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Abstract
Let P be any topological property of a space X. We say that X is P at x ∈ X if there
exist an open set U and a subspace Y of X satisfying P such that x ∈ U ⊆ Y . We also
say that X is locally P if X is P at every point of X. We study this local property and
obtain the following results under certain topological assumptions on P.

(1) Every locally P Hausdorff P -space can be densely embedded in a P Hausdorff P -
space.

(2) If a Hausdorff P -space X is P at x ∈ X, then χ(x,X) ≤ ψ(x,X)ω.
(3) For a locally P Hausdorff P -space X, w(X) ≤ nw(X)ω ≤ |X|ω.

Besides, few separation like properties are obtained and preservation under certain topolog-
ical operations are also investigated. Finally we present certain observations on remainders
of locally P spaces.
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1. Introduction
By a space X we always mean a topological space. All notation and terminology not

defined in this paper are given in [9, 19]. This article deals with the local variant of a
topological property P. Given a selective property P its local version have been recently
studied in [1,2,8] for the case of Menger, star-Menger, Menger-bounded, Hurewicz-bounded
and Rothberger-bounded properties. For the notions of such selective covering properties
we refer the reader to consult the papers [11–13].

Let P be any topological property of a space X. We say that X is a P space (or, in
short X is P) if X has the property P. We now give the main definition of the paper.

Definition 1.1. We say that X is P at x ∈ X if there exist an open set U and a subspace
Y of X satisfying P such that x ∈ U ⊆ Y . We also say that X is locally P if X is P at
every point of X.
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Note that a spaceX is P impliesX is locally P. In this article we investigate the property
P at x of a space X for arbitrary topological property P. We present reformulations of
the local version of any such P in the context of regular spaces and Hausdorff P -spaces
as well (recall that a space is called a P -space if every Gδ set is open). We observe
that a locally P Hausdorff P -space can be densely embedded in a P Hausdorff P -space.
Relations between character and pseudocharacter of a point, and weight and network
weight are established in this context. We also obtain some separation like properties.
A few intriguing investigations on preservation under certain topological operations are
carefully carried out. We also present certain observations on remainders of this local
variant.

2. Preliminaries
The weight w(X) of X is the smallest possible cardinality of a base for X and the

character χ(x,X) of a point x in X is the smallest cardinality of a local base for x.
A family N of subsets of X is said to be a network for X if for each x ∈ X and any
neighbourhood U of x there exists a A ∈ N such that x ∈ A ⊆ U . The network weight
nw(X) of X is defined as the smallest cardinal number of the form |N|, where N is a
network for X. Clearly nw(X) ≤ w(X) and nw(X) ≤ |X|. A family U of open sets of
a T1 space X is called a pseudobase for X at x ∈ X if ∩U = {x}. The pseudocharacter
ψ(x,X) of a point x in a T1 space X is the smallest cardinality of a pseudobase for X at
x.

Recall that a A ⊆ P (N) is said to be an almost disjoint family if each A ∈ A is infinite
and for any two distinct elements B,C ∈ A, |B ∩ C| < ω. For an almost disjoint family
A, let Ψ(A) = A ∪ N be the Isbell-Mrówka space [15]. A space X is said to have the
Rothberger property [11, 17] if for each sequence (Un) of open covers of X there is a
sequence (Un) such that Un ∈ Un for each n and {Un : n ∈ N} covers X. Note that
the Rothberger property is preserved under Fσ subsets, countable unions and continuous
mappings [11].

3. Main results
3.1. The locally P property

We start by observing that if a property P implies a property Q, then X is locally P

implies X is locally Q. Note that an uncountable discrete space is locally compact but not
Lindelöf. Accordingly for any property P between compactness and the Lindelöf property
the properties P and locally P are different. Also note that if P implies the Lindelöf
property and P is closed under countable unions, then the properties P and locally P

coincide. So, in this case, to distinguish between the local properties is equivalent to
distinguish between the original properties.

A space X is said to be regular with respect to x ∈ X if for each closed set F not
containing x there exist disjoint open sets U and V such that x ∈ U and F ⊆ V (or
equivalently, for each open set U containing x there exists an open set V containing x
such that V ⊆ U).
Lemma 3.1. If X is regular with respect to x and P is inherited by closed subspaces, then
the following statements are equivalent.
(1) X is P at x.
(2) For every open set V containing x there are an open set U and a subspace Y of X

satisfying P such that x ∈ U ⊆ Y ⊆ V .
(3) There is an open set U containing x such that U has P.
(4) X has a base at x consisting of closed neighbourhoods of x satisfying P.

Note that every Lindelöf subspace of a Hausdorff P -space is closed.
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Lemma 3.2 (Folklore). If a subspace Y of a Hausdorff P -space X is Lindelöf at any point
y ∈ Y , then Y is of the form U ∩ F where U is open and F is closed in X.

Remark 3.3. Let X be a Hausdorff P -space. If P is inherited by closed subspaces and P

implies the Linelöf property, then X is P at x implies that X is regular with respect to x.

Theorem 3.4. Let P be a property of a space X satisfying that if there exists a point x
of X such that the complement of each open neighbourhood of x has P, then X has P. If
in addition P implies the Lindelöf property, and P is invariant under closed subspaces and
countable unions, then every locally P Hausdorff P -space can be densely embedded in a P

Hausdorff P -space.

Proof. Consider a locally P Hausdorff P -space (X, τ). Suppose that X does not satisfy P.
Let X ′ = X ∪ {p}, where p /∈ X. Clearly τ ′ = τ

⋃
{U ⊆ X ′ : X ′ \U is a P subspace of X}

is a topology on X ′. We now show that X ′ is a Hausdorff P -space. Choose x, y ∈ X ′ such
that x ∈ X and y /∈ X. Let U be an open set and Y be a P subspace of X such that
x ∈ U ⊆ Y . Thus we obtain two disjoint open sets U and X ′ \ Y in X ′ with x ∈ U and
y ∈ X ′ \ Y . Hence X ′ is Hausdorff. Obviously X ′ is a P -space. Also observe that X is
dense in X ′. The inclusion mapping ι : X → X ′ is an embedding of X into X ′. From the
construction of X ′ we can say that X ′ satisfies P. �

Theorem 3.5. Let X be a Hausdorff P -space. If X is Lindelöf at x, then χ(x,X) ≤
ψ(x,X)ω.

Proof. Let W be a Lindelöf neighbourhood of x. Since χ(x,X) = χ(x,W ) and ψ(x,X) =
ψ(x,W ), we can assume that X is Lindelöf. Let B be a pseudobase for X at x of cardinality
ψ(x,X) consisting of closed neighbourhoods of x and let I be the family all intersections
of countable subfamilies of B. If U is a neighbourhood of x, then X \U ⊆

⋃
{X \B : B ∈

B} =
⋃

{X \Bn : n ∈ N}, where Bn ∈ B for each n ∈ N. So x ∈ I =
⋂

{Bn : n ∈ N} ⊆ U .
It follows that I is a base for X at x. Thus χ(x,X) ≤ ψ(x,X)ω because |I| ≤ ψ(x,X)ω. �

Corollary 3.6. Let P be any property stronger than the Lindelöf property and X be a
Hausdorff P -space. If X is P at x, then χ(x,X) ≤ ψ(x,X)ω.

Lemma 3.7 ([2, Lemma 3.1]). Let X be a Hausdorff P -space.
(1) There exists a continuous bijective mapping of X onto a Hausdorff P -space Y such

that w(Y ) ≤ nw(X)ω.
(2) Moreover if X is Lindelöf, then w(X) ≤ nw(X)ω.

Theorem 3.8. For a locally Lindelöf Hausdorff P -space X, w(X) ≤ nw(X)ω.

Proof. Assume that nw(X) = κ. Let N be a network for X such that |N| = κ. For each
x ∈ X pick an open set Vx in X containing x with Vx is Lindelöf. Later for each x ∈ X
choose a Ax ∈ N with x ∈ Ax ⊆ Vx. It follows that there exists a collection {Aα}α∈Λ ⊆ N

such that for each α ∈ Λ, Aα is Lindelöf and X =
⋃

α∈ΛAα. For each α ∈ Λ one can
easily obtain an open set Vα in X with Aα ⊆ Vα and Vα is Lindelöf. By Lemma 3.7(2),
w(Vα) ≤ κω because nw(Vα) ≤ nw(X) = κ. Thus w(Vα) ≤ κω, i.e. there is a base Bα

for Vα such that |Bα| ≤ κω. Since B =
⋃

α∈Λ Bα is a base for X and |B| ≤ κω, we get
w(X) ≤ κω, i.e. w(X) ≤ nw(X)ω. �

Corollary 3.9. Let P be any property stronger than the Lindelöf property and X be a
Hausdorff P -space. If X is locally P, then w(X) ≤ nw(X)ω ≤ |X|ω.

In this connection we mention the classical result of F. Galvin, given in [10]. If X is a
Lindelöf space, then X is a P -space if and only if X is a γ-set. If P lies between Lindelöf
and γ-set, then any P -space X is locally P if and only if X is locally Lindelöf.
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3.2. Separation like properties
Theorem 3.10. If P is preserved under closed subspaces and countable unions and X is
a regular locally P space, then for each Lindelöf subspace L of X and each x ∈ X \L there
exists a subset B ⊆ X satisfying P such that L ⊆ B ⊆ X \ {x}.

Proof. For each y ∈ L choose an open set Uy such that x /∈ Uy. By Lemma 3.1, we get an
open subset Vy and a P subspace By of X such that y ∈ Vy ⊆ By ⊆ Uy. Then {Vy : y ∈ L}
is a cover of L by open sets in X and hence there is a countable subfamily {Vyn : n ∈ N}
that covers L. Thus B =

⋃
n∈NByn is a P subspace of X such that L ⊆ B ⊆ X \ {x}. �

Corollary 3.11. If P implies the Lindelöf property and is preserved under closed subspaces
and countable unions, and X is a locally P Hausdorff P -space, then for each Lindelöf
subspace L of X and each x ∈ X \ L there exists a closed subset B ⊆ X satisfying P such
that L ⊆ B ⊆ X \ {x}.

Theorem 3.12. If P is preserved under closed subspaces and finite unions and X is a
regular locally P space, then for each compact subspace C of X and each x ∈ X \ C there
exists a closed subset B ⊆ X satisfying P such that C ⊆ B ⊆ X \ {x}.

Theorem 3.13. If P implies the Lindelöf property and is preserved under closed subspaces
and finite unions, and X is a regular locally P space, then for each compact subspace C
and each open subset V of X with C ⊆ V there exists a closed subset B ⊆ X satisfying
P such that C ⊆ B ⊆ V . Moreover there exists a continuous function f : X → [0, 1]
satisfying f(x) = 0 for all x ∈ C and f(x) = 1 for all X \B.

Proof. For each x ∈ C choose an open set Ux such that x ∈ Ux ⊆ Ux ⊆ V and Ux

satisfies P. Since C is compact, we get a finite subset F ⊆ C such that C ⊆
⋃

x∈F Ux.
Thus B =

⋃
x∈F Ux is a closed P (hence normal) subspace of X with C ⊆ B ⊆ V . Observe

that B \ Int(B) and C are disjoint closed subsets of B. Since B is normal, there exists
a continuous function g : B → [0, 1] with g(x) = 0 for all x ∈ C and g(x) = 1 for all
x ∈ B \ Int(B). We define a continuous function f : X → [0, 1] by f(x) = g(x) if x ∈ B
and f(x) = 1 otherwise. This completes the proof. �

Theorem 3.14. If P implies the Lindelöf property and is preserved under closed subspaces
and countable unions, and X is a locally P Hausdorff P -space, then for each Lindelöf
subspace L and each open subset V of X with L ⊆ V there exists a closed subset B ⊆ X
satisfying P such that L ⊆ B ⊆ V . Moreover there exists a continuous function f : X →
[0, 1] satisfying f(x) = 0 for all x ∈ L and f(x) = 1 for all X \B.

3.3. Preservation under certain topological operations
Observe that if P is preserved under Fσ (respectively, closed, clopen) subsets and if a

space X is P at x ∈ X, then any Fσ (respectively, closed, clopen) subset of X containing
x is also P at x. If X is regular and P is preserved under closed subsets, then X is P

at x implies any locally closed subset of X containing x is also P at x. Moreover if P is
preserved under closed subsets, then a locally closed subset of a regular P space need not
be P, the one point compactification of an uncountable discrete space is a counter example
to it.

Note that if P is preserved under continuous mappings, then continuous image of a
locally P space need not be locally P. If P is the Rothberger property, then the identity
mapping i : X → Y is continuous, whereX = R with the discrete topology and Y = R with
the usual topology, but Y is not locally P. Recall from [14] that a surjective continuous
mapping f : X → Y is called

(1) weakly perfect if f is closed and for each y ∈ Y , f−1(y) is Lindelöf.
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(2) bi-quotient if U is a cover of f−1(y) by open sets in X for some y ∈ Y , then
{f(U) : U ∈ U} has a finite subset that covers some open set containing y in Y .

Clearly open continuous surjective (and also perfect) mappings are bi-quotient.

Theorem 3.15. Let P be invariant under continuous mappings and countable unions. If
f : X → Y is a weakly perfect mapping and X is P at every point of f−1(f(x)) for some
x ∈ X, then Y is P at f(x).

Proof. Choose y = f(x) and w ∈ f−1(y). Let Uw be an open and Zw be a P subspace
of X such that w ∈ Uw ⊆ Zw. Then {Uw : w ∈ f−1(y)} is a cover of f−1(y) by open
sets in X. Thus we get a set {wn : n ∈ N} ⊆ f−1(y) such that f−1(y) ⊆

⋃
n∈N Uwn and

f−1(y) ⊆
⋃

n∈N Zwn . Observe that Y \f(X\
⋃

n∈N Uwn) is an open subset and f(
⋃

n∈N Zwn)
is a P subspace of Y with y ∈ Y \ f(X \

⋃
n∈N Uwn) ⊆ f(

⋃
n∈N Zwn). Hence the result. �

Theorem 3.16. Let P be invariant under continuous mappings and finite unions. If
f : X → Y is a bi-quotient mapping and X is P at every point of f−1(f(x)) for some
x ∈ X, then Y is P at f(x).

Proof. Choose y = f(x) and w ∈ f−1(y). Let Uw be an open and Zw be a P subspace
of X such that w ∈ Uw ⊆ Zw. Then {Uw : w ∈ f−1(y)} is a cover of f−1(y) by open
sets in X. Then we get a finite set {wi : 1 ≤ i ≤ k} ⊆ f−1(y) and an open set V ⊆ Y

containing y such that V ⊆
⋃k

i=1 f(Uwi). One can readily observe that y ∈ Int f(
⋃k

i=1 Uwi)
and f(

⋃k
i=1 Zwi) is a P subspace of Y such that Int f(

⋃k
i=1 Uwi) ⊆ f(

⋃k
i=1 Zwi). Hence Y

is P at y. �

Corollary 3.17. Let P be invariant under continuous mappings and finite unions. If
f : X → Y is a perfect mapping and X is P at every point of f−1(f(x)) for some x ∈ X,
then Y is P at f(x).

Also observe that if P is invariant under continuous mappings and f : X → Y is an open
continuous mapping from X onto Y , and if X is P at x, then Y is P at f(x). It follows
that if P is invariant under continuous mappings and closed subsets, and if f : X → Y is
an injective closed continuous mapping and Y is P at y ∈ f(X), then X is P at f−1(y).
If we replace ‘injective closed continuous mapping’ by ‘open continuous mapping’, then
the result does not hold. For example, take P as the Rothberger property and consider
the projection mapping p1 : X → X1 X = X1 × X2, where X1 = Ψ(A) is a Ψ-space and
X2 = R is the set of reals.

Theorem 3.18. Let P be such that the collection of all P subspaces of a space covers
the space. If P is invariant under continuous mappings, then for a space X the following
assertions are equivalent.
(1) A subset U is open in X provided that U ∩ Y is open in Y for every P subspace Y of

X.
(2) A subset F is closed in X provided that F ∩ Y is closed in Y for every P subspace Y

of X.
(3) X is a quotient image of some locally P space.

Proof. (1) ⇒ (3). If {Yα : α ∈ Λ} is the collection of all P subspaces of X, then
⊕

α∈Λ Yα

is locally P. Observe that f :
⊕

α∈Λ Yα → X given by f(x, α) = x is a quotient mapping.
(3) ⇒ (1). Let Z be a locally P space and q : Z → X be a quotient mapping. Consider

a set U ⊆ X with U ∩ Y is open in Y for each P subspace Y of X. Pick x ∈ q−1(U), an
open set V and a P subspace Y of Z such that x ∈ V ⊆ Y . Since q(Y ) is a P subspace
of X, U ∩ q(Y ) is open in q(Y ) and U ∩ q(Y ) = W ∩ q(Y ) for some open set W in X. It
follows that x ∈ q−1(W ) ∩ V . Since q−1(W ) ∩ V is open in Z with q−1(W ) ∩ V ⊆ q−1(U),
q−1(U) is open in Z and so U is open in X. Hence Z satisfies (1). �
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Let P be such that if (xn) is a sequence in a space X convergent to some x ∈ X, then
the subspace {xn : n ∈ N}∪{x} satisfies P. Note that every sequential space satisfies each
of the conditions of Theorem 3.18 for such P. Next we observe that a quotient image of a
locally P space need not be locally P.

Example 3.19. Let P be the Rothberger property. The space X =
⊕

α<ω1 [0, 1] is a
quotient image of some locally P space by Theorem 3.18 (as X is a sequential space), but
X is not locally P.

Let X =
⋃

α∈ΛXα. If for some α ∈ Λ, Xα is an open subspace of X such that Xα

is P at x ∈ Xα, then X is P at x. Note that if P is the Rothberger property, then
[0, ω1) =

⋃
α<ω1 [0, α) does not satisfy P, on the other hand for each α < ω1, [0, α) satisfies

P. If P is preserved under closed subsets, then the topological sum
⊕

α∈ΛXα is P at (x, α)
for some α ∈ Λ if and only if Xα is P at x. Similarly this result need not hold for P spaces
if P is the Rothberger property. The space Y =

⊕
α<ω1 L does not satisfy the Rothberger

property, where L is a Lusin set (i.e. an uncountable subset of reals whose intersection
with every first category set of reals is countable).

Let X =
⋃

α∈ΛXα and x ∈ X. We use Λ(x) to denote the collection of all α ∈ Λ such
that x ∈ Xα.

Theorem 3.20. Consider X =
⋃

α∈ΛXα with each Xα is closed in X. Let {Xα : α ∈ Λ}
be locally finite in X and x ∈ X. If P is invariant under continuous mappings and finite
unions, and if Xα is P at x for all α ∈ Λ(x), then X is P at x.

Proof. Clearly Y =
⊕

α∈ΛXα is P at (x, α) for all α ∈ Λ(x) because Xα is P at x for
all α ∈ Λ(x). Let f : Y → X be defined by f(y, α) = y and for each α, ϕα : Xα → Y
be defined by ϕα(y) = (y, α). Observe that for each closed F in Y , f(F ) =

⋃
α∈Λ ϕ

−1
α (F )

is closed in X. Let y ∈ X. Since {Xα : α ∈ Λ} is locally finite in X, there exists an
open set V containing y such that V intersects only finitely many members of it, say
Xα1 , Xα2 , . . . , Xαk

. It is easy to see that f−1(y) =
⊕

{αi:1≤i≤k}{y}. Thus f is perfect. By
Corollary 3.17, X is P at x. �

A similar result in the context of P -spaces can be observed by using Lemma 3.21.

Lemma 3.21 (Folklore). For any locally countable family {Xα : α ∈ Λ} of closed sets in
a P -space X,

⋃
α∈ΛXα is closed.

Theorem 3.22. Consider X =
⋃

α∈ΛXα with each Xα closed in X. Let {Xα : α ∈ Λ} be
locally countable in X and x ∈ X. Suppose that P is invariant under continuous mappings
and countable unions. If X is a P -space and Xα is P at x for all α ∈ Λ(x), then X is P

at x.

Theorem 3.23. Let P be preserved under closed subsets, continuous mappings and finite
unions, and let P imply the Lindelöf property. Then a regular space X is both locally P

and locally metrizable if and only if X is bi-quotient image of some locally P metrizable
space.

Proof. If X is both locally P and locally metrizable, then by Lemma 3.1, X has a basis
consisting of closed P neighbourhoods. It follows that X has a cover {Xα : α ∈ Λ}
with each Xα metrizable closed P subspace. We can obtain a metrizable locally P space
Y =

⋃
α∈Λ Yα such that Yα’s are pairwise disjoint metrizable open P subspaces of Y and

for each α Yα is homeomorphic to Xα. For each α let hα : Yα → Xα be a homeomorphism.
Clearly the function f : Y → X given by f(y) = hα(y) for y ∈ Yα is bi-quotient.

Conversely let Y be a locally P metrizable space and g : Y → X be a bi-quotient
mapping. Then X is locally P by Theorem 3.16. Let U = {Uy : y ∈ Y } be an open
cover of Y with y ∈ Uy ⊆ Zy and Zy is P. Pick a x ∈ X. Then we get a finite set



918 D. Chandra, N. Alam

{Uyi : 1 ≤ i ≤ k} ⊆ U and an open set U in X with x ∈ U ⊆
⋃k

i=1 g(Uyi). Clearly
⋃k

i=1 Zyi

is metrizable P, i.e. second countable. Thus g(
⋃k

i=1 Zyi) is a regular second countable P

space because the second countability is preserved under bi-quotient mappings and hence
g(

⋃k
i=1 Zyi) is metrizable. Thus X is locally metrizable �

Theorem 3.24. Let P be preserved under closed subsets and continuous mappings, and
let P imply the Lindelöf property. Then a regular space X is both locally P and locally
metrizable if and only if X is open continuous image of some locally P metrizable space.

The following facts can be easily verified.
(1) If P is closed under finite products, then X is P at x and Y is P at y imply X ×Y

is P at (x, y).
(2) Suppose that P and Q are such that if X is P and Y is Q, then X × Y is P. Then

X is P at x and Y is Q at y imply X × Y is P at (x, y).
(3) If P is invariant under continuous mappings and if the Cartesian product

∏
α∈ΛXα

is P at x, then each Xα is P at pα(x) where for each α ∈ Λ, pα :
∏

α∈ΛXα → Xα

is the projection mapping.
Also the following result can be obtained.

Proposition 3.25. If P is invariant under continuous mappings and the Cartesian product∏
α∈ΛXα is P at some point x, then Xα is P for all but finitely many α.

Let P be invariant under continuous mappings. Then it is immediate from the above
result that if

∏
α∈ΛXα is locally P, then Xα is P for all but finitely many α. But the

converse of this result does not hold. If P is the Rothberger property, then the Cantor
space 2ω is the product of ω copies of P spaces, whereas 2ω is not P.

3.4. Remainders and locally Lindelöf spaces
In this section it is assumed that every space is Tychonoff. For any compactification

bX of X, bX \X is called a remainder of X. Recall from [2,4] that a space X is called a
p-space if in any (in some) compactification bX of X if for each n ∈ N there is a collection
Un of open sets in bX such that for each x ∈ X, x ∈

⋂
n∈N

⋃
{U ∈ Un : x ∈ U} ⊆ X. Every

metrizable space is a p-space (see [3,5]) and every closed subspace of a p-space is a p-space
(see [2]). A space X is said to be a Lindelöf Σ-space [16] if it is a continuous image of a
Lindelöf p-space. An s-space [6] is a space which has a countable open source [6] in any
(in some) compactification of it. Also recall that every Lindelöf p-space is an s-space [6]
and any remainder of a Lindelöf p-space is also a Lindelöf p-space (see [5, Theorem 2.1]).
Let Y be a subspace of X. Then X has the property P outside of Y whenever each closed
set F ⊆ X with Y ∩ F = ∅ has the property P.

Theorem 3.26. If Y is a remainder of a locally Lindelöf p-space X, then Y is a Lindelöf
p-space outside of K (hence an s-space outside of K) for some compact subset K of it.

Proof. Let bX be a compactification of X such that Y = bX \ X. Since X is a locally
Lindelöf p-space, we get an open cover U of X with UX Lindelöf for each U ∈ U. For each
U ∈ U let VU be an open set in bX with VU ∩ X = U . If W =

⋃
{VU : U ∈ U}, then W

is open in bX with X ⊆ W and K = bX \ W is compact with K ⊆ Y . We claim that Y
is a Lindelöf p-space outside of K. Pick a closed set F ⊆ Y with K ∩ F = ∅. Observe
that F bX ⊆ W and consequently we get a finite set {VUi : 1 ≤ i ≤ k} ⊆ {VU : U ∈ U}
such that F bX ⊆

⋃k
i=1 VUi . Clearly C =

⋃k
i=1 Ui

X is a Lindelöf p-space and Z = C
bX is a

compactification of C. Thus Z ∩ Y is a Lindelöf p-space because it is the remainder of C
in Z. It is easy to see that F is a closed subset of Z ∩ Y . Consequently F is a Lindelöf
p-space and the proof is now complete. �
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Corollary 3.27. Let P imply the Lindelöf property. If Y is a remainder of a locally P

p-space X, then Y is a Lindelöf p-space outside of K (hence an s-space outside of K) for
some compact subset K of it.

We call a space X homogeneous if for any x, y ∈ X there is a homeomorphism f : X →
X with f(x) = y.

Lemma 3.28 ([18]). A finite union of closed s-spaces is an s-space.

Theorem 3.29. Every homogeneous remainder of a locally Lindelöf p-space is an s-space.

Proof. Let Y be a homogeneous remainder of a locally Lindelöf p-space X. Then we get
a compact set K ⊆ Y such that Y is a Lindelöf p-space outside of K (see Theorem 3.26).
The case is trivial when Y = K. Suppose that K $ Y . Since Y \K is open in Y for every
y ∈ Y \ K, we get an open subset Uy of Y such that y ∈ Uy ⊆ Uy

Y ⊆ Y \ K and Uy
Y is

a Lindelöf p-space. Pick x ∈ Y . Let y ∈ Y \ K be fixed. Since Y is homogeneous, there
exists a homeomorphism f : Y → Y such that f(y) = x. Then we can obtain an open
set Uy ⊆ Y such that y ∈ Uy and Uy

Y is a Lindelöf p-space. Thus Vx = f(Uy) is an open
subset of Y with x ∈ Vx and Vx

Y is a Lindelöf p-space, i.e. an s-space. Consequently we
have a finite set {xi : 1 ≤ i ≤ k} ⊆ Y such that K ⊆

⋃k
i=1 Vxi . Obviously Y \

⋃k
i=1 Vxi is

an s-space. By Lemma 3.28, Y = (
⋃k

i=1 Vxi

Y ) ∪ (Y \
⋃k

i=1 Vxi) is an s-space. �

Corollary 3.30. Let P imply the Lindelöf property. Every homogeneous remainder of a
locally P p-space is an s-space.

Lemma 3.31 ([7, Theorem 2.7]). Any (some) remainder of an s-space in a compactifica-
tion of it is a Lindelöf Σ-space.

Theorem 3.32. If a locally Lindelöf p-space X has a homogeneous remainder, then X =
L ∪ Z for some closed Lindelöf Σ-subspace L and open locally compact subspace Z.

Proof. Let bX be a compactification of X such that Y = bX \X is homogeneous. Then
Y is an s-space (see Theorem 3.29). Since bY = Y

bX is a compactification of Y and
L = bY ∩ X is a closed subset of X, L = bY \ Y and hence L is a Lindelöf Σ-space
(see Lemma 3.31). Obviously Z = bX \ bY is a locally compact subspace of X and
X = L ∪ Z. �

Corollary 3.33.
(1) Let P imply the Lindelöf property. If a locally P p-space X has a homogeneous remain-

der, then X = L ∪Z for some closed Lindelöf Σ-subspace L and open locally compact
subspace Z.

(2) Let P imply the Lindelöf property. If a locally P p-space X that is nowhere locally
compact has a homogeneous remainder, then X is a Lindelöf Σ-space.
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