς)

2
√

M − (
√

M − 3q) sec2(ϵ
√−pς)

) 1
2

,

p < 0, q > 0, s < 0, M > 0, r = 0,

F16(ς) =2

(
3p csc2(ϵ

√−pς)

2
√

M − (
√

M + 3q) csc2(ϵ
√−pς)

) 1
2

,

p < 0, q > 0, s < 0, M > 0, r = 0,

F17(ς) = 2

(
3p

ϵ
√

M cosh(2
√

pς)− 3q

) 1
2

, p > 0, M > 0, r = 0,

F18(ς) = 2

(
3p

ϵ
√

M cos(2
√−pς)− 3q

) 1
2

, p < 0, M > 0, r = 0,

F19(ς) = 2

(
3p

ϵ
√

M sin(2
√−pς)− 3q

) 1
2

, p < 0, M > 0, r = 0

F20(ς) = 2

(
3p

ϵ
√
−M sinh(2

√
pς)− 3q

) 1
2

, p > 0, M < 0, r = 0,

where M = 9q2 − 48ps and ϵ = ±1.
Step 6. By substituting the values of αi, p, q, s, r, and c, along with
the solutions of Eq. (12) provided in Step 5, into Eq. (11), we obtain
the precise solutions for Eq. (8).

EXPLICIT SOLUTIONS OF THE EQUATION

In this section the primary objective to obtain the precise solutions
for the model under examination. Calculating the value of N
involves the application of the homogeneous balancing principle
to Eq. (7). By setting Ψ′′ and Ψ3 in Eq. (7) equal to each other,
yielding 3N = N + 2, we deduce that N = 1. Consequently, for
N = 1, the solution of the system can be expressed as follows:

Ψ(ζ) = Λ0 + Λ1F(ζ) + Λ2F2(ζ). (14)

By substituting Eq. (14) into Eq. (7) along with Eq. (12), a system of
equations is formed by equating the coefficients of various powers
of F(ζ) to zero. The utilization of Maple software in solving this
system yields the following efficacious solution:

p = −
(

A+3Bκ2

4

)
, q = ∓ 2κ

√
−6Bs
3 , (15)

Λ0 = Θ, Λ1 = 0, Λ2 = ± 2
√
−6Bs
3B
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where,

Θ =

((
3
√

3
√

A3−72s r2
B B+18

√
−6Bs r

)
B
) 2

3
−3AB

3B
((

3
√

3
√

A3−72s r2
B B+18

√
−6BS r

)
B
) 1

3
,

A = − (θ+κ2
1)

λ2 , B = − (1+κ2+c)2

λ2(1−2κ1)
.

By plugging above values in Eq.(14) which becomes

Ψ(ζ) = Θ ± 2
√
−6Bs
3B F2(ζ) and employing the transforma-

tion mentioned in Eq.(12), the solutions of system (1) are as
follows,

• Type 1: For p < 0, q > 0, s = 3q2

16p and r = 16p2

27q , we have

Ψ1(x, y, t) =

[
Θ ± 32

√
−6Bs

3B

(
−

p tanh2
(

ϵ
√

− p
3 ς
)

3q
(

3+tanh2
(

ϵ
√

− p
3 ς
))
)]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Φ1(x, y, t) = κ2

[
Θ ± 32

√
−6Bs

3B

(
−

p tanh2
(

ϵ
√

− p
3 ς
)

3q
(

3+tanh2
(

ϵ
√

− p
3 ς
))
)]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Ω1(x, y, t) = c

[
Θ ± 32

√
−6Bs

3B

(
−

p tanh2
(

ϵ
√

− p
3 ς
)

3q
(

3+tanh2
(

ϵ
√

− p
3 ς
))
)]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,
(16)

• Type 2: For p < 0, q > 0, s =
3q2

16p and r =
16p2

27q , we
have

Ψ1(x, y, t) =

[
Θ ± 32

√
−6Bs

3B

(
−

pcoth2
(

ϵ
√

− p
3 ς
)

3q
(

3+coth2
(

ϵ
√

− p
3 ς
))
)]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Φ1(x, y, t) = κ2

[
Θ ± 32

√
−6Bs

3B

(
−

pcoth2
(

ϵ
√

− p
3 ς
)

3q
(

3+coth2
(

ϵ
√

− p
3 ς
))
)]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Ω1(x, y, t) = c

[
Θ ± 32

√
−6Bs

3B

(
−

pcoth2
(

ϵ
√

− p
3 ς
)

3q
(

3+coth2
(

ϵ
√

− p
3 ς
))
)]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,
(17)

• Type 3: For p > 0, q < 0, s =
3q2

16p and r =
16p2

27q , we
have

Ψ1(x, y, t) =

[
Θ ± 32

√
−6Bs

3B

(
p tan2

(
ϵ
√ p

3 ς
)

3q
(

3−tan2
(

ϵ
√ p

3 ς
))
)]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Φ1(x, y, t) = κ2

[
Θ ± 32

√
−6Bs

3B

(
p tan2

(
ϵ
√ p

3 ς
)

3q
(

3−tan2
(

ϵ
√ p

3 ς
))
)]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Ω1(x, y, t) = c

[
Θ ± 32

√
−6Bs

3B

(
p tan2

(
ϵ
√ p

3 ς
)

3q
(

3−tan2
(

ϵ
√ p

3 ς
))
)]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

(18)

• Type 4: For p > 0, q < 0, s =
3q2

16p and r =
16p2

27q , we
have



Ψ4(x, y, t) =

[
Θ ± 32

√
−6Bs

3B

(
p cot2

(
ϵ
√ p

3 ς
)

3q
(

3−cot2
(

ϵ
√ p

3 ς
))
)]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Φ4(x, y, t) = κ2

[
Θ ± 32

√
−6Bs

3B

(
p cot2

(
ϵ
√ p

3 ς
)

3q
(

3−cot2
(

ϵ
√ p

3 ς
))
)]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Ω4(x, y, t) = c

[
Θ ± 32

√
−6Bs

3B

(
p cot2

(
ϵ
√ p

3 ς
)

3q
(

3−cot2
(

ϵ
√ p

3 ς
))
)]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

(19)

• Type 5: For p > 0, s = 3q2

16p and r = 0, we have



Ψ5(x, y, t) =
[
Θ ± 2

√
−6Bs
3B

(
− 2p

q
(
1 + tanh

(
ϵ
√

pς
)))]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Φ5(x, y, t) = κ2

[
Θ ± 2

√
−6Bs
3B

(
− 2p

q
(
1 + tanh

(
ϵ
√

pς
)))]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Ω5(x, y, t) = c
[
Θ ± 2

√
−6Bs
3B

(
− 2p

q
(
1 + tanh

(
ϵ
√

pς
)))]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,
(20)

• Type 6: For p > 0, s = 3q2

16p and r = 0, we have



Ψ6(x, y, t) =
[
Θ ± 2

√
−6Bs
3B

(
− 2p

q
(
1 + coth

(
ϵ
√

pς
)))]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Φ6(x, y, t) = κ2

[
Θ ± 2

√
−6Bs
3B

(
− 2p

q
(
1 + coth

(
ϵ
√

pς
)))]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Ω6(x, y, t) = c
[
Θ ± 2

√
−6Bs
3B

(
− 2p

q
(
1 + coth

(
ϵ
√

pς
)))]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,
(21)
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• Type 7: For p > 0 and r = 0, we have

Ψ7(x, y, t) =

[
Θ ± 2

√
−6Bs
3B

(
− 6pq sech2(

√
pς)

3q2−4ps
(

1+ϵ tanh(
√

pς)
2
)
)]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Φ7(x, y, t) = κ2

[
Θ ± 2

√
−6Bs
3B

(
− 6pq sech2(

√
pς)

3q2−4ps
(

1+ϵ tanh(
√

pς)
2
)
)]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Ω7(x, y, t) = c

[
Θ ± 2

√
−6Bs
3B

(
− 6pq sech2(

√
pς)

3q2−4ps
(

1+ϵ tanh(
√

pς)
2
)
)]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,
(22)

• Type 8: For p > 0 and r = 0, we have

Ψ8(x, y, t) =

[
Θ ± 2

√
−6Bs
3B

(
6pqcsch2(

√
pς)

3q2−4ps
(

1+ϵcoth(
√

pς)
2
)
)]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Φ8(x, y, t) = κ2

[
Θ ± 2

√
−6Bs
3B

(
6pqcsch2(

√
pς)

3q2−4ps
(

1+ϵcoth(
√

pς)
2
)
)]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Ω8(x, y, t) = c

[
Θ ± 2

√
−6Bs
3B

(
6pqcsch2(

√
pς)

3q2−4ps
(

1+ϵcoth(
√

pς)
2
)
)]

×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,
(23)

• Type 9: For p > 0, s > 0 and r = 0, we have

Ψ9(x, y, t) =
[

Θ ± 2
√
−6Bs
3B

(
− 6psech2(

√
pς)

3q+4ϵ
√

3ps tanh(
√

pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Φ9(x, y, t) = κ2

[
Θ ± 2

√
−6Bs
3B

(
− 6psech2(

√
pς)

3q+4ϵ
√

3pstanh(
√

pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Ω9(x, y, t) = c
[

Θ ± 2
√
−6Bs
3B

(
− 6psech2(

√
pς)

3q+4ϵ
√

3pstanh(
√

pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

(24)

• Type 10: For p > 0, s > 0 and r = 0, we have

Ψ10(x, y, t) =
[

Θ ± 2
√
−6Bs
3B

(
6pcsch2(

√
pς)

3q+4ϵ
√

3pscoth(
√

pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Φ10(x, y, t) = κ2

[
Θ ± 2

√
−6Bs
3B

(
6pcsch2(

√
pς)

3q+4ϵ
√

3pscoth(
√

pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Ω10(x, y, t) = c
[

Θ ± 2
√
−6Bs
3B

(
6pcsch2(

√
pς)

3q+4ϵ
√

3pscoth(
√

pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

(25)

• Type 11: For p < 0, s > 0 and r = 0, we have



Ψ11(x, y, t) =
[

Θ ± 2
√
−6Bs
3B

(
− 6p sec2(

√−pς)

3q+4ϵ
√

−3ps tan(
√−pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Φ11(x, y, t) = κ2

[
Θ ± 2

√
−6Bs
3B

(
− 6p sec2(

√−pς)

3q+4ϵ
√

−3ps tan(
√−pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Ω11(x, y, t) = c
[

Θ ± 2
√
−6Bs
3B

(
− 6p sec2(

√−pς)

3q+4ϵ
√

−3ps tan(
√−pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,
(26)

• Type 12: For p < 0, s > 0 and r = 0, we have



Ψ12(x, y, t) =
[

Θ ± 2
√
−6Bs
3B

(
− 6p csc2(

√−pς)

3q+4ϵ
√

−3ps cot(
√−pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Φ12(x, y, t) = κ2

[
Θ ± 2

√
−6Bs
3B

(
− 6p csc2(

√−pς)

3q+4ϵ
√

−3ps cot(
√−pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Ω12(x, y, t) = c
[

Θ ± 2
√
−6Bs
3B

(
− 6p csc2(

√−pς)

3q+4ϵ
√

−3ps cot(
√−pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,
(27)

• Type 13: For p > 0, q < 0, s < 0, M > 0 and r = 0, we
have



Ψ13(x, y, t) =
[

Θ ± 2
√
−6Bs
3B

(
12p sech2(ϵ

√
pς)

2
√

M−(
√

M+3q) sech2(ϵ
√

pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Φ13(x, y, t) = κ2

[
Θ ± 2

√
−6Bs
3B

(
12p sech2(ϵ

√
pς)

2
√

M−(
√

M+3q) sech2(ϵ
√

pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Ω13(x, y, t) = c
[

Θ ± 2
√
−6Bs
3B

(
12p sech2(ϵ

√
pς)

2
√

M−(
√

M+3q) sech2(ϵ
√

pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,
(28)

• Type 14: For p > 0, q < 0, s < 0, M > 0 and r = 0, we
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have

Ψ14(x, y, t) =
[

Θ ± 2
√
−6Bs
3B

(
12pcsch2(ϵ

√
pς)

2
√

M+(
√

M−3q)csch2(ϵ
√

pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Φ14(x, y, t) = κ2

[
Θ ± 2

√
−6Bs
3B

(
12pcsch2(ϵ

√
pς)

2
√

M+(
√

M−3q)csch2(ϵ
√

pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Ω14(x, y, t) = c
[

Θ ± 2
√
−6Bs
3B

(
12pcsch2(ϵ

√
pς)

2
√

M+(
√

M−3q)csch2(ϵ
√

pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,
(29)

• Type 15: For p < 0, q > 0, s < 0, M > 0 and r = 0, we
have

Ψ15(x, y, t) =
[

Θ ± 2
√
−6Bs
3B

(
−12p sec2(ϵ

√−pς)

2
√

M−(
√

M−3q) sec2(ϵ
√−pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Φ15(x, y, t) = κ2

[
Θ ± 2

√
−6Bs
3B

(
−12p sec2(ϵ

√−pς)

2
√

M−(
√

M−3q) sec2(ϵ
√−pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Ω15(x, y, t) = c
[

Θ ± 2
√
−6Bs
3B

(
−12p sec2(ϵ

√−pς)

2
√

M−(
√

M−3q) sec2(ϵ
√−pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,
(30)

• Type 16: For p < 0, q > 0, s < 0, M > 0 and r = 0, we
have

Ψ16(x, y, t) =
[

Θ ± 2
√
−6Bs
3B

(
12p csc2(ϵ

√−pς)

2
√

M−(
√

M+3q) csc2(ϵ
√−pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Φ16(x, y, t) = κ2

[
Θ ± 2

√
−6Bs
3B

(
12p csc2(ϵ

√−pς)

2
√

M−(
√

M+3q) csc2(ϵ
√−pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Ω16(x, y, t) = c
[

Θ ± 2
√
−6Bs
3B

(
12p csc2(ϵ

√−pς)

2
√

M−(
√

M+3q) csc2(ϵ
√−pς)

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,
(31)

• Type 17: For p > 0, M > 0 and r = 0, we have

Ψ17(x, y, t) =
[

Θ ± 2
√
−6Bs
3B

(
12p

ϵ
√

M cosh(2
√

pς)−3q

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Φ17(x, y, t) = κ2

[
Θ ± 2

√
−6Bs
3B

(
12p

ϵ
√

M cosh(2
√

pς)−3q

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Ω17(x, y, t) = c
[

Θ ± 2
√
−6Bs
3B

(
12p

ϵ
√

M cosh(2
√

pς)−3q

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

(32)

• Type 18: For p < 0, M > 0 and r = 0, we have



Ψ18(x, y, t) =
[

Θ ± 2
√
−6Bs
3B

(
12p

ϵ
√

M cos(2
√−pς)−3q

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Φ18(x, y, t) = κ2

[
Θ ± 2

√
−6Bs
3B

(
12p

ϵ
√

M cos(2
√−pς)−3q

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Ω18(x, y, t) = c
[

Θ ± 2
√
−6Bs
3B

(
12p

ϵ
√

M cos(2
√−pς)−3q

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

(33)

• Type 19: For p < 0, M > 0 and r = 0, we have



Ψ19(x, y, t) =
[

Θ ± 2
√
−6Bs
3B

(
12p

ϵ
√

M sin(2
√−pς)−3q

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Φ19(x, y, t) = κ2

[
Θ ± 2

√
−6Bs
3B

(
12p

ϵ
√

M sin(2
√−pς)−3q

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Ω19(x, y, t) = c
[

Θ ± 2
√
−6Bs
3B

(
12p

ϵ
√

M sin(2
√−pς)−3q

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

(34)

• Type 20: For p > 0, M < 0 and r = 0, we have



Ψ20(x, y, t) =
[

Θ ± 2
√
−6Bs
3B

(
12p

ϵ
√
−M sinh(2

√
pς)−3q

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Φ20(x, y, t) = κ2

[
Θ ± 2

√
−6Bs
3B

(
12p

ϵ
√
−M sinh(2

√
pς)−3q

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

Ω20(x, y, t) = c
[

Θ ± 2
√
−6Bs
3B

(
12p

ϵ
√
−M sinh(2

√
pς)−3q

)]
×
(

exp
(

ι
(

κ1x + νy + θ
Γ(γ+1)

α tα
))

+ κ
)

,

(35)

Dark, periodic, bright, kink, and singular solitons have
been observed in the context of Ψ3(x, y, t), Ψ9(x, y, t), Ψ4(x, y, t),
as well as Ψ5(x, y, t) and Ψ6(x, y, t). The outcomes acquired from
the experiments are exhibited in Figs.(1)-(8).
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Figure 1 Figures (a),(b) and (c) represents 3D, Contour and 2D
plots respectively for Ψ3(x, y, t) corresponding to the values
κ = 0.5,ϵ = 0,y = 0, c = 1,λ = 0.4, κ1 = 0 and κ2 = 0.

Figure 2 Figures (a),(b) and (c) represents 3D, Contour and 2D
plots respectively Ψ9(x, y, t) corresponding to the values κ =
0.5,ϵ = 0,y = 0, c = 1,λ = 0.4, κ1 = 0 and κ2 = 0.

Figure 3 Figures (a),(b) and (c) represents 3D, Contour and 2D
plots respectively Ψ4(x, y, t) corresponding to the values κ =
0.5,ϵ = 0,y = 0, c = 1,λ = 0.4, κ1 = 0 and κ2 = 0

Figure 4 Figures (a),(b) and (c) represents 3D, Contour and 2D
plots respectively Ψ5(x, y, t) corresponding to the values κ =
0.5,ϵ = 0,y = 0, c = 1,λ = 0.4, κ1 = 0 and κ2 = 0
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Figure 5 Figures (a),(b) and (c) represents 3D, Contour and 2D
plots respectively Ψ6(x, y, t) corresponding to the values κ =
0.5,ϵ = 0,y = 0, c = 1,λ = 0.4, κ1 = 0 and κ2 = 0

Figure 6 Figures (a),(b) and (c) represents 3D, Contour and 2D
plots respectively Ψ3(x, y, t) corresponding to the values κ =
0.5,ϵ = 0,y = 0, c = 1,λ = 0.4, κ1 = 0 and κ2 = 0.5

Figure 7 Figures (a),(b) and (c) represents 3D, Contour and 2D
plots respectively Ψ4(x, y, t) corresponding to the values κ =
0.5,ϵ = 0,y = 0, c = 1,λ = 0.4, κ1 = 0 and κ2 = 0.5

Figure 8 Figures (a),(b) and (c) represents 3D, Contour and 2D
plots respectively Ψ6(x, y, t) corresponding to the values κ =
0.5,ϵ = 0,y = 0, c = 1,λ = 0.4, κ1 = 0 and κ2 = 0.5
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BIFURCATION ANALYSIS OF THE MODEL

For the sake of bifurcation analysis through phase portrait of Eq.(7),
suppose that Ψ′ = χ then Eq.(7) transform into the first order
dynamical system of the following form:

 dΨ
dζ = χ,
dχ
dζ = η1Ψ − η2Ψ3,

(36)

where η1 =
θ+κ2

1
λ2 , and η2 = (1+κ2+c)2

λ2(2κ1−1) . Hamiltonian function for
the dynamical system (36) is defined as:

L(Ψ, χ) =
χ2

2
− η1

Ψ2

2
+ η2

Ψ4

4
. (37)

The dynamical system (36) has the following equilibrium points:

Υ1 = (0, 0), Υ2 = (

√
η1
η2

, 0), Υ3 = (−
√

η1
η2

, 0).

Furthermore, the Jacobian of (36) is:

J(Ψ, χ) =

∣∣∣∣∣∣∣
0 1

η1 − 3η2Ψ2 0

∣∣∣∣∣∣∣

= −η1 + 3η2Ψ2,

thus (Ψ, χ) is a saddle point for J(Ψ, χ) < 0, a center for
J(Ψ, χ) > 0 and a cusp if J(Ψ, χ) = 0.
To investigate the characteristics of the system (36), we consider
the different possible cases by taking various values of parameters
and observe the corresponding critical points, the following cases
are observed and analysed as:

• Case 1: Let η1 > 0, and η2 > 0.
For θ = 0.5, c = 1,λ = 0.4, κ1 = 0 and κ2 = 0, system (36),then crit-
ical points Υ1 = (0, 0), Υ2 = (−0.57735, 0), and Υ3 = (0.57735, 0).
In this case, Υ1 is saddle point and Υ2, Υ3 are central points. The
phase plots are displayed for different values ofλ in Fig.(9).

Figure 9 Phase Portarait visualization of the planar system (36)
corresponding to the parameter values for Fig.(a) θ = 0.5, c =
1,λ = 0.4, κ1 = 0, κ2 = 0 and Fig.(b) θ = 0.5, c = 1,λ = 0.9,
κ1 = 0, κ2 = 0

Figure 10 Phase Portarait visualization of the planar system (36)
corresponding to the parameter values for Fig.(a) θ = −0.5,
c = 1,λ = 0.4, κ1 = 0 and κ2 = 0. and Fig.(b) θ = −0.5,
c = 1,λ = 0.9, κ1 = 0, κ2 = 0.
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• Case 2: Let η1 < 0, and η2 < 0.
For θ = −0.5, c = 1,λ = 0.4, κ1 = 0 and κ2 = 0, system
(36) exhibits three fixed points Υ1 = (0, 0), Υ2 = (−1, 0), and
Υ3 = (1, 0). In this case, Υ1 is center and Υ2, Υ3 are saddle points.
Also the phase plots are displayed for different values of λ in
Fig.(10).

CONCLUSION

In this study, we effectively explored a novel mapping method to
complex three coupled Maccari’s system to unveil novel soliton
solutions. This is achieved through the utilization of M-Truncated
fractional derivative with employing the new mapping method
and Maple software. Our study elucidates a variety of soliton
solutions.These versatile soliton classifications provide flexible
tools for both modeling and simulation purposes. To the best
of our understanding, this technique has been employed for the
first time on this model, resulting in entirely novel solutions not
previously documented in the existing literature. To facilitate
comprehension, with certain solutions being visually depicted
through 2-dimensional, contour, 3-dimensional plots and phase
portraits depicting bifurcation characteristics that explored com-
prehensively its dynamical nature at equilibrium points utilizing
Maple software. Fundamentally, grasping the dynamic character-
istics of systems holds significant value in predicting results and
propelling advancements in emerging technologies. In summary,
the results of this investigation are not only intriguing but also
highlight the effectiveness of the suggested methodologies in eval-
uating the dynamics of solitons and phase patterns across various
nonlinear models.
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