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Öz

Sinyal iletimi, immünolojik yanıtlar ve metabolik döngüler dahil olmak üzere çok çeşitli biyolojik süreçler, protein-protein 
etkileşimlerinden etkilenir. Bu etkileşimlerin, hastalıkların kökeninin anlaşılması ve tedavilerin oluşturulması açısından çok büyük 
etkileri vardır. Ancak protein-protein etkileşimlerini belirlemeye yönelik deneysel yöntemler yoğun kaynak gerektirir, zaman alıcıdır 
ve kapsamı sınırlıdır. Bu nedenle, protein tanımlamayla ilgili faaliyetlere yardımcı olmak ve bunları geliştirmek için hesaplamalı 
teknikler önemlidir. Bu çalışma, yalnızca dizi bilgisini kullanarak protein-protein etkileşimlerini tahmin etmek için derin öğrenme ağı 
oluşturmayı amaçlamaktadır. Protein dizilerini kodlamak için üç farklı kodlama yöntemi kullanılmıştır: İkili Kodlama, Otokovaryans 
ve Konuma Özel Puanlama Matrisi. Protein-protein etkileşimlerini tahmin etmek amacıyla, protein dizi çiftleri arasındaki karmaşık 
modelleri bulmak için evrişimli bir Siyam sinir ağı kullanılmıştır. Bu ağ, eşleşen parametrelere sahip iki özdeş alt ağdan oluşmaktadır. 
Önerilen teknik, insan veri kümesine uygulandığında, PSSM protein temsili yaklaşımını kullanan model için %84.07 doğruluk, %92.45 
hassasiyet ve %91.45 kesinlik ile güçlü tahmin performansı göstermektedir. Farklı kodlama tekniklerinin aynı protein dizisinin farklı 
yönlerini yakaladığı bilindiğinden bu üç kodlayıcıdan gelen çıktıları birleştirmek için bir topluluk yaklaşımı önerilmektedir. Test setinde 
topluluk yaklaşımı için elde edilen doğruluk %86.27’ye hassasiyet ve %93.07’ye kesinlik ise %92.15’e artırılmıştır. Sonuç, tamamlayıcı 
özelliklerinden yararlanmak ve protein-protein etkileşimi tahmininin doğruluğunu artırmak için çeşitli kodlama yöntemlerinin entegre 
edilmesinin önemini vurgulamaktadır.

Anahtar Kelimeler: Derin öğrenme, ikili kodlama, konuma özel puanlama matrisi, otokovaryans

Abstract

A wide range of biological processes, including signal transmission, immunological responses, and metabolic cycles, are impacted 
by protein-protein interactions. These interactions have enormous implications for figuring out the origins of diseases and creating 
treatments. However, experimental methods for identifying PPIs are resource-intensive, time-consuming, and have limited coverage. 
Thus, computational techniques are essential to help and enhance activities related to protein identification. This study aims to build a 
deep learning network for predicting protein-protein interactions using only sequence information. Three different encoding methods 
are used to encode protein sequences: Binary Encoding, Autocovariance, and Position Specific Scoring Matrix. In order to predict 
protein-protein interactions, a convolutional Siamese neural network is employed to find complex patterns between protein sequence 
pairs. This network consists of two identical subnetworks with matched parameters. When applied to the human dataset, the suggested 
technique shows strong prediction performance with an accuracy of 84.07%, sensitivity of 92.45%, and precision of 91.45% for the 
model using the PSSM protein representation approach. An ensemble approach is suggested to combine the outputs from these three 
encoders because it is known that different encoding techniques capture various aspects of the same protein sequence. The accuracy 
obtained increased to 86.27% for the ensemble approach on the test set, with a sensitivity of 93.07% and a precision of 92.15%. The 
outcome highlights the importance of integrating several encoding methods to benefit from their complementary features and raise 
the accuracy of protein-protein interaction prediction.
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1. Introduction
The prediction of protein interactions is crucial for studying 
diseases, cellular systems, and forming the foundation for 
therapeutic strategies (Browne et al. 2010). Protein-protein 
interactions (PPIs) play a pivotal role in many cellular 
biological processes, e.g., cellular organization, transmission 
of signals, recognition of foreign molecules, and acceleration 
of chemical reactions (Sun et al. 2017). Various experimental 
techniques have facilitated the exploration of conserved 
protein interaction sites and the screening of numerous 
protein interaction partners. Tandem affinity purification 
(TAP), nuclear magnetic resonance (NMR), atomic force 
microscopy (AFM), X-ray crystallography, and chemical 
crosslinking are among the techniques used (Zhu et al. 
2019). While these biological experimental approaches have 
greatly helped to the identification of PPIs, it is critical to 
recognize that due to their labor-intensive, expensive and 
time consuming nature, they only cover a portion of the vast 
areas of PPIs.

As a result, there is a rising need for computational tools 
to complement and improve our understanding of protein 
interactions (Yang et al. 2021). Many researchers have 
actively pursued the creation of sequence-based approaches 
for finding novel PPIs. According to experimental findings, 
it is possible to predict PPIs by only using information 
from amino acid sequences (You et al. 2013). Shen et al. 
(2007) used protein information mining to compute the 
frequencies of conjoint triads inside protein sequences 
by treating three consecutive amino acids as a unit. Their 
studies demonstrated that PPIs could be predicted based on 
sequence information (Shen et al. 2007). 

Deep neural networks, a major development in machine 
learning in recent years, have the capacity to learn efficient 
representations of raw data automatically. They are excellent 
at identifying high-level features, improving performance 
beyond what can be accomplished by conventional models, 
and also providing increased interpretability. So, in recent 
times, deep learning has demonstrated significant interest in 
domains such as computer vision, machine translation, and 
bioinformatics. Deep neural networks also help us better 
understand the information contained in biological data 
by giving us valuable insights into its underlying structure 
(Angermueller et al. 2016). For instance, it has been utilized 
for tasks like calling Single Nucleotide Polymorphisms 
(SNPs) and detecting small insertions and deletions (indels) 
(Poplin et al. 2018). Additionally, deep learning techniques 
have been employed to assess the impact of non-coding 

sequence variants on 3D chromatin structure (Trieu et 
al. 2020). Furthermore, deep learning plays a crucial role 
in predicting various aspects of proteins, including their 
function (Gligorijević et al. 2021), structural attributes 
( Jumper et al. 2021), and interactions with other proteins 
(Hashemifar et al. 2018).

A fundamental computational problem in predicting PPIs 
based on sequences is efficiently encoding the critical 
information inherent in PPIs. Shen et al. (2007), addressed 
this problem by using the conjoint triad technique, which 
allows for extracting characteristics from protein sequences 
based on the unique properties of amino acids. Scientists 
divided the 20 amino acids into seven groups to simplify the 
representation based on parameters such as dipoles and side 
chain volumes. This approach to categorization allows for 
a more efficient and informative description of the protein 
sequences (Shen et al. 2007).

Guo et al. (2008) generated feature vectors from protein 
sequences using the auto covariance (AC) approach. This 
approach takes into account surrounding effects, allowing 
it to reveal patterns that span whole sequences (Guo et al. 
2008). Sun et al. (2017) developed a PPI prediction model 
that relies on sequence information, utilizing a stacked 
autoencoder. This deep learning approach is built upon the 
encoding-decoding process (Sun et al. 2017). Wang et al. 
(2019) proposed a deep neural network (DNN) model for 
predicting PPIs that included AC and conjoint triad (CT) 
descriptors (Wang et al. 2019). The feature vector space 
of an amino acid consists of AC and CT features. Thus, 
each pair of proteins is encoded with a vector. Gao et al. 
(2023) used an approach for feature extraction method 
that combined several techniques. The vectors obtained via 
pseudo amino acid composition (PseAAC), auto covariance 
descriptor (AC), pseudo position-specific scoring matrix 
(PsePSSM), encoding based on grouped weight (EBGW), 
multivariate mutual information (MMI), and conjoint 
triad (CT) are concatenated to create the fused feature 
representation. Convolution and pooling of the residual 
convolutional neural network can then be used to get high-
level information. At last, to construct the EResCNN 
model, an ensemble of RCNN, XGBoost, random forest, 
LightGBM, and extremely randomized trees is used (Gao 
et al. 2023). Zhang et al. (2019) presented a deep learning-
based strategy called EnsDNN inspired by Deep Neural 
Networks (DNNs) characteristics. Three descriptors 
the auto covariance descriptor (Wold et al. 1993), local 
descriptor (LD) (Tong and Tammi 2008), and multi-scale 
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continuous and discontinuous local descriptor (MCD) (You 
et al. 2015) are originally used in the EnsDNN algorithm 
(Zhang et al. 2019). 

Siamese neural networks (NNs) are effective in tasks 
requiring them to understand the dynamic interaction 
between two distinct variables properly. In order to handle 
the input protein pair for PPI prediction, several current PPI 
deep learning architectures have been implemented. Madan 
et al. (2022) developed a deep learning model that uses a 
Siamese neural network and the ProtBERT19 (Elnaggar 
et al. 2021) deep sequence embedding technique to predict 
PPIs using the primary sequences of protein pairs (Madan et 
al. 2022). Nourani et al. (2022) created a functional protein 
association network by integrating protein sequences during 
the embedding process. They presented TripletProt, a novel 
method for protein representation learning based on Siamese 
neural networks (Nourani et al. 2022). Özger and Çakabay 
(2023) used a Siamese neural network and Resnet50 to 
predict protein-protein interactions for SARS-CoV-2 for 
PSSM image datasets of different sizes. Their approach 
is similar to ours in that they consider PSSM matrices of 
proteins as grayscale images. Their findings showed that 
protein-protein interaction network prediction could 
potentially be successfully achieved by utilizing pictures 
produced from PSSM matrices (Özger and Çakabay 2023).

In this study, we aim to utilize Siamese Convolutional 
Neural Network to predict PPI solely based on amino acid 
sequences of proteins. These proteins are encoded using 
three distinct methods: Binary Encoding, position-specific 
scoring matrix (PSSM), and autocovariance. Furthermore, 
we have introduced an ensemble approach that combines the 
prediction results of these three encoding approaches. What 
sets our approach apart from existing ensemble encoding 
methods is that we do not concatenate different encodings 
into a vector. Instead, the network individually processes 
each encoded amino acid, after which a combination 
matrix is constructed to include the prediction results. 
The combination enhances the accuracy performance of 
the network due to its capacity to extract various feature 
information from interacting protein sequences using 
a range of descriptors. These descriptors work together 
to provide complementary feature information. One-
hot encoding is a simple technique for encoding protein 
sequences that requires no prior knowledge and represents 
each amino acid separately (Richoux et al. 2019). PSSM, on 
the other hand, dives into evolutionary links by combining 
information from homologous sequences. Meanwhile, AC 

is concerned with capturing the physicochemical properties 
of amino acids, which are critical for understanding protein 
features. (ElAbd et al. 2020).

Also, we have integrated both a Siamese neural network 
and a multilayer feed-forward neural network (MLF-
NN) to enhance the prediction performance of PPIs. 
Siamese Neural Networks are created specifically to learn a 
similarity score between pairs of data points. MLP is used 
to extract and abstract multi-level features from learned 
representations. When paired with Siamese networks, they 
help represent more sophisticated and nonlinear similarity 
patterns between input pairs.

The contributions of this study are as follows:

• Introduction of a convolutional Siamese neural network 
for predicting protein-protein interactions by employing 
three distinct protein sequence encoding methods.

• Development of an ensemble strategy aimed at enhanc-
ing the performance of a single predictor.

This paper is organized as follows: Section 2 presents our 
dataset and protein representation techniques and introduc-
es the constructed Siamese convolutional neural network. 
The obtained results are given in Section 3. Finally, the con-
clusion and suggestions are presented in Section 4.

2. Material and Methods
This section elaborates on the proposed ensemble approach 
for predicting PPIs based on amino acid sequences. Our 
model consists of three steps: (1) Encoding the protein 
sequences into numeric values via binary encoding, PSSM, 
and AC descriptors, respectively. (2) Training these sequences 
individually using Convolutional Siamese Neural Networks. 
(3) Ensembling the prediction results and inputting them 
into MLF-NN. The flowchart of the proposed study is 
shown in Figure 1.

2.1. Dataset

We utilized the dataset offered by Richoux et al. (Richoux 
et al. 2019). A list of protein pairs known to interact was 
accessed via UniProt website. This query was conducted on 
June 18th, 2018, to gather all human protein sequences with 
evidence of interactions with other proteins. Employing 
Biopython, an internal Python script was developed to 
generate a negative dataset. This dataset consisted of 
randomly selected proteins, ensuring they did not exhibit 
any known interactions. Furthermore, sequences with more 
than 1,166 amino acids were not included in this set. Since 
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797 interactions classified as interacted and 3,271 as non-
interacted, resulting in a total of 4,068 interactions used for 
testing the model’s performance.

2.2. Protein sequence Representation

Effective computational identification of PPIs depends on 
a carefully thought-out strategy based on protein sequences. 
This usually involves two main steps.

First, a feature extraction technique needs to be developed. 
The key characteristics of the protein sequence’s inherent 
important properties as well as the substance of data on 
protein-protein interactions must be captured by this 
method.

Second, choosing and creating an effective prediction 
classifier assumes critical significance. This decision needs 
to be carefully thought out because how well it fits the 
particulars of the work will have a big impact on predicting 
PPIs.

the study by Nevers et al. (Nevers et al. 2023) indicates 
that only a small fraction of proteins exceed 1200 amino 
acids, 1,166 as the length of proteins appears reasonable and 
sufficient. Subsequently, this dataset was randomly divided 
into three distinct groups, each containing an equal number 
of positive and negative samples, making up the hold-out 
test set, the hold-out validation set, and the training set. For 
training purposes, the network was trained using Richoux 
medium train dataset, encompassing 26,303 protein pairs 
known to interact and an equivalent number of non-
interacting protein pairs (Richoux et al. 2019).

We observed that Richoux test protein pairs were absent 
from the training set, but their mirrored counterparts were 
present. To avoid potential overfitting and misleading 
evaluation results, we excluded the protein pairs with 
mirror counterparts from the test dataset. In this study, a 
total of 56,674 human protein interactions were utilized, 
with 52,606 interactions used for training our network 
model. The testing phase incorporated a dataset comprising 

Figure 1. The flowchart of the proposed method.
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(H), side chain volumes (VSC), and the net charge index of 
side chains (NCISC) (Fauchère et al.1988).

The prediction of PPIs is based on these characteristics. 
This entails converting the physical qualities of amino acid 
residues into numerical values and then normalizing these 
values to have a mean of zero and a standard deviation 
according to Equation (1):

( , , ... ; , , ..., )P S

P P
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where Pi,j is the j-th physicochemical property value for the 
i-th amino acid, Pj is the mean of the j-th physicochemical 
property over 20 amino acids, and Sj is the corresponding 
standard deviation of the j-th physicochemical property. 
Each protein sequence is transformed into seven vectors, 
representing each amino acid by normalized values. To 
represent a protein sequence X with length L, the AC 
variables are computed as follows:
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The distance or gap between two successive amino acid 
residues—where one amino acid is regarded as the neighbor 
of the other—is indicated by the lag value. In this instance, 
“j” stands for a particular descriptor or characteristic, “i” 
stands for the location of the amino acid residue in the 
sequence designated as “X,” and “n” stands for the overall 
length or number of amino acids in sequence “X”. 

2.2.3. Position Specific Scoring Matrix (PSSM)

The conservation of amino acid residues at particular places 
within protein chains is reflected by the PSSM (Wang et 
al. 2017). It is built utilizing evolutionary data and based 
on feature extraction methods that have proven successful 
in several bioinformatics applications. These fields involve 
predicting the secondary structure of proteins, detecting 
proteins that bind DNA, and forecasting PPIs (Zahiri et 
al. 2013). 

The structure of a PSSM is an Lx20 matrix, where L 
represents the length of the protein sequence, while natural 
amino acids are represented by 20. Significantly conserved 
locations are given higher ratings, while places with little or 
no conservation are given scores that are close to zero (Gao 
et al. 2016). PSSM elements are calculated as in Equation 
(3):

2.2.1. Binary Representation

In this method, individual amino acids are represented 
by binary vectors. The one-hot encoding, often known 
as orthogonal encoding, is the most well-known type of 
binary encoding. Each location in the vector corresponds 
to a different amino acid using this encoding technique 
(Richoux et al. 2019). Notably, the location that corresponds 
to the amino acid found in the sequence is given a value of 1, 
while every other position is given a value of 0. So, one-hot 
encoding creates sparse matrices with a large percentage of 
zero values. When working with huge datasets, this sparsity 
is favorable for memory use and processing performance.

The datasets we work with encompass additional elements 
beyond the standard set of 20 proteinogenic amino acids. 
These additional elements include selenocysteine (U), a 
placeholder for either asparagine or aspartic acid (B), another 
placeholder for either glutamic acid or glutamine (Z), and a 
placeholder for unidentified amino acids (X). Therefore, in 
the context of a protein sequence, each individual amino acid 
is depicted using a binary vector that is 24 units in length. In 
order to ensure uniformity and match the required sequence 
matrix length, zeros are introduced to the one-hot encoded 
representation. As a consequence, we used a technique of 
padding sequences with zeros in order to deal with the 
problem of different length sequences. This step is crucial 
because the supported maximum sequence length is 1,166. 
The representation of amino acids in a protein sequence 
using the one-hot encoding technique is shown in Figure 2.

Figure 2: Example of binary representation of amino acids in a 
protein sequence.

2.2.2. Autocovariance (AC) 

AC, a statistical tool, is used to transform amino acid 
sequences into uniform matrices and takes into account 
the interactions between amino acids at specific points in a 
protein sequence (Li and Chen 2013). 

Firstly, amino acid sequences are captured by seven different 
physicochemical attributes. These characteristics include the 
following for amino acids: solvent-accessible surface area 
(SASA), polarity (P1), polarizability (P2), hydrophobicity 
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efficiently learn and gauge the similarity between pairs of 
inputs because of this shared-weight structure (Chen et 
al. 2022). To ensure uniformity and consistency, a Siamese 
design was used to grasp the complex interactions between 
two proteins. Therefore, each pair of proteins was handled 
simultaneously through a single network with weight 
sharing as opposed to using two separate models with 
different parameters. Our neural network structure delivered 
a unified representation, enabling a more accurate analysis 
of the protein connection.

As shown in Figure 3, our Siamese CNN architecture is 
made up of three main parts: a profile module that uses 
encoded protein sequences, a convolutional module, and 
a prediction module. Each encoded sequence is fed into 
two shared-weight subnetworks in order to determine 
how similar or dissimilar the two encoded sequences are. 
A thorough representation of the differences between the 
sequences is then produced by subtracting and combining 
the output feature vectors from each subnetwork. The 
resulting information is then placed through a fully 
connected operation, producing a single output that captures 
the distinct qualities and differences of the sequences.

The differences between the sequences are then thoroughly 
represented by subtracting and combining the feature vectors 
generated by each subnetwork. A fully-connected operation 
is then used to handle the collected data, producing a single 
output that contains the distinctive qualities and variations 
between the sequences. The input is multiplied by a weight 
matrix and a bias vector in the fully-connected stage. The 
output is then converted into a probability that ranges from 
0 to 1 by means of the application of a sigmoid function. This 

( , ) ( , ) ( ),

( , ..., ; , , ..., )

PSSM i j w i k Y j k

i L1 1 2 20
k 1

20
#y=

=
=
/

  (3)

The expression w(i,k) represents the frequency of the i-th 
amino acid (out of a set of 20 amino acids) occurring at 
position i within a collection of functionally related, already 
aligned protein sequences. Meanwhile, Y(j,k) is a substitution 
matrix that reflects the values found in Dayhoff ’s mutation 
matrix for transitions between the j-th and k-th amino 
acids. In simpler terms, Y(j,k) signifies how quickly one 
character in a protein sequence changes to another character 
over time.

In this study, we calculate PSSM by running three rounds of 
PSI-BLAST with an E-value of 0.001 against the SwissProt 
database at the NCBI for a specific protein (Altschul et 
al. 1997). Finally, encoded sequences are fixed at 1,166 by 
padding with zeros to ensure uniformity in length.

2.2.4. Model Construction

Siamese CNN (Convolutional Neural Network) architec-
ture, which comprises of two identical subnetworks that 
share the same structure, variables, and weights, is the archi-
tecture used by the implemented framework.

Siamese neural network, sometimes referred to as the 
twin neural network, is used for determining how similar 
or dissimilar two inputs are. Each input is processed by a 
separate subnetwork in a normal Siamese neural network, 
which is typically made up of one or more layers of neurons. 
The weights of these subnetworks are shared, distinguishing 
it from past systems and allowing for simultaneous changes 
of the parameters in both networks. The network can 

Figure 3. Convolutional Siamese neural network framework.
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convolutional filters, and filter sizes. Because the Siamese 
network demonstrates higher accuracy when utilizing the 
Adam optimization, we employ this algorithm for updating 
the network’s parameters (Alkhalid 2022). To evaluate the 
performance of features generated through the application of 
the Binary Encoding method for protein representation, we 
conduct training and testing using 52,606 and 4,068 pairs of 
proteins, respectively. We combine different convolutional 
layer configurations and hyperparameters for the constructed 
layers to obtain maximum accuracies. Each convolutional 
module consists of three layers: 2D convolution, rectified 
linear unit (ReLU), and 2D pooling. After the input layer, 
we define a sequence of convolutional layers. Upon defining 
the final convolutional layer, we introduce a fully-connected 
layer and flatten it into a single vector.

In our experimental configuration, we tested various learning 
rates, including 1e-03, 5e-03, 1e-04, 5e-04, 1e-05, and 6e-
05. Furthermore, we explored different training batch sizes, 
specifically 10, 16, 20, 32, 50, and 64. The number of neurons 
in the fully-connected layer ranged from 100 to 1500, and 
the iteration count varied from 10,000 to 50,000.

3.2.1. Experiments on Binary Encoding

The initial network includes four layers, combining 2D 
convolution and ReLU activation, along with three max-
pooling layers. The first convolutional layer utilizes a 3x3 
filter with 32 filters, maintaining spatial dimensions through 
the ‘same’ padding parameter. The layer’s weights and biases 
are initialized using the ‘narrow-normal’ method, and a 
ReLU layer follows to introduce non-linear characteristics. 
Next, we utilize max pooling with a 2x2 pooling window 
and a stride of 2 to reduce the spatial dimensions of the 
feature maps while preserving essential features. After 
adding convolutional filters in a similar structure, a fully 
connected layer with 100 neurons is employed to capture 
high-level representations. We initialized the weights and 
biases of the fully connected layer using the ‘narrow-normal’ 
method. We also adjusted the learning rate, which ranged 
from 1e-03 to 6e-05.

In the first and second series of experiments, we kept the 
filter size constant at (3x3, 5x5) while varying the number 
of filters in each convolutional layer from 16 to 128. The 
best results achieved were 76.60% and 78.66%, respectively. 
The maximum values for precision (PRE), specificity (SPE), 
sensitivity (SE), F-Score, and MCC can be found in Table 
1. In the third set of experiments, we used non-square filters 
(5x3, 7x3, and 9x3) for the four 2D convolutional layers, 

probability indicates the degree of similarity or dissimilarity 
between the two protein sequences.

The network updates itself throughout the training phase by 
minimizing the binary cross-entropy loss. This loss metric 
calculates the variance between the predicted labels and the 
actual labels, which helps the network perform better over 
time.

3. Results and Discussion
3.1. Evaluation Metrics

The network’s performance and its predictive capabilities 
are determined by taking into account the calculation of 
the Matthews Correlation Coefficient (MCC), F-Score 
(F1), Specificity (SPE), Precision (PRE), Sensitivity (SE) 
or Recall, and Overall Prediction Accuracy (ACC). SPE 
assesses the true negative (TN) rate, whereas ACC indicates 
the percentage of events that were accurately predicted. 
While SE (or recall) evaluates a true positive rate (TP), PRE 
measures the accuracy of positive predictions. Additionally, 
although F1 indicates the harmonic mean of precision and 
recall, MCC offers a balanced metric that takes into account 
both false positives (FP) and false negatives (FN). Their 
definitions are outlined as follows:

ACC TP TN FP FN
TP TN

= + + +
+   (4)

SPE TN FP
TN

= +   (5)

PRE TP FP
TP

= +   (6)

SE TP FN
TP

= +   (7)

( ) ( ) ( ) ( )
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TP FN TN FP TP FP TN FN

TP TN FP FN

# # #

# #

=
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-

 (8)

( )
( )
( )

F Score F
PRE SE
PRE SE

1
2# #

- =
+

  (9)

3.2. Performance of the Proposed Method

Three types of feature vectors extracted by binary encoding, 
AC or PSSM, are separately used as the inputs for Siamese 
CNN with different configurations. These neural networks 
have varying learning rates, batch sizes, number of the 
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neurons in the fully-connected layer was adjusted, ranging 
from 100 to 2,000. Starting with 100 neurons, we achieved 
an accuracy of 62.2%. Then, increasing the number to 500 
led to a substantial improvement, reaching 71.46% accuracy. 
Subsequently, we experimented with 1,000, 1,200, 1,400, 
1,500, and 2,000 neurons to attain the highest accuracy. 
The obtained accuracy values, as shown in Figure 4, were 
77.63%, 77.44%, 78.13%, 77.04%, and 77.41%.

It is concluded that the prediction accuracy significantly 
improves with the number of neurons, reaching its peak 
accuracy at a specific value.

With the fully-connected layer set at 1400, we aimed to 
investigate the impact of layers while keeping the iteration 
number, learning rate, and training size constant at 15,000, 
6e-04, and 10,000, respectively. Initially, the convolutional 
layer consisted of two 2D-convolutional layers (3x3) 
with 128 and 64 filters, followed by ReLU and 2D-max-
pooling with a size and stride of 2. The average prediction 
accuracy reached 76.33%. Next, we increased the number of 
2D-convolutional layers by doubling the second layer to 128 
filters, resulting in an accuracy increase to 77.46%.

In the third experiment, additional max-pooling and 
convolution layers were introduced into the network. The 
added max-pooling layer had a size and stride of 2, while the 

with filter sizes of 32, 64, and 128. The results showed that 
non-square filter sizes outperformed square ones, achieving 
accuracy as high as 80.24%. In the final series of experiments, 
we aimed to assess accuracy by using a combination of square 
and non-square filters. Unfortunately, the results showed a 
decrease in the maximum accuracy, which reached 77.67%.

Based on the experimental results, we identified the optimal 
hyperparameter set, as indicated in Table 2.

3.2.2. Experiments on AC

We created the AC dataset by removing uncommon amino 
acids Z, U, B, and X, resulting in 26,289 interacted and 
26,206 non-interacted protein pairs for training. The test set 
already excludes uncommon amino acids, allowing it to be 
used for testing. The lag value was established at 15, and we 
employed seven physicochemical properties. As a result, the 
image input size was set to 15x7. The convolutional layer 
included two 2D-convolutional layers with filter sizes of 
3x3, featuring 128 and 64 filters, respectively. These layers 
were then followed by ReLU activations and 2D-max-
pooling with a pooling size and stride set to 2. 

We conducted a set of experiments to fine-tune the size of 
the fully-connected layer. During each epoch, the network 
was trained with 1,000 inputs, and the total number of 
iterations was fixed at 10,000. Initially, the number of 

Table 1. Assessing the performance of the proposed network under various hyperparameter sets for binary encoding.

Hyper-parameters 
Set Number ACC (%) PRE (%) SPE (%) SE (%) FScore (%) MCC (%)

Set 1 76.6 85.07 87.82 65.93 74.29 55
Set 2 78.67 84.47 88.27 68.37 75.57 58
Set 3 80.2 84.89 86.5 74.04 79.1 61
Set 4 77.67 87.44 90 65.97 75.2 57

Table 2. Siamese CNN model optimal hyper-parameters and activations for binary encoding.

Layer Hyper-parameters Activations
Input Input Size=1,166x24 1,166×24
Convolution 2D Filters=64, Kernel size=[7 3] Stride=1, padding=same Activation=ReLU 1,166×24×64
MaxPooling 2D Pool size=[2 2], Stride=2, padding=[0 0 0 0 583×12×64
Convolution 2D Filters=64, Kernel size=[7 3] Stride=1, padding=same Activation=ReLU 583×12×64
MaxPooling 2D Pool size=[2 2], Stride=2, padding=[0 0 0 0] 291×6×64
Convolution 2D Filters=64, Kernel size=[7 3] Stride=1, padding=same Activation=ReLU 291×6×64
Fully Connected Activation=sigmoid 250
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3.2.3. Experiments on PSSM

Protein sequences were encoded into 1,166x20 matrices 
using the PSSM method with the dataset that does not 
contain uncommon amino acids. We tested various learning 
rates, including 1e-03, 5e-03, 1e-04, 5e-04, 1e-05, and 
6e-05. Additionally, we explored different training batch 
sizes: 10, 16, 20, 32, 50, and 64. The fully-connected layer 
had a range of neurons from 100 to 1500, and the iteration 
number varied between 10,000 and 50,000. 

The impact of four layer configurations on the accuracy 
of PSSM is shown in Table 4. In the first group, the 
architecture featured four convolutional layers. The first and 
second convolutions had a filter size of 7x3 with 128 and 64 
filters, while the third and fourth convolutions used a filter 
size of 5x3 with 64 filters each. The design included two 
max-pooling layers and four ReLU layers. With a learning 
rate of 6e-05 and 1,400 neurons in the fully connected layer, 
an accuracy of 83.00% was achieved. This configuration 
allowed the network to capture both large-scale and small-

convolution layer consisted of 64 kernels (3x3). However, the 
use of the second max-pooling layer resulted in information 
loss, causing a decrease in prediction accuracy to 76.46%. 
Subsequently, the second max-pooling layer was removed, 
and the third convolution layer was increased to 128 kernels, 
leading to an accuracy increase to 78.60%.

Finally, when the number of filters in the convolutional 
layers was increased to 256, there was a slight decrease 
in accuracy, reaching 77.33%. Table 3 summarizes the 
network’s performance across different layer configurations. 
The highest accuracy was achieved with a network featuring 
three convolution layers, each with a size of 3x3 and 128 
neurons. In this architecture, the first convolution layer is 
followed by a max pooling layer for spatial downsampling. 
However, the second and third convolution layers skip max 
pooling to preserve detailed spatial information, enabling 
the capture of finer features and patterns. This configuration 
resulted in an accuracy of 78.60%.

Figure 4. The effect of the neuron count in the fully-connected layer on accuracy.

Table 3. The impact of different layer configurations on the accuracy of AC.

Hyper-parameters Set 
Number ACC (%) PRE (%) SPE (%) SE (%) FScore (%) MCC (%)

Set 1 76.33 87.52 90.76 62.43 72.88 55 
Set 2 77.47 85.05 88.46 66.35 74.55 56 
Set 3 76.46 82.2 84.93 69.6 75.38 55 
Set 4 78.6 85.47 86.94 70.9 77.51 58 
Set 5 77.33 84.48 88.95 64.82 73.33 56 
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number of iterations, or it remained constant. Based on the 
figures, the loss decreases over iterations and becomes stable, 
showing that the network has successfully learned the 
underlying patterns in the data for AC, as shown in Figure 
5, Binary encoding, as shown in Figure 6, and the PSSM as 
shown in Figure 7 protein representation methods.

scale features in the input data. The use of different filter 
sizes in the convolutional layers enabled the extraction of 
various levels of visual information, contributing to the 
improvement of accuracy. Furthermore, by fine-tuning the 
number of neurons to 32 in the fully connected layer, the 
model’s performance was further optimized, leading to an 
increase in accuracy.

In the second group of convolutional layers, we examined 
the impact of using smaller 3x3 filter sizes on accuracy. The 
first and second convolutions used 3x3 filters, with 128 and 
64 filters, respectively. These layers were designed to capture 
higher-level features by building upon the low-level features 
learned in the previous group of convolutional layers. The 
larger number of filters in the first convolutional layer 
suggested its role in learning complex, high-level features.

The third convolution also used a 3x3 filter size, but with 
64 filters, aiming to capture higher level features while 
mitigating overfitting risks and reducing dimensionality by 
reducing the number of output feature map.

In the third experimental group, we studied the influence 
of mixing square and non-square filters on network 
performance. We experimented with combinations like 
3x3 and 5x3, 3x3 and 7x3, and 5x5 and 7x3 filters using 
optimal parameters. The highest accuracy achieved in this 
experiment reached 81.93%. After systematic adjustment of 
hyperparameters and evaluation, we identified the optimal 
settings that led to a significant accuracy boost, reaching 
84.07%.

We train the network using three different protein 
representation techniques within the range of 5,000 to 
50,000 iterations. With the validation set, prediction error 
was calculated for each different iteration number. The 
training and validation losses dropped synchronously. The 
number of iterations was set at 10,000 for binary, 15,000 for 
autocovariance, and 50,000 for PSSM to reduce computing 
costs, as there was no substantial drop in loss after a certain 

Table 4. The impact of different layer configurations on the accuracy of PSSM.

Hyper-parameters 
Set Number ACC (%) PRE (%) SPE (%) SE (%) FScore (%) MCC (%)

Set 1 83 89.11 90.34 75.95 82 67
Set 2 83.73 90.39 92.08 73.51 81.08 67
Set 3 84.07 91.45 92.45 76.17 83.11 69
Set 4 81.93 87.05 89.21 74.46 80.26 64

Figure 5. Network loss convergence for AC.

Figure 6. Network loss convergence for binary encoding.
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In contrast, the AC method achieved an average ACC of 
78.6%, PRE of 85.47%, SPE of 86.94%, SE of 70.09%, 
F-Score of 77.51%, and MCC of 58%. When encoding 
protein sequences, the AC approach integrates the 
neighboring effect. However, the results indicate that the 
AC approach has slightly lower accuracy than both the 
PSSM and Binary Encoding methods. However, when 
compared to the other two protein sequence encoding 
methods, the AC method excels in training speed because 
of its smaller input size. This advantage in training speed 
reduces the computing time required for model training, 
ultimately speeding up the PPI prediction process ( Jia et 
al. 2020).

The network became enhanced outcomes while using 
the PSSM encoding method with an average prediction 
accuracy (ACC) of 84.07%, precision (PRE) of 91.45%, 
specificity (SPE) of 92.45%, sensitivity (SE) of 76.17%, 
F-Score of 83.11%, and Matthews Correlation Coefficient 
(MCC) of 69%.

This significant performance boost could be due to the fact 
that PSSMs contain information gained from the evolu-
tionary history of proteins. This evolutionary information 
has been shown to have more predictive value for PPIs than 
the other two sequence-based protein encoding approaches.

The reason position-dependent approaches perform well is 
their effectiveness in gathering homologous data, providing 
crucial insights into protein evolution. In contrast, position-
independent techniques excel at revealing the intrinsic 
properties of amino acids, allowing us to gain a better 
understanding of their fundamental characteristics. Our 
experimental results prove that the PSSM encoding captures 
the evolutionary relationships between proteins, and a 
Siamese Neural Network is able to detect this homology 
between two proteins through their PSSM matrices.

3.2.4. Performance Comparison of Three Encoding Methods

Table 5 compares the performance of three encoding 
methods with the mirror copies extracted from a dataset 
of Richoux et al. (2019). The graph shows how different 
encoding approaches affect the performance and efficacy 
of our deep learning model. Precision and sensitivity levels 
for the PSSM approach remain constant at 91.45% and 
92.45%, respectively. As a result, protein representation 
approaches enhance network performance on both positive 
and negative datasets.

The Binary Encoding method displayed promising outcomes 
and yielded an average prediction accuracy (ACC) of 80.2%, 
precision (PRE) of 84.86%, specificity (SPE) of 86.5%, 
sensitivity (SE) of 74.04%, F-Score of 79.1%, and Matthews 
Correlation Coefficient (MCC) of 61%. This approach 
offers a notable advantage in terms of fast protein encoding 
when compared to the AC and PSSM methods. It achieves 
this through the use of one-hot encoding, which generates 
multi-dimensional and sparse vector representations. This 
efficient encoding allows us to process and analyze protein 
sequences faster, making it particularly advantageous in 
terms of computational speed.

Figure 7. Network loss convergence for PSSM.

Table 5. Performance comparison of three encoding methods.

Protein Encoding Method Binary Encoding AC PSSM
ACC (%) 80.2 78.6 84.07
PRE (%) 84.89 85.47 91.45
SPE (%) 86.5 86.94 92.45
SE (%) 74.04 70.9 92.45
F-Score (%) 79.1 77.51 83.11
MCC (%) 61 58 69
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binary prediction values, the second output to AC prediction 
values, and the third output to PSSM prediction values for 
50,000 protein pairs. As a result, all our model outputs form 
a matrix of size 50,000×3, which serves as input to the feed-
forward neural network structure. In addition, we kept the 
corresponding labels, which are linked to the 50,000 protein 
pairs and stored in a 50,000×1 matrix. We configured the 
transfer functions for the appropriate levels to define the 
desired activation functions inside the network. We used a 
‘hardlim’ transfer function in the first layer, which represents 
the hidden layer. Following that, in the second layer, 
which includes the output layer, we used a ‘purelin’ transfer 
function, which corresponds to a linear activation function. 
To improve the prediction performance of PPIs based on 
primary sequences, we combined a Siamese neural network 
with a multilayer feed-forward neural network (MLF-NN). 
The conceptual model framework is visually represented in 
Figure 8.

The MLF-NN structure used consists of a single hidden 
layer with neurons ranging in number from 2 to 16. Various 
backpropagation methods were tested during the network 
training phase. Three specific training algorithms produced 
the most accurate results: Levenberg-Marquardt, Gradient 
Descent with Momentum, and Fletcher-Powell Conjugate 
Gradient. These algorithms consistently outperformed in 
terms of reaching the highest levels of accuracy throughout 
training. Figure 9 depicts the network’s performance with 
these transfer functions and various number of hidden layers.

3.3. Performance of the Ensemble Encoding Siamese 
Model

Many sequence-based feature extraction techniques used 
in early studies mostly focused on a single-feature strategy. 
A protein sequence has a multitude of information about 
critical features, but this approach had drawbacks because it 
couldn’t effectively integrate that data. The interrelationships 
between various elements within the sequence were also 
not fully taken into account. As a result, there has been a 
lot of interest in creating a revolutionary multi-feature 
fusion encoding technique. Building on this foundation, 
we present a deep ensemble learning strategy for protein 
interaction prediction. By combining the strengths of many 
methodologies, this method provides an appropriate means 
of complete learning. Protein sequences were encoded using 
three alternative representations in this approach, capturing 
the specific characteristics of each protein within the protein 
interaction network. 

To extract significant feature data from amino acid 
sequences, we used three different encoding methods in 
our study: Binary Encoding, AC, and PSSM. Furthermore, 
we used convolutional Siamese neural networks to extract 
protein predictions from individual encoders, which were 
then merged as features into a multilayer feed-forward 
neural network. The network’s top-performing weights, 
biases, and parameter values have been preserved. Following 
that, we acquired model outputs as floating-point values 
ranging from 0 to 1. The first model output corresponds to 

Figure 8. The framework for the proposed ensemble model.
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Figure 9. Ensemble network results with varying numbers of hidden neurons.
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Table 6 provides a comparison between our convolutional 
Siamese neural network model and Richoux’s model on 
the strict dataset. Richoux’s model achieved an accuracy 
(ACC) of 78.33%, precision (PRE) of 55.76%, recall (SE) 
of 77.95%, and an F-score of 65.02%. In contrast, our 
convolutional Siamese neural network model exhibited 
enhanced performance, achieving an ACC of 83.6%, PRE 
of 98.26%, SE of 67.87%, and an F-score of 80.28%. We also 
calculated the specificity value as 98.77%. It is important to 
highlight that Richoux’s strict dataset includes mirror copies 
of proteins, mostly from the positive dataset. The inclusion 
of mirror copies has a considerable effect on the precision 
value, which was evaluated at 98.26% utilizing Siamese 
neural network structure. Various metrics highlight the 
importance of removing these mirror copies from the test 
set. Here, we would like to note that the recall (SE) value 
significantly increases to 74.04% when we remove mirror 
copies from the dataset, as we already indicated in Table 5.

These findings highlight that our Siamese-CNN model 
surpassed Richoux’s model in terms of accuracy (ACC), 
precision (PRE), and the F-score. While Richoux’s model 
exhibited higher sensitivity, our model displayed superior 
overall performance across various metrics.

The strict dataset effectively addressed the issue of overfitting, 
and our network demonstrated strong performance when 
evaluated with this dataset. Our model’s improved accuracy 
(ACC), precision (PRE), sensitivity (SE), and F-score 
demonstrate its usefulness in predicting PPIs as well as its 
capacity to generalize effectively to information that was 
previously unknown.

4. Conclusion and Suggestions
In the present study, we developed and applied a 
convolutional Siamese neural network model for predicting 
PPIs using only protein sequencing data. We developed 

When the hidden layer was set to 6 neurons, the Fletcher-
Powell Conjugate Gradient backpropagation algorithm 
attained its highest accuracy. This result emphasizes the 
significance of selecting the proper network configuration 
for improving performance. Furthermore, the algorithm’s 
efficiency in terms of faster convergence contributes to its 
attraction for training neural networks. The algorithm’s 
capacity to explore conjugate directions contributes to its 
efficiency, which greatly cut training time.

Among the individual encoding strategies, PSSM achieved 
the highest accuracy at 84.07%, which was further improved 
to 86.27% with an increase of 2.62% using the ensemble 
strategy.

3.3.1. Comparative Analysis with Richoux’s Dataset

We conducted a thorough evaluation of our proposed method 
through a comparative study. This involved contrasting our 
results with those of Richoux and colleagues, who employed 
the same encoding methodology and made their data 
accessible Richoux et al. employed a fully connected deep 
learning model that used binary encoding for protein pairs 
to PPIs and these results confirmed the model’s efficacy.

Notably, we utilized the same feature extraction method, 
namely Binary Encoding, to assess our network’s perfor-
mance on the identical dataset. 

We conducted a comparative analysis between our 
convolutional Siamese neural network model and Richoux’s 
fully connected model on the strict dataset, and we observed 
significant increases in prediction performance metrics. The 
strict dataset was designed to include protein pairs in which 
each protein appeared at most twice in the entire dataset. 
By imposing this constraint, the strict dataset ensures a 
more balanced representation of proteins, reducing the risk 
of the model becoming overly reliant on specific individual 
proteins.

Table 6. Comparison between our network and Richoux et al.’s fully connected model on strict dataset.

Study Richoux et. al. Our Method
Feature Binary Encoding Binary Encoding

Classifier recurrent neural model Convolutional Siamese NN
ACC (%) 78.33 83.36
PRE (%) 55.76 98.26

SE (%) 77.95 67.87
F-Score (%) 83.36 80.28
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an ensemble encoding strategy to construct an optimum 
feature representation capable of encapsulating the critical 
information about protein interactions. This method was 
developed by combining three unique encoding strategies, 
each of which was aimed to capture distinctive characteristics 
inherent in individual protein sequences. The combination 
of Siamese networks and PSSMs can enable the model 
to discriminate between interacting and non-interacting 
protein pairs more effectively. This integration ultimately 
enhances the prediction accuracy and overall performance 
of the model. The inclusion of PSSMs, which allows the 
network to leverage the informative evolutionary patterns 
inherent within the protein sequences, is responsible for the 
improvement. Furthermore, we used the collaborative power 
of a Siamese neural network and a multilayer feed-forward 
neural network (MLF-NN). When compared to using 
various encoding approaches in isolation, the ensemble 
model demonstrated significant performance improvements. 
Our model signifies a substantial advancement in the field 
of PPI prediction, with the potential to greatly enhance the 
accuracy and reliability of these predictions.
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