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 In recent years, artificial neural networks (ANNs) have emerged as highly effective tools for 
addressing the intricate challenges encountered in geotechnical engineering. ANNs find application 
in a variety of geotechnical problems, showcasing promising outcomes. This study aims to improve 
the efficiency of predicting intermediate values from unconfined compressive strength (UCS) data 
obtained from laboratory tests through the use of ANNs. The modelling of artificial neural networks 
was carried out using the Regression Learner program, integrated with the Matlab 2023a software 
package, offering a user-friendly graphical interface for AI model development without the need for 
coding. The ANNs' validation and training were based on UCS test data obtained from the 
Geotechnical Laboratory of Iowa State University, USA. These laboratory tests focused on 
engineering properties, specifically the UCS of soils treated with biofuel co-products (BCPs). The 
dataset, organized in a matrix of size 216 × 5, features columns providing information on soil type 
(Soil 1; Soil 2; Soil 3; Soil 4), sample type (pure soil-untreated; 12% BCP- treated soil; 3% cement; 
6% cement; 12% cement treated soil), time (1, 7, and 28 days), moisture content (OMC-4%, OMC%, 
and OMC+4%), and corresponding UCS peak stress (psi) values. The AI predictions for the test data 
output achieved an outstanding R2 score of 0.93, showcasing the potential of employing ANNs to 
efficiently acquire a substantial amount of data with fewer experiments and in less time. This 
approach holds promise for applications in geotechnical engineering. 
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1. Introduction  
 

In recent years, the application of artificial neural 
networks (ANNs) has garnered significant attention as a 
powerful and effective methodology for tackling the 
complex challenges prevalent in geotechnical 
engineering. The evolution of computational 
geotechnical engineering analyses closely aligns with the 
advancements in computational methods. In the initial 
stages of geotechnical engineering, analytical methods 
and a simple limit equilibrium approach, combined with 
engineering expertise, were employed to construct 
physical models for addressing geotechnical engineering 
challenges. Over time, more complex problems 
necessitated the use of finite element methods, finite 
difference methods, and discrete element methods. 
Nevertheless, the efficacy of these approaches in 
geotechnical engineering faces impediments, primarily 
stemming from the difficulty in formulating precise 
constitutive models and addressing the spatial variability 
of soil, particularly in complex situations like liquefaction 
and pile capacity issues. As a result, statistically derived 
empirical methods and semi-empirical methods, 

grounded in analytical approaches, have become 
prevalent. Their success hinges significantly on the 
selected statistical or theoretical model that corresponds 
to the system under analysis [1]. 

The unpredictable behaviours of soil and rock, arising 
from complex physical processes in their formation, pose 
a challenge that traditional engineering models often 
simplify [2]. The methodological fit of artificial neural 
networks (ANNs) becomes evident in modelling complex 
problems where the relationships among variables are 
unknown [3]. Functioning as a computational emulation 
of the human brain's physiological structure, ANNs 
depart from conventional signal reasoning and logical 
thinking. This machine learning technique excels in 
handling challenges related to incomplete associative 
memory, faulty pattern recognition, and autonomous 
learning. ANNs boast three key advantages: rapid 
computational speed, robust fault-tolerance, and 
proficiency in solving problems governed by intricate 
solution rules [4]. 

The predominant advancements in artificial 
intelligence predominantly stem from statistical models, 
with artificial neural networks standing out as the 
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forefront contributor. This model emulates the learning 
mechanisms of the human brain within a computational 
framework. Artificial neural networks comprise 
computational units known as neurons, akin to the 
neural structure in the human brain. Neurons are 
interconnected through synapses, featuring weighted 
connections, further mirroring the intricate network 
observed in biological systems [5]. 

The calculation in neurons is provided by multiplying 
the information in the neuron with the weight in the 
synapse. In artificial neural networks, with the bond of 
synapses between neurons and the formation of layers of 
neurons, it creates network models as in the human 
brain. A comprehensive literature review highlights that 
artificial neural networks (ANNs) have been successfully 
applied in various geotechnical disciplines. These 
applications include, but are not limited to, pile capacity 
estimation, soil behavior modeling, site characterization, 
analysis of soil retaining structures, settlement 
evaluation of structures, slope stability analysis, design 
of tunnels and underground openings, assessment of 
liquefaction susceptibility, determination of soil 
permeability and hydraulic conductivity. It covers a wide 
range such as evaluation of soil compaction, investigation 
of soil swelling phenomenon and classification of soil [6]. 
The effectiveness of these empirical and semi-empirical 
methods is contingent on the selected statistical or 
theoretical model, as well as the statistical methods used 
to determine the model parameters [7]. The complexity 
and uncertainty of soil parameters often make it 
challenging to develop theoretical or statistical models, 
prompting a preference for a data-driven approach over 
the traditional model-oriented one. 

To tackle the formidable challenges encountered in 
various disciplines, the integration of artificial 
intelligence (AI) into computational methods has become 
increasingly prevalent. This infusion of AI has sparked 
significant research growth, offering innovative 
solutions to real-life problems while simultaneously 
unveiling both the latent capabilities and drawbacks of 
these advanced techniques. The utilization of Artificial 
Neural Networks (ANNs) in the realm of geotechnical 
engineering saw its inception in the early 1990s, marked 
notably by the pioneering work of Goh [8-9]. Goh's 
research, in particular, demonstrated the remarkable 
capability of ANNs to predict the intricate liquefaction 
potential of soil and articulate the intrinsic constitutive 
relationship of sand using this innovative technology. 

The evolution of AI applications in geotechnical 
engineering signifies a paradigm shift in how we 
approach and address complex issues within this field. 
By leveraging the inherent learning and adaptability of 
ANNs, researchers have made strides in comprehending 
and predicting intricate phenomena, such as soil 
liquefaction, which were historically challenging to 
model accurately. The foundational contributions of Goh 
and subsequent researchers have laid the groundwork 
for a more nuanced understanding of the interplay 
between AI and geotechnical challenges. This not only 
opens new avenues for solving longstanding problems 
but also prompts a critical examination of the potential 
limitations and ethical considerations associated with 
the widespread adoption of AI in geotechnical research 

and practice. As the field continues to evolve, these 
insights and advancements are poised to shape the future 
landscape of geotechnical engineering, paving the way 
for more effective and informed decision-making 
processes. 

The heightened attention on Artificial Neural 
Networks (ANNs) in geotechnical engineering reflects 
the growing recognition of their efficacy as a potent and 
adaptable statistical technique for resolving intricate 
problems. Pioneering applications, as exemplified by 
Shahin et al. [6] and Das [10], have vividly illustrated the 
versatility of ANNs in successfully addressing a spectrum 
of challenges within the field. In a comprehensive 
overview by Shahin et al. [11], the current status and 
future prospects of ANNs were discussed, underscoring 
their increasing reliability in comparison to traditional 
statistical methods. 

Despite this surge in interest and application, there 
exists a conspicuous gap in the literature – a lack of a 
comprehensive critical evaluation of the modeling 
aspects of ANNs in geotechnical engineering. This gap 
underscores the necessity for a thorough exploration and 
examination of the nuances associated with employing 
ANNs in this specific domain. While the potential of ANNs 
is evident, it is crucial to acknowledge, as noted by Yang 
et al. [12], that the efficiency of numerical methods is 
inherently problem-dependent. No singular technique 
can universally serve as a panacea for solving all types of 
geotechnical problems. Consequently, this study aims to 
fill this void by scrutinizing the modeling aspects of ANNs 
in geotechnical engineering, shedding light on their 
strengths, limitations, and optimal applications. By doing 
so, it seeks to contribute to a more nuanced 
understanding of the role of ANNs in tackling the 
complexities inherent in geotechnical challenges and 
provide insights for refining their utilization in future 
endeavors within the field. 

Grima & Babuška [13] introduced a data-driven 
approach for modeling the unconfined compressive 
strength of rock samples using fuzzy logic. This method 
represents a nonlinear relationship through a 
concatenation of local linear sub-models obtained via 
fuzzy clustering. Compared to conventional statistical 
models, the fuzzy model exhibits superior accuracy while 
providing insights into the nonlinear relationship, a 
feature lacking in other black-box approaches such as 
neural networks. 

Ceylan et al. [14] reported that two different 
biopolymer blends containing 12% provided maximum 
durability increase in the UCS test at 1 day and 7 days 
recovery times. The results showed that this ratio was 
the most effective ratio for soil stabilization. In addition, 
Ceylan et al. [14] conducted UCS tests of sulfur-free 
lignin-containing biopolymer blends under saturation 
and semi-saturation conditions. In these tests, it was 
observed that 12% of the blend provided a significant 
durability increase, especially with liquid type 
applications. In their seminal work, conducted UCS tests 
on specimens subjected to both saturation and half-
saturation, noting a substantial increase in strength with 
the two biofuel co-products (BCPs) treatments, 
particularly with the liquid-type treatment. 
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Kurugodu [15] investigated the impact of density, 
moisture, and fiber content on the unconfined 
compressive strength (UCS) of silty sand. Employing a 
distinctive multi-gene genetic programming (MGGP) 
approach coupled with ANN, they aimed to formulate 
transparent models illuminating the intricate 
relationships between UCS and crucial soil parameters. 
Noteworthy for its superior performance in sensitivity 
and parametric analyses, the MGGP model, with its 
transparent formulation, outperformed conventional 
methods. This study not only contributed theoretical 
insights but also presented practical implications for 
optimizing input values in geotechnical infrastructure 
design. 

 
2. Materials and Method 

 
2.1. Materials 
 

Unconfined Compressive Strength (UCS) is a key 
mechanical property used to characterize the strength of 
a material, particularly soils and rocks. It is a measure of 
the ability of a material to withstand axial loads or 
uniaxial compression without lateral confinement. The 
test is commonly used in geotechnical engineering to 
assess the strength of soil and rock specimens. In general, 

Unconsolidated-Undrained (UU) tests are conducted for 
the rapid loading assessment of clay soils or post-
construction stability analyses of embankment dams 
[16]. The test involves applying a uniaxial load to a 
cylindrical specimen of the material until failure occurs. 
During the test, the specimen is free to deform laterally 
(without confinement), and the applied axial stress is 
gradually increased until the specimen fails. The 
maximum axial stress at failure is recorded as the 
unconfined compressive strength. 

To assess the Unconfined Compressive Strength 
(UCS) of the studied materials, a comprehensive testing 
methodology was employed, adhering to established 
standards and procedures. For soils, the unconfined 
compressive strength is often used as an indicator of the 
material's load-bearing capacity and its suitability for 
construction purposes. It is a critical parameter in slope 
stability analysis, foundation design, and other 
geotechnical assessments. The testing procedure strictly 
adhered to the guidelines outlined in ASTM D 2166, titled 
"Standard Test Method for UCS of Cohesive Soil." This 
standard provided a robust framework for conducting 
UCS tests on soil specimens. Figure 1 shows the 
automated computer control system used in this study to 
determine the soil UCS at the Iowa State University 
Geotechnical Laboratory [17]. 

 

 
Figure 1. Automated Geotac system for unconfined compressive strength testing. 

 
The equipment utilized a strain-controlled load rate, 

ensuring a constant axial strain rate during the testing 
process. Rectangular specimens measuring 2 inches by 2 
inches were meticulously prepared for testing. Post-
curing, these specimens were loaded into the frame of the 
automated testing apparatus. The prepared specimens 
underwent sustained force within the testing apparatus 
until failure. Throughout this process, the load cell 
indicator and strain gauge diligently recorded stress and 
strain, offering a comprehensive dataset on the 
specimen's behaviour under axial loading. The stress 
applied to the specimen exhibited a characteristic 
pattern, escalating with the increase in strain until 

reaching a peak. Subsequently, the stress decreased due 
to the sample crush. The automated computer control 
system facilitated the plotting of the specimen’s strain-
stress relationship, allowing for the identification and 
display of the peak stress. 

The peak stress of the specimen was pinpointed as the 
stress value when the specimen reached the 15% strain 
limit without experiencing crush. This parameter served 
as a crucial indicator of the specimen's maximum 
strength under uniaxial compression. Statistical methods 
were employed to analyse the data, drawing meaningful 
conclusions regarding the effectiveness of the tested 
additives in soil stabilization. Multiple tests were 
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conducted to ensure result reproducibility. Precision and 
accuracy were maintained throughout the testing 
process to enhance the reliability of the acquired data. 

A comprehensive laboratory experimental test 
 

program was performed, comparing the unconfined 
compressive strength of BCP treated on four different 
representative Iowa soil types. The engineering 
properties of the soil samples are shown in Table 1 [18]. 

Table 1. Engineering properties for four types of soils. 
Property 

Soil 1 Soil 2 Soil 3 Soil 4 
Classification 

AASHTO (group index) A-6 (2) A-4 (2) A-4 (1) A-4 (0) 

USCS group symbol SC CL-ML CL-ML ML 

USCS group name Clayed sand Sandy Silty with clay Sandy Silty with clay Sandy Silty 

Grain size distribution         

Gravel (> 4.75 mm. % 7.1 0.1 5.2 3.8 

Sand (0.075–4.75 mm) % 54.9 37.2 41.7 45.3 

Silt and clay (< 0.075mm) % 38.0 62.7 53.1 50.9 

Atterberg limits         

Liquid limit (LL) % 32.8 29.1 27.5 17.2 

Plasticity limit (PL) % 17.4 22.9 22.2 15.1 

Plasticity index (PI) % 15.4 6.2 5.3 2.1 

Proctor test         

Optimum moisture content (OMC) % 14.4 18.2 13.5 12.0 

Maximum dry unit weight (d max) kg/m3(pcf) 1.728 (107.9) 1.631 (101.8) 1.818 (113.5) 1.839 (114.8) 

 
Considering lignin's significant presence in plant 

biomass, researchers at Iowa State University (ISU) have 
previously proposed employing sulfur-free lignin for soil 
stabilization, aiming to harness potential economic 
benefits from lignocellulosic biorefineries. In their study, 
sandy lean clay (CL) soil underwent treatment with two 
distinct Biopolymer Composite Polymers (BCPs) 
containing sulfur-free lignin, one in liquid form and the 
other as a yellow powder. The researchers introduced 
each BCP into the soil under various moisture conditions: 
dry side (OMC−4%), optimum moisture content  

(OMC), and wet side (OMC+4%), with an addition of 
up to 15% dry unit weight. After 1-day and 7-day curing 
periods, the specimens incorporating 12% of the two 
BCPs exhibited the maximum strength improvement 
(UCS). Additionally, UCS tests were conducted under 
both saturation and half-saturation conditions, revealing 
substantial strength enhancement, particularly with the 
liquid-type treatment [19]. 

In a related context, Puppala & Puppala et al. [20-21] 
explored the application of two additional BCPs 
containing sulfur-free lignin, incorporating up to 15% by 
dry soil weight for the treatment of silt soil. Their 
findings echoed those of the ISU researchers, indicating 
that a 12% application rate for both BCPs led to the 
highest strength improvement after 1-day, 7-day, and 28-
day curing periods. Complementing these strength 
assessments, XRD and SEM analyses were conducted to 
elucidate physical bonds as the mechanism behind 
sulfur-free lignin's efficacy in soil stabilization. The 
results underscored the positive role of sulfur-free lignin 
in soil stabilization, recommending an application rate of 
12% by dry soil weight [17]. 

 

2.2. Methods  
 

The layered architecture of ANN draws inspiration 
from the intricate organization of the human nervous 

system, forming connections among neurons in diverse 
topologies. ANNs, designed with this biomimetic 
approach, possess the capability to be trained for specific 
functions by optimizing the values of connection 
multipliers. Each neural node within this network 
encapsulates input values, weights, addition operations, 
transfer functions, and output values, mirroring the 
fundamental elements of the human brain's neural 
structure. Operating as parallel processors, ANNs exhibit 
proficiency in receiving, storing, and generalizing 
information connections, showcasing their adaptability 
across various domains. The iterative learning process 
within ANNs involves sophisticated algorithms that 
adjust weights iteratively to attain the desired outcomes, 
highlighting their dynamic nature in adapting to complex 
tasks. This architectural and functional resemblance to 
the human nervous system underscores the versatility 
and efficiency of ANNs in tackling intricate challenges in 
diverse applications [22-23].  

Neural networks, whether they manifest as biological 
entities or artificial constructs, embody intricate systems 
of interconnected neurons. Biological neural networks 
consist of natural neurons, while artificial neural 
networks, fashioned from artificial nodes, are 
strategically devised to tackle challenges within the 
realm of artificial intelligence. Within artificial networks, 
the connections between neurons are simulated through 
weights, with positive values denoting excitatory links 
and negative values signifying inhibitory connections 
[24]. The amalgamation of inputs is accomplished 
through these weights, and an activation function 
governs the modulation of output amplitudes, typically 
within a range of 0 to 1 or -1 to 1. This emulation of neural 
connectivity in artificial systems reflects the convergence 
of biological inspiration and technological innovation, 
contributing to the advancement of artificial intelligence 
across various domains. 
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The application of artificial neural networks (ANNs) 
spans various domains, including predictive modeling, 
adaptive control, and data-driven training, enabling them 
to autonomously learn and draw conclusions from 
intricate information. Motivated by the structural and 
functional intricacies of the human brain, scientists have 
crafted models for artificial neurons and networks, 
giving rise to the field of artificial neural networks (ANN). 
An ANN is a system inspired by the neural architecture of 

the human brain, endowed with the capability to perform 
specific functions. The visual representation of an ANN is 
encapsulated in Figure 2, presenting a general block 
diagram that illustrates the network's structure and 
connectivity. This amalgamation of neuroscience 
principles and computational techniques fuels the 
evolution of artificial intelligence, offering versatile 
applications in problem-solving and decision-making 
realms [25]. 

 

 
Figure 2. The working structure of neural networks. 

 
Artificial Neural Networks (ANNs) exhibit a 

distinctive architectural composition comprising three 
essential layers: the input layer, the hidden layer(s), and 
the output layer. The inherent design necessitates 
intricate connections, with nodes in the input layer 
linked to nodes in the hidden layer and reciprocal 
connections between each hidden layer node and the 
nodes in the output layer. Serving as the initial point of 
interaction, the input layer assimilates data into the 
network. Subsequently, the hidden layer undertakes the 
task of receiving and processing raw information from 
the input layer. The outcome of this processing is then 
transmitted to the output layer, where further 
information processing occurs, culminating in the 
generation of the final output. This layered structure, 
characterized by interconnected nodes and sequential 
information processing, embodies the fundamental 
framework of ANNs, contributing to their versatility in 
addressing complex problems across various domains 
[26]. 

Figure 3 visually depicts the key elements of a neural 
network: Where: 

'n' is the number of neuron inputs (number of neuron 
weights must be the same) 

'w1, w2, wn' are the neuron weight values that are 
used to describe how strong influence has related input 
to the neuron,  

'x1, x2, xn' are the neuron input values (it is just an 
array of input values),  

'w (weight)' weight is the bias/threshold that is used 
to stimulate or suppress neuron activity,  

'b (bias)' is the “bias” error/deviation is the value 
reflecting the distance between the data predicted as a 
result of modelling and the actual data. “Weight” 
corresponds to in-puts values, 

'g' represents sum passing through a 
neuron activation function, and  

'y' is the neuron output value.  
Input values, following multiplication by weights and 

subsequent summation with bias translation, yield an 
output through a linear or nonlinear transfer function. 
This model establishes a mathematical relationship 
between inputs and outputs, necessitating the 
optimization of 'w' (weights) and 'b' (bias) values to 
enable the neuron to generate the desired output [27]. 
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Figure 3. Artificial neuron model. 

 
Regression methods serve as a pivotal tool in 

statistical modelling, elucidating the intricate 
relationships and correlations between an output 
variable and one or more input variables. Within the 
Matlab software package, the versatile toolboxes 
empower researchers and analysts to articulate, employ, 
and explore a spectrum of regression methods. These 
methods encompass non-linear, generalized, and linear 
regression techniques, with the flexibility to incorporate 
cascade and/or mixed models. The capabilities afforded 
by these toolboxes extend beyond mere analysis; they 
enable the design of robust models, the prediction of 
outputs, the assessment of model performance, and the 
visual expression of complex relationships. The dynamic 
functionalities embedded in Matlab's toolset elevate 
regression analysis to a multifaceted approach, providing 
a comprehensive framework for researchers to unravel 
the intricacies of variable dependencies in diverse 
datasets. 

The Regression Learner application within the Matlab 
software package offers a comprehensive suite of tools, 
incorporating non-parametric methods that enable the 
integration of intricate prediction curves without 
explicitly defining the relationship between outputs and 
a predetermined predictor. Once the training phase 
concludes, the adeptly trained model can seamlessly 
generate predictions using novel data, activating its 
application in the field for real-time decision-making and 
analysis. This functionality enhances the adaptability and 
predictive power of regression models, catering to the 
complexities of diverse datasets and dynamic 
environments. 

Linear regression models serve as a robust statistical 
approach employed to characterize the intricate 
relationship between a system's response and its input 
variables. In the context of a single input variable, this 
methodology is referred to as simple linear regression, 
whereas situations involving multiple input variables are 
encapsulated under the term multiple linear regressions. 
These models articulate relationships through linear 
prediction functions derived from empirical data, 
providing a valuable framework for analyzing and 
understanding the dependencies within complex 
systems [28]. 

Within the realm of statistical modelling, linear 
regression stands as a foundational tool, indispensable 
for delving into the connections between a dependent 
variable, often symbolized as 'y', and one or more 
independent variables denoted as 'x'. The 'y' variable acts 
as the response variable, signifying the focal point of 
interest, while 'x' encapsulates the independent 
variables, also recognized as explanatory or predictor 
variables. These predictor variables play a pivotal role in 
elucidating variations observed in the response variable. 
Linear regression, therefore, provides an invaluable 
framework for comprehensively examining and 
understanding the intricate relationships within 
datasets, offering insights into the factors influencing the 
response variable [29]. 

In conclusion, within the methodological framework, 
a critical distinction must be made between two 
fundamental types of independent variables. Continuous 
explanatory variables, denoted as covariates, are 
characterized by their measurable and uninterrupted 
nature. In contrast, categorical independent variables are 
identified as factors, emphasizing their discrete and 
categorical attributes. An additional crucial 
consideration is the incorporation of the matrix 'x,' which 
encompasses observations related to predictor variables. 
Referred to as the design matrix, this element assumes a 
central role in both the formulation and execution of 
linear regression models. The design matrix serves as a 
vital tool, encapsulating the intricate relationships 
among variables and making substantial contributions to 
the overall structure and interpretability of the model. As 
researchers navigate the intricacies of their analyses, a 
comprehensive understanding of these components is 
imperative for robust and nuanced interpretations 
within the domain of linear regression modelling [22]. 

In statistical analysis, the coefficient of determination, 
commonly denoted as R² or r², plays a crucial role in 
assessing the predictability of the dependent variable 
from one or more independent variables. Error metrics 
for the neural network model were calculated by the 
formula in Equation 1-3. This metric holds particular 
significance in statistical models employed for 
forecasting future outcomes and testing hypotheses 
grounded in pertinent information [27-28]. R² quantifies 
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the precision with which observed outcomes align with 
the model, gauged by the proportion of total outcome 
variation explained by the model. The R² value is 
confined to the range of 0 to 1, where values closer to 1 

signify lower error and a superior fit of the model. This 
measure provides valuable insights into the effectiveness 
and reliability of the statistical model in capturing and 
explaining the observed variability in the data [30]. 

 

𝑅𝑀𝑆𝐸 =
1
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3. Results  
 

In the Unconfined Compressive Strength (UCS) tests, 
the influence of various additives on soil compressive 
strength becomes evident. The specimens treated with 
both by-products and cement showcased notably 
elevated strength capacities when compared to 
untreated samples. While all additives contributed to 
enhancing the inherent strength of natural soil, their 
impacts were diverse owing to distinct underlying 
mechanisms. Cement emerged as the most influential 
additive, imparting a substantial and consistent 
improvement in strength across all soil types. Generally, 
the strength of specimens treated with cement exhibited 
an upward trajectory corresponding to higher cement 
content, moisture levels, and prolonged curing times, 
primarily attributed to the process of hydration. These 
findings underscore the nuanced interplay between 
different additives and soil properties, offering valuable 
insights into the optimization of soil stabilization 
techniques for diverse geotechnical applications. 

A comparative analysis of the compressive strength 
results at three different optimum moisture contents 
(OMC) was carried out; as shown in Table 2, it was 
observed in the UCS test with sulfur-free lignin-
containing by-products that OMC-4% gave the highest 
value for all soil types. Remarkably, the addition of 12% 
(BCP) to the initially pure soil resulted in a significant and 
consistent increase in shear strength for all soil types. 
Sulfur-free lignin-containing by-products exhibited a 
moderate increase in soil strength attributed to the 
presence of lignin in the untreated soil, ranging from 
about 20% to 500%. The specimens of Soil 1 treated with 
BCP B showed the highest improvement in UCS when 
compared to other soils with BCP B, and the strength of 
Soil 1 was improved by over 300% for 1-day curing 
(Table 2). 

The dataset presented in Table 2, which was 
meticulously curated within the confines of this, 
underwent rigorous modeling procedures utilizing the 
Regression Learner application within the Matlab 2023a 
software package. The execution of these modeling 
endeavors transpired on a desktop computer equipped 
with an Intel i5 processor boasting 8GB of memory. This 
computational environment was chosen to ensure the 
robustness and efficiency of the experiments, allowing 

for the meticulous exploration and analysis of the 
intricate relationships embedded within the dataset. 

The Matlab Regression Learner application facilitates 
the development of artificial intelligence models through 
an intuitive graphical user interface, eliminating the need 
for manual code creation. The application interface can 
be accessed by entering the 'Regression Learner' 
command in the Matlab console. Upon launching the 
application, a new experiment is initiated using the 'New 
Session' command. It is essential to import a pre-
prepared dataset into the Matlab Workspace. 

In the presented dataset, structured in a 216×6 
matrix, each row corresponds to a distinct sample, while 
the columns delineate various parameters. The dataset 
encompasses information on soil type, categorized as Soil 
1, Soil 2, Soil 3, and Soil 4, along with sample types, 
including pure soil (untreated), 12% BCP treated soil, 3% 
cement treated soil, 6% cement treated soil, and 12% 
cement treated soil. Temporal aspects are captured 
through the time variable, representing intervals of 1, 7, 
and 28 days. Moisture content is detailed as OMC-4%, 
OMC%, and OMC+4%, while compressive stress is 
quantified in pounds per square inch (psi). This 
structured format, delineated in Table 3, is integral to 
understanding the interactions between these 
parameters in the context of soil treatment and the 
corresponding compressive stress over various temporal 
durations. 
When applying artificial intelligence techniques to a 
dataset, it is customary to partition the dataset into 
training and testing sets to evaluate the model's 
performance. Typically, in practical scenarios, a 
randomly selected portion, often 90% or 80%, is 
designated for training, while the remaining 10% or 20% 
is reserved for testing, commonly known as validation 
data. The Matlab Regression Learner application 
facilitates this process through k-fold cross-validation. In 
our experiments, we employed k = 5, dividing the dataset 
into five sections and iteratively conducting experiments 
five times. In each iteration, four sections were utilized 
for training, while one section was held out for testing. 
The training and testing phases were systematically 
executed by sequentially shifting through the partitions. 
The computed error metrics represent the average of the 
results obtained across the five experiments. For the 
experiments outlined in this section, we adopted k = 5, 
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thereby conducting training with 80% of the data and 
testing with the remaining 20%. 

Figure 4 illustrates the graphical representation of 
 

the system output values (ideal compressive stress) for 
the test data and the graphical representation of the 
predictions made by the artificial intelligence model. 
 

Table 2. The dataset utilized in MATLAB's regression learner application for unconfined compressive strength (UCS) 
test values. 
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1 1 1 -4 84,00 2 1 1 0 13,00 3 1 1 4 26,00 
1 2 1 -4 113,00 2 2 1 0 29,00 3 2 1 4 64,00 
1 3 1 -4 173,00 2 3 1 0 29,00 3 3 1 4 37,00 
1 4 1 -4 122,00 2 4 1 0 87,00 3 4 1 4 111,00 
1 5 1 -4 203,00 2 5 1 0 145,00 3 5 1 4 170,00 
1 6 1 -4 281,00 2 6 1 0 282,00 3 6 1 4 299,00 
1 1 7 -4 89,00 2 1 7 0 16,00 3 1 7 4 23,00 
1 2 7 -4 136,00 2 2 7 0 31,00 3 2 7 4 46,00 
1 3 7 -4 183,00 2 3 7 0 37,00 3 3 7 4 47,00 
1 4 7 -4 156,00 2 4 7 0 122,00 3 4 7 4 135,00 
1 5 7 -4 272,00 2 5 7 0 212,00 3 5 7 4 245,00 
1 6 7 -4 447,00 2 6 7 0 336,00 3 6 7 4 370,00 
1 1 28 -4 93,00 2 1 28 0 12,00 3 1 28 4 24,00 
1 2 28 -4 103,00 2 2 28 0 23,00 3 2 28 4 28,00 
1 3 28 -4 206,00 2 3 28 0 39,00 3 3 28 4 60,00 
1 4 28 -4 234,00 2 4 28 0 238,00 3 4 28 4 158,00 
1 5 28 -4 320,00 2 5 28 0 384,00 3 5 28 4 301,00 
1 6 28 -4 747,00 2 6 28 0 456,00 3 6 28 4 556,00 
1 1 1 0 42,00 2 1 1 4 11,00 4 1 1 -4 27,00 
1 2 1 0 71,00 2 2 1 4 19,00 4 2 1 -4 115,00 
1 3 1 0 80,00 2 3 1 4 25,00 4 3 1 -4 47,00 
1 4 1 0 148,00 2 4 1 4 58,00 4 4 1 -4 72,00 
1 5 1 0 262,00 2 5 1 4 129,00 4 5 1 -4 117,00 
1 6 1 0 400,00 2 6 1 4 204,00 4 6 1 -4 197,00 
1 1 7 0 37,00 2 1 7 4 12,00 4 1 7 -4 27,00 
1 2 7 0 110,00 2 2 7 4 22,00 4 2 7 -4 112,00 
1 3 7 0 106,00 2 3 7 4 28,00 4 3 7 -4 79,00 
1 4 7 0 228,00 2 4 7 4 112,00 4 4 7 -4 147,00 
1 5 7 0 369,00 2 5 7 4 188,00 4 5 7 -4 225,00 
1 6 7 0 664,00 2 6 7 4 274,00 4 6 7 -4 366,00 
1 1 28 0 41,00 2 1 28 4 10,00 4 1 28 -4 35,00 
1 2 28 0 102,00 2 2 28 4 16,00 4 2 28 -4 87,00 
1 3 28 0 126,00 2 3 28 4 30,00 4 3 28 -4 100,00 
1 4 28 0 311,00 2 4 28 4 195,00 4 4 28 -4 181,00 
1 5 28 0 648,00 2 5 28 4 256,00 4 5 28 -4 255,00 
1 6 28 0 955,00 2 6 28 4 313,00 4 6 28 -4 510,00 
1 1 1 4 22,00 3 1 1 -4 68,00 4 1 1 0 12,00 
1 2 1 4 57,00 3 2 1 -4 115,00 4 2 1 0 71,00 
1 3 1 4 64,00 3 3 1 -4 79,00 4 3 1 0 36,00 
1 4 1 4 136,00 3 4 1 -4 128,00 4 4 1 0 45,00 
1 5 1 4 226,00 3 5 1 -4 222,00 4 5 1 0 77,00 
1 6 1 4 379,00 3 6 1 -4 324,00 4 6 1 0 136,00 
1 1 7 4 28,00 3 1 7 -4 67,00 4 1 7 0 14,00 
1 2 7 4 57,00 3 2 7 -4 94,00 4 2 7 0 55,00 
1 3 7 4 76,00 3 3 7 -4 122,00 4 3 7 0 52,00 
1 4 7 4 228,00 3 4 7 -4 155,00 4 4 7 0 131,00 
1 5 7 4 341,00 3 5 7 -4 277,00 4 5 7 0 255,00 
1 6 7 4 613,00 3 6 7 -4 442,00 4 6 7 0 438,00 
1 1 28 4 24,00 3 1 28 -4 66,00 4 1 28 0 15,00 
1 2 28 4 60,00 3 2 28 -4 81,00 4 2 28 0 33,00 
1 3 28 4 101,00 3 3 28 -4 150,00 4 3 28 0 70,00 
1 4 28 4 323,00 3 4 28 -4 214,00 4 4 28 0 194,00 
1 5 28 4 698,00 3 5 28 -4 355,00 4 5 28 0 291,00 
1 6 28 4 1057,00 3 6 28 -4 538,00 4 6 28 0 597,00 
2 1 1 -4 20,00 3 1 1 0 33,00 4 1 1 4 9,00 
2 2 1 -4 51,00 3 2 1 0 73,00 4 2 1 4 34,00 
2 3 1 -4 41,00 3 3 1 0 48,00 4 3 1 4 21,00 
2 4 1 -4 69,00 3 4 1 0 123,00 4 4 1 4 28,00 
2 5 1 -4 159,00 3 5 1 0 200,00 4 5 1 4 57,00 
2 6 1 -4 243,00 3 6 1 0 334,00 4 6 1 4 119,00 
2 1 7 -4 21,00 3 1 7 0 30,00 4 1 7 4 11,00 
2 2 7 -4 44,00 3 2 7 0 57,00 4 2 7 4 34,00 
2 3 7 -4 47,00 3 3 7 0 90,00 4 3 7 4 28,00 
2 4 7 -4 114,00 3 4 7 0 140,00 4 4 7 4 96,00 
2 5 7 -4 225,00 3 5 7 0 274,00 4 5 7 4 208,00 
2 6 7 -4 294,00 3 6 7 0 474,00 4 6 7 4 406,00 
2 1 28 -4 19,00 3 1 28 0 30,00 4 1 28 4 11,00 
2 2 28 -4 28,00 3 2 28 0 51,00 4 2 28 4 25,00 
2 3 28 -4 49,00 3 3 28 0 112,00 4 3 28 4 40,00 
2 4 28 -4 201,00 3 4 28 0 174,00 4 4 28 4 139,00 
2 5 28 -4 357,00 3 5 28 0 306,00 4 5 28 4 223,00 
2 6 28 -4 435,00 3 6 28 0 607,00 4 6 28 4 452,00 
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Table 3. Performance evaluation and error metrics of regression models in artificial intelligence developed using 
Matlab for test data. 

Models 
Mean Absolute  

Error (MAE) 
R2 

Root Mean Square  
Error (RMSE) 

Neural Network (Model 2.23) 34.6540 0.93 47.9080 
Neural Network 35.0330 0.92 48.6610 

Neural Network 30.8660 0.92 49.8230 

Neural Network 31.9390 0.91 51.4860 

Neural Network 32.4260 0.91 51.8030 

Neural Network 37.6200 0.91 53.8380 

Neural Network 41.4800 0.89 57.9310 

Gaussian Process Regression 34.8990 0.89 59.1120 

Neural Network 41.7060 0.89 59.5020 

Ensemble 37.8610 0.85 68.1650 

Ensemble 46.5650 0.79 79.5500 

SVM 49.7420 0.80 79.2120 

Tree 45.0240 0.79 81.1080 

Tree 46.6330 0.76 86.2720 

 
The error values corresponding to the test data are 

depicted in Figure 5. Notably, some instances exhibit 
errors in the range of approximately -100 to +100. Given 
that the ideal compressive stress values are provided 
within the range of 0 to 1057 (psi), it is evident that a 
minor degree of prediction error exists for a limited 
number of examples. 

Observing the distribution of errors in the context of 
the broader range of compressive stress values 
underscores the overall effectiveness of the predictive 
model. While discrepancies exist in specific cases, these 
errors remain within an acceptable margin relative to the 
overall scale of compressive stress values. This nuanced 
evaluation emphasizes the model's ability to make 
reasonably accurate predictions across a diverse range of 
examples. 

The numerical results for the test data, presented in 
descending order of performance (R2), are detailed in 
Table 3. Notably, the neural network method emerged as 

the most effective among the assessed approaches. As 
can be seen in Table 3, the highest performance values 
are obtained for the neural network method regression 
model. The error metrics for the neural network model 
are calculated as follows: Mean Absolute Error (MAE) 
34.6540, R-Squared (R2) 0.93, and Root Mean Square 
Error (RMSE) 47.9080. Remarkably, the model 
demonstrated remarkable proficiency with an average 
error of approximately 30.00, showcasing its accuracy in 
predicting compressive stress values within the 
expansive range of 0-1057. 

In Figure 6, the output parameter (depicted in blue) 
of the artificial intelligence regression model, trained 
with compressive stress values for the entire dataset, is 
presented alongside the corresponding differences 
(illustrated in orange). The model was trained 
comprehensively on all available data. As discernible 
from Figure 6, the errors for many examples are notably 
low and exhibit a high degree of similarity. 

 

 
Figure 4. Visualization of actual and predicted responses in test data (psi). 
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Figure 5. Analysis of error residuals in test data: Discrepancies between true response and model prediction (psi). 

 

 
Figure 6. After training, the RMSE (root mean square error) error metric and the system response plot (blue: original 

output, yellow: model prediction), (psi). 
 

The close alignment between the predicted output 
and the actual values, as indicated by the minimal 
differences depicted in orange, attests to the 
effectiveness of the artificial intelligence regression 
model. The model demonstrates a high level of accuracy, 
with errors consistently maintained at low levels across 
numerous examples. This graphical representation 
highlights the robust performance of the model in 
capturing the intricacies of the compressive stress values 
during training. 

4. Discussion 
 

This study delved into the reliability of artificial 
neural network (ANN) outputs when trained on existing 
compressive stress data. The training and validation of 
ANN results were conducted using compressive stress 
data obtained from the Geotechnical Laboratory at Iowa 
State University, focusing on the application of biofuel co-
products (BCPs) in soil stabilization. The key findings 
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and conclusions derived from this investigation are 
summarized as follows: 

The data structure, organized with input and output 
parameters in columns and sample records in rows, 
constitutes a 216 × 5 matrix. 

Input parameters for the dataset, derived from 
unconfined compressive stress parameters, include soil 
type, sample type, admixture rate, time, and optimum 
moisture content. The output parameter represents 
pressure compressive stress values obtained from 
experiments. 

Through simulations conducted using the 
Regression Learner application within the Matlab 
software package, we compared 27 distinct regression 
methods, employing k = 5 cross-validation for a 
comprehensive assessment. The results, presented in 
Table 4, highlight the top 13 methods based on their 
success rankings. 

The Matlab Regression Learner application in Model 
2.23, the training outcomes of the neural network 
revealed a remarkable R2 value of 0.93, indicating a 
superior level of model accuracy. This high R2 value 
suggests that the neural network effectively captured the 
linear trend, with minimal deviation of data points from 
the expected values. The exceptional performance of 
Model 2.23 underscores its efficacy in the regression 
task, emphasizing its potential as a robust method for the 
dataset under consideration. 

The most favorable test results were achieved using 
the neural network method, with error metrics for the 
model calculated as follows: Mean Absolute Error (MAE) 
34.6540, R-Squared (R2) 0.93, and Root Mean Square 
Error (RMSE) 47.9080. 

 

5. Conclusion  
 

In summary, the integration of artificial intelligence 
(AI) has demonstrated exceptional efficacy in predicting 
system output values for test data, underscored by the 
noteworthy R2 value of 0.93, indicating a robust 
correlation. This achievement holds great promise for 
the realm of geotechnical engineering, particularly in 
contexts where experiments are time-consuming and 
necessitate a large number of trials. The established 
success of employing artificial neural networks (ANNs) 
to interpret unconfined compressive test data signifies a 
considerable advantage for researchers. This approach 
allows for the efficient acquisition of substantial data 
with fewer experimental trials and in significantly 
reduced time frames. 

The integration of Artificial Neural Networks (ANN) 
not only contributes to heightened prediction accuracy 
but also emerges as a transformative tool in geotechnical 
engineering research, effectively mitigating the 
challenges associated with labor-intensive and resource-
intensive traditional experiments. The results presented 
in this study underscore the broader implications of AI-
driven solutions, suggesting a paradigm shift in the way 
data collection and analysis are approached in 
geotechnical engineering. This technology offers a more 
efficient and expedited means of extracting meaningful 
insights, potentially reshaping the methodology for 
future projects within the field. 

Beyond the immediate benefits observed in this 
study, the broader implications of AI methodologies in 
geotechnical engineering are promising. As technological 
advancements persist, the seamless integration of AI is 
poised to play a pivotal role in shaping the future 
landscape of geotechnical research and practice. This not 
only extends to improved accuracy in predictions but 
also entails a fundamental redefinition of the research 
and experimentation processes, opening avenues for 
innovation and efficiency. The evolving synergy between 
AI and geotechnical engineering holds the potential to 
usher in a new era of scientific inquiry and problem-
solving in the field. 
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