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Abstract

Let P be any topological property of a space X. We say that X is P at z € X if there
exist an open set U and a subspace Y of X satisfying P such that z € U C Y. We also
say that X is locally P if X is P at every point of X. We study this local property and
obtain the following results under certain topological assumptions on P.

(1) Every locally P Hausdorff P-space can be densely embedded in a P Hausdorff P-
space.
(2) If a Hausdorff P-space X is P at x € X, then x(z, X) < ¢(z, X)“.
(3) For a locally P Hausdorff P-space X, w(X) < nw(X)“ < |X|“.
Besides, few separation like properties are obtained and preservation under certain topolog-
ical operations are also investigated. Finally we present certain observations on remainders
of locally P spaces.
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1. Introduction

By a space X we always mean a topological space. All notation and terminology not
defined in this paper are given in [9,19]. This article deals with the local variant of a
topological property P. Given a selective property P its local version have been recently
studied in [1,2,8] for the case of Menger, star-Menger, Menger-bounded, Hurewicz-bounded
and Rothberger-bounded properties. For the notions of such selective covering properties
we refer the reader to consult the papers [11-13].

Let P be any topological property of a space X. We say that X is a P space (or, in
short X is P) if X has the property P. We now give the main definition of the paper.

Definition 1.1. We say that X is P at ¢ € X if there exist an open set U and a subspace
Y of X satisfying P such that x € U C Y. We also say that X is locally P if X is P at
every point of X.
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Note that a space X is P implies X is locally P. In this article we investigate the property
P at x of a space X for arbitrary topological property P. We present reformulations of
the local version of any such P in the context of regular spaces and Hausdorff P-spaces
as well (recall that a space is called a P-space if every Gg set is open). We observe
that a locally P Hausdorff P-space can be densely embedded in a P Hausdorff P-space.
Relations between character and pseudocharacter of a point, and weight and network
weight are established in this context. We also obtain some separation like properties.
A few intriguing investigations on preservation under certain topological operations are
carefully carried out. We also present certain observations on remainders of this local
variant.

2. Preliminaries

The weight w(X) of X is the smallest possible cardinality of a base for X and the
character x(z,X) of a point z in X is the smallest cardinality of a local base for x.
A family N of subsets of X is said to be a network for X if for each x € X and any
neighbourhood U of x there exists a A € N such that x € A C U. The network weight
nw(X) of X is defined as the smallest cardinal number of the form |N|, where N is a
network for X. Clearly nw(X) < w(X) and nw(X) < |X|. A family U of open sets of
a Ty space X is called a pseudobase for X at x € X if "U = {z}. The pseudocharacter
(x, X) of a point = in a T space X is the smallest cardinality of a pseudobase for X at
x.

Recall that a A C P(N) is said to be an almost disjoint family if each A € A is infinite
and for any two distinct elements B,C' € A, |BN C| < w. For an almost disjoint family
A, let ¥(A) = AUN be the Isbell-Mréwka space [15]. A space X is said to have the
Rothberger property [11,17] if for each sequence (U,) of open covers of X there is a
sequence (U,) such that U, € U, for each n and {U, : n € N} covers X. Note that
the Rothberger property is preserved under F, subsets, countable unions and continuous
mappings [11].

3. Main results

3.1. The locally P property

We start by observing that if a property P implies a property Q, then X is locally P
implies X is locally Q. Note that an uncountable discrete space is locally compact but not
Lindel6f. Accordingly for any property P between compactness and the Lindelof property
the properties P and locally P are different. Also note that if P implies the Lindelof
property and P is closed under countable unions, then the properties P and locally P
coincide. So, in this case, to distinguish between the local properties is equivalent to
distinguish between the original properties.

A space X is said to be regular with respect to x € X if for each closed set F' not
containing x there exist disjoint open sets U and V such that z € U and F C V (or
equivalently, for each open set U containing x there exists an open set V containing x
such that V C U).

Lemma 3.1. If X is reqular with respect to x and P is inherited by closed subspaces, then

the following statements are equivalent.

(1) X is P at x.

(2) For every open set V' containing x there are an open set U and a subspace Y of X
satisfying P such thatx e U CY C V.

(3) There is an open set U containing x such that U has P.

(4) X has a base at x consisting of closed neighbourhoods of x satisfying P.

Note that every Lindeldf subspace of a Hausdorff P-space is closed.
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Lemma 3.2 (Folklore). If a subspace Y of a Hausdorff P-space X is Lindelof at any point
y €Y, thenY is of the form U N F where U is open and F' is closed in X.

Remark 3.3. Let X be a Hausdorff P-space. If P is inherited by closed subspaces and P
implies the Linel6f property, then X is P at x implies that X is regular with respect to x.

Theorem 3.4. Let P be a property of a space X satisfying that if there exists a point x
of X such that the complement of each open neighbourhood of x has P, then X has P. If
in addition P implies the Lindeldf property, and P is invariant under closed subspaces and
countable unions, then every locally P Hausdorff P-space can be densely embedded in a P
Hausdorff P-space.

Proof. Consider a locally P Hausdorff P-space (X, 7). Suppose that X does not satisfy P.
Let X' = X U{p}, where p ¢ X. Clearly 7/ = 7|J{U C X' : X'\ U is a P subspace of X}
is a topology on X’. We now show that X’ is a Hausdorff P-space. Choose x,y € X’ such
that x € X and y ¢ X. Let U be an open set and Y be a P subspace of X such that
x € U CY. Thus we obtain two disjoint open sets U and X'\ Y in X’ with x € U and
y € X"\'Y. Hence X’ is Hausdorff. Obviously X’ is a P-space. Also observe that X is
dense in X’. The inclusion mapping ¢ : X — X’ is an embedding of X into X’. From the
construction of X’ we can say that X’ satisfies P. O

Theorem 3.5. Let X be a Hausdorff P-space. If X is Lindelof at x, then x(z,X) <
Pz, X)*.

Proof. Let W be a Lindelof neighbourhood of z. Since x(z, X) = x(z, W) and ¢(z, X) =
(x, W), we can assume that X is Lindel6f. Let B be a pseudobase for X at x of cardinality
¥ (x, X) consisting of closed neighbourhoods of x and let J be the family all intersections
of countable subfamilies of B. If U is a neighbourhood of z, then X \U C|J{X \ B: B €
B} =U{X \ B, :n €N}, where B, € BforeachneN. Sox e I =N{B,:ne N} CU.
It follows that J is a base for X at x. Thus x(z, X) < ¥(z, X)“ because |J| < ¢(z, X)¥. O

Corollary 3.6. Let P be any property stronger than the Lindeldf property and X be a
Hausdorff P-space. If X is P at x, then x(z, X) < ¢(z, X)%.

Lemma 3.7 ([2, Lemma 3.1]). Let X be a Hausdorff P-space.

(1) There exists a continuous bijective mapping of X onto a Hausdorff P-space Y such
that w(Y) < nw(X)“.
(2) Moreover if X is Lindeldf, then w(X) < nw(X)%.

Theorem 3.8. For a locally Lindelof Hausdorff P-space X, w(X) < nw(X)“.

Proof. Assume that nw(X) = k. Let N be a network for X such that |[N| = k. For each
x € X pick an open set V, in X containing = with V,, is Lindel6f. Later for each z € X
choose a A, € N with z € A, C V. It follows that there exists a collection {Ay}aepr €N
such that for each o € A, A, is Lindelof and X = (Jyep Aa. For each o € A one can
easily obtain an open set V,, in X with 4, C V,, and V, is Lindeléf. By Lemma 3.7(2),
w(Va) < k¥ because nw(Vy) < nw(X) = k. Thus w(V,) < k¥, i.e. there is a base B,
for V, such that |B,| < k“. Since B = [Jyecp Ba is a base for X and |B| < k¥, we get
w(X) < kY ie. w(X) < nw(X)”. O

Corollary 3.9. Let P be any property stronger than the Lindelof property and X be a
Hausdorff P-space. If X is locally P, then w(X) < nw(X)“ < |X|¥.

In this connection we mention the classical result of F. Galvin, given in [10]. If X is a
Lindel6f space, then X is a P-space if and only if X is a ~y-set. If P lies between Lindelof
and ~v-set, then any P-space X is locally P if and only if X is locally Lindelof.
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3.2. Separation like properties

Theorem 3.10. If P is preserved under closed subspaces and countable unions and X is
a regular locally P space, then for each Lindeldf subspace L of X and each x € X \ L there
exists a subset B C X satisfying P such that L C B C X \ {z}.

Proof. For each y € L choose an open set Uy, such that z ¢ U,. By Lemma 3.1, we get an
open subset V;, and a P subspace By, of X such that y € V, C B, C U,. Then {V,, : y € L}
is a cover of L by open sets in X and hence there is a countable subfamily {V,, : n € N}
that covers L. Thus B = |,y By, is a P subspace of X such that L C B C X \ {z}. O

Corollary 3.11. If P implies the Lindelof property and is preserved under closed subspaces
and countable unions, and X is a locally P Hausdorff P-space, then for each Lindeldf
subspace L of X and each x € X \ L there exists a closed subset B C X satisfying P such
that L C B C X \ {z}.

Theorem 3.12. If P is preserved under closed subspaces and finite unions and X is a
regular locally P space, then for each compact subspace C of X and each x € X \ C there
exists a closed subset B C X satisfying P such that C C B C X \ {z}.

Theorem 3.13. If P implies the Lindeldf property and is preserved under closed subspaces
and finite unions, and X is a regular locally P space, then for each compact subspace C
and each open subset V of X with C C V there exists a closed subset B C X satisfying
P such that C C B C V. Moreover there exists a continuous function f : X — [0,1]
satisfying f(x) =0 for allx € C and f(z) =1 for all X \ B.

Proof. For each z € C choose an open set U, such that x € U, C U, C V and U,
satisfies P. Since C is compact, we get a finite subset F* C C such that C' C U,cp U,.
Thus B = J,cp Uy is a closed P (hence normal) subspace of X with C C B C V. Observe
that B\ Int(B) and C are disjoint closed subsets of B. Since B is normal, there exists
a continuous function g : B — [0,1] with g(z) = 0 for all z € C and g(z) = 1 for all
xz € B\ Int(B). We define a continuous function f : X — [0,1] by f(z) = g(z) if x € B
and f(z) = 1 otherwise. This completes the proof. O

Theorem 3.14. If P implies the Lindeldf property and is preserved under closed subspaces
and countable unions, and X is a locally P Hausdorff P-space, then for each Lindeldf
subspace L and each open subset V of X with L C V there exists a closed subset B C X
satisfying P such that L C B C V. Moreover there exists a continuous function f : X —
[0,1] satisfying f(x) =0 for allz € L and f(z) =1 for all X \ B.

3.3. Preservation under certain topological operations

Observe that if P is preserved under F, (respectively, closed, clopen) subsets and if a
space X is P at © € X, then any F, (respectively, closed, clopen) subset of X containing
x is also P at z. If X is regular and P is preserved under closed subsets, then X is P
at x implies any locally closed subset of X containing x is also P at x. Moreover if P is
preserved under closed subsets, then a locally closed subset of a regular P space need not
be P, the one point compactification of an uncountable discrete space is a counter example
to it.

Note that if P is preserved under continuous mappings, then continuous image of a
locally P space need not be locally P. If P is the Rothberger property, then the identity
mapping 7 : X — Y is continuous, where X = R with the discrete topology and Y = R with
the usual topology, but Y is not locally P. Recall from [14] that a surjective continuous
mapping f: X — Y is called

(1) weakly perfect if f is closed and for each y € Y, f~1(y) is Lindelof.
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(2) bi-quotient if U is a cover of f~!(y) by open sets in X for some y € Y, then
{f(U) : U € U} has a finite subset that covers some open set containing y in Y.

Clearly open continuous surjective (and also perfect) mappings are bi-quotient.

Theorem 3.15. Let P be invariant under continuous mappings and countable unions. If
f: X =Y is a weakly perfect mapping and X is P at every point of f~1(f(x)) for some
x€ X, thenY is P at f(x).

Proof. Choose y = f(z) and w € f~!(y). Let U, be an open and Z,, be a P subspace
of X such that w € U, C Z,. Then {U, : w € f~1(y)} is a cover of f~1(y) by open
sets in X. Thus we get a set {w, : n € N} C f~1(y) such that f~'(y) C U,en Un, and
fY(y) € Unpen Zu,,- Observe that Y\ f(X \U,en Uw, ) is an open subset and f(U,en Zuw, )
is a P subspace of Y with y € Y\ f(X \ Upeny Uuwn) € f(Upen Zw, ). Hence the result. O

Theorem 3.16. Let P be invariant under continuous mappings and finite unions. If
f: X =Y is a bi-quotient mapping and X is P at every point of f~1(f(x)) for some
rx € X, thenY is P at f(x).

Proof. Choose y = f(z) and w € f~'(y). Let U, be an open and Z, be a P subspace
of X such that w € U, C Z,. Then {U, : w € f~'(y)} is a cover of f~!(y) by open
sets in X. Then we get a finite set {w; : 1 <i < k} € f~1(y) and an open set V C YV
containing y such that V C (¥, f(Uy,). One can readily observe that y € Int f(Ur_, Uy,
and f(UY_, Zy,) is a P subspace of Y such that Int f(Ur, Uy,) € f(US, Z,). Hence Y

1=

is P at y. O

Corollary 3.17. Let P be invariant under continuous mappings and finite unions. If
f: X =Y is a perfect mapping and X is P at every point of f~1(f(z)) for some x € X,
then Y is P at f(x).

Also observe that if P is invariant under continuous mappings and f : X — Y is an open
continuous mapping from X onto Y, and if X is P at x, then Y is P at f(z). It follows
that if P is invariant under continuous mappings and closed subsets, and if f: X — Y is
an injective closed continuous mapping and Y is P at y € f(X), then X is P at f~1(y).
If we replace ‘injective closed continuous mapping’ by ‘open continuous mapping’, then
the result does not hold. For example, take P as the Rothberger property and consider
the projection mapping p; : X — X1 X = X x Xy, where X; = U(A) is a VU-space and
X9 =R is the set of reals.

Theorem 3.18. Let P be such that the collection of all P subspaces of a space covers
the space. If P is invariant under continuous mappings, then for a space X the following
assertions are equivalent.

(1) A subset U is open in X provided that UNY is open in'Y for every P subspace Y of
X.

(2) A subset F is closed in X provided that FNY is closed in'Y for every P subspace Y
of X.

(3) X is a quotient image of some locally P space.

Proof. (1) = (3). If {Y, : a € A} is the collection of all P subspaces of X, then @,cp Yo
is locally P. Observe that f : @, cp Yo — X given by f(z,a) = x is a quotient mapping.

(3) = (1). Let Z be a locally P space and ¢ : Z — X be a quotient mapping. Consider
aset U C X with UNY is open in Y for each P subspace Y of X. Pick x € ¢~}(U), an
open set V and a P subspace Y of Z such that x € V' C Y. Since ¢(Y') is a P subspace
of X, UnNgq(Y) is open in ¢(Y) and UNgq(Y) = W Nq(Y) for some open set W in X. It
follows that = € ¢~ 1(W)NV. Since ¢~*(W)NV is open in Z with ¢ {(W)NV C ¢~ *(U),
q Y(U) is open in Z and so U is open in X. Hence Z satisfies (1). O
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Let P be such that if (z,,) is a sequence in a space X convergent to some x € X, then
the subspace {z, : n € N} U{z} satisfies P. Note that every sequential space satisfies each
of the conditions of Theorem 3.18 for such P. Next we observe that a quotient image of a
locally P space need not be locally P.

Example 3.19. Let P be the Rothberger property. The space X = @,.,,[0,1] is a
quotient image of some locally P space by Theorem 3.18 (as X is a sequential space), but
X is not locally P.

Let X = Upepn Xo- If for some o € A, X, is an open subspace of X such that X,
is P at x € Xg, then X is P at x. Note that if P is the Rothberger property, then
[0,w1) = Ug<w, [0, @) does not satisfy P, on the other hand for each a < wy, [0, @) satisfies
P. If P is preserved under closed subsets, then the topological sum @,cp Xo is P at (z, o)
for some « € A if and only if X, is P at x. Similarly this result need not hold for P spaces
if P is the Rothberger property. The space Y = @, L does not satisfy the Rothberger
property, where L is a Lusin set (i.e. an uncountable subset of reals whose intersection
with every first category set of reals is countable).

Let X = Uyen Xo and z € X. We use A(x) to denote the collection of all & € A such
that = € X,.

Theorem 3.20. Consider X = [Jyep Xo with each X, is closed in X. Let {Xo:a € A}
be locally finite in X and x € X. If P is invariant under continuous mappings and finite
unions, and if X, is P at x for all o € A(x), then X is P at z.

Proof. Clearly Y = @,cp Xo is P at (z,a) for all @ € A(z) because X, is P at x for
all @« € A(z). Let f:Y — X be defined by f(y,«) = y and for each a, ¢, : Xo = Y
be defined by ¢4 (y) = (y, ). Observe that for each closed F in Y, f(F) = Upep ¢a (F)
is closed in X. Let y € X. Since {X, : @ € A} is locally finite in X, there exists an
open set V containing y such that V intersects only finitely many members of it, say
Xoy> Xags - -y Xay- It is easy to see that f~1(y) = Do, 1<i<ky{y}. Thus fis perfect. By
Corollary 3.17, X is P at . o O

A similar result in the context of P-spaces can be observed by using Lemma 3.21.

Lemma 3.21 (Folklore). For any locally countable family {X, : « € A} of closed sets in
a P-space X, Upep Xa is closed.

Theorem 3.22. Consider X = U,ecp Xa with each X, closed in X. Let {X,:a € A} be
locally countable in X and x € X. Suppose that P is invariant under continuous mappings
and countable unions. If X is a P-space and X,, is P at x for all o € A(z), then X is P
at x.

Theorem 3.23. Let P be preserved under closed subsets, continuous mappings and finite
unions, and let P imply the Lindelof property. Then a regular space X is both locally P
and locally metrizable if and only if X is bi-quotient image of some locally P metrizable
space.

Proof. If X is both locally P and locally metrizable, then by Lemma 3.1, X has a basis
consisting of closed P neighbourhoods. It follows that X has a cover {X, : a € A}
with each X, metrizable closed P subspace. We can obtain a metrizable locally P space
Y = Uaea Yo such that Y, ’s are pairwise disjoint metrizable open P subspaces of Y and
for each « Y, is homeomorphic to X,. For each a let h,, : Y, — X, be a homeomorphism.
Clearly the function f:Y — X given by f(y) = ha(y) for y € Y, is bi-quotient.
Conversely let Y be a locally P metrizable space and g : ¥ — X be a bi-quotient
mapping. Then X is locally P by Theorem 3.16. Let U = {U, : y € Y} be an open
cover of Y with y € Uy, C Z, and Z, is P. Pick a € X. Then we get a finite set
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{U,, :1<i <k} CUand an open set U in X withz € U € U, g(U,,). Clearly Ut_, Z,,
is metrizable P, i.e. second countable. Thus g(Ule Zy,) is a regular second countable P
space because the second countability is preserved under bi-quotient mappings and hence
g(Uk_, Z,,) is metrizable. Thus X is locally metrizable O

Theorem 3.24. Let P be preserved under closed subsets and continuous mappings, and
let P imply the Lindeldf property. Then a regqular space X is both locally P and locally
metrizable if and only if X is open continuous image of some locally P metrizable space.

The following facts can be easily verified.

(1) If P is closed under finite products, then X is P at z and Y is P at y imply X x Y
is P at (x,y).

(2) Suppose that P and Q are such that if X is P and Y is Q, then X x Y is P. Then
XisPatxand Y is Q at y imply X x Y is P at (z,y).

(3) If P is invariant under continuous mappings and if the Cartesian product [],cx Xa
is P at z, then each X, is P at p,(z) where for each a € A, po : [[pen Xa = Xa
is the projection mapping.

Also the following result can be obtained.

Proposition 3.25. IfP is invariant under continuous mappings and the Cartesian product
[Toer Xa is P at some point x, then X, is P for all but finitely many o.

Let P be invariant under continuous mappings. Then it is immediate from the above
result that if [[,cp Xo is locally P, then X, is P for all but finitely many «. But the
converse of this result does not hold. If P is the Rothberger property, then the Cantor
space 2% is the product of w copies of P spaces, whereas 2¢ is not P.

3.4. Remainders and locally Lindelof spaces

In this section it is assumed that every space is Tychonoff. For any compactification
bX of X, bX \ X is called a remainder of X. Recall from [2,4] that a space X is called a
p-space if in any (in some) compactification bX of X if for each n € N there is a collection
U, of open sets in b.X such that for eachz € X,z € N,eyU{U € U, : 2 € U} C X. Every
metrizable space is a p-space (see [3,5]) and every closed subspace of a p-space is a p-space
(see [2]). A space X is said to be a Lindelof X-space [16] if it is a continuous image of a
Lindel6f p-space. An s-space [6] is a space which has a countable open source [6] in any
(in some) compactification of it. Also recall that every Lindel6f p-space is an s-space [6]
and any remainder of a Lindelof p-space is also a Lindel6f p-space (see [5, Theorem 2.1]).
Let Y be a subspace of X. Then X has the property P outside of Y whenever each closed
set ' C X with Y N F = () has the property P.

Theorem 3.26. IfY is a remainder of a locally Lindeldf p-space X, then'Y is a Lindelof
p-space outside of K (hence an s-space outside of K ) for some compact subset K of it.

Proof. Let bX be a compactification of X such that Y = bX \ X. Since X is a locally

Lindel6f p-space, we get an open cover U of X with T Lindelof for each U € U. For each
U € U let Viy be an open set in bX with Vpy N X =U. If W = (J{Vy : U € U}, then W
is open in bX with X C W and K = bX \ W is compact with K C Y. We claim that Y
is a Lindelof p-space outside of K. Pick a closed set F C Y with K N F = (). Observe
that '~ C W and consequently we get a finite set {Vy, : 1 < i <k} C {Vy: U € U}
such that 7~ C Ule Vi,. Clearly C' = Ule EX is a Lindelof p-space and Z = % s a
compactification of C'. Thus Z NY is a Lindelof p-space because it is the remainder of C'
in Z. It is easy to see that F' is a closed subset of Z NY. Consequently F'is a Lindelof
p-space and the proof is now complete. ]



Certain observations on local properties of topological spaces 919

Corollary 3.27. Let P imply the Lindeléf property. If Y is a remainder of a locally P
p-space X, then Y is a Lindelof p-space outside of K (hence an s-space outside of K ) for
some compact subset K of it.

We call a space X homogeneous if for any x,y € X there is a homeomorphism f : X —
X with f(z) =y.

Lemma 3.28 ([18]). A finite union of closed s-spaces is an s-space.
Theorem 3.29. Every homogeneous remainder of a locally Lindeldf p-space is an s-space.

Proof. Let Y be a homogeneous remainder of a locally Lindel6f p-space X. Then we get
a compact set K C Y such that YV is a Lindelof p-space outside of K (see Theorem 3.26).
The case is trivial when Y = K. Suppose that K ;Cé Y. Since Y \ K is open in Y for every
y € Y\ K, we get an open subset U, of Y such that y € U, C my CY\ K and my is
a Lindelof p-space. Pick x € Y. Let y € Y \ K be fixed. Since Y is homogeneous, there
exists a homeomorphism f : Y — Y such that f(y) = x. Then we can obtain an open
set Uy, C Y such that y € U, and @Y is a Lindelof p-space. Thus V, = f(U,) is an open
subset of Y with z € V, and V, is a Lindeldf p-space, i.e. an s-space. Consequently we
have a finite set {z; : 1 <4 < k} C Y such that K C ¥, V;,. Obviously Y \ UF_, V,, is
an s-space. By Lemma 3.28, Y = (U, VTCZY) U(Y \UY, V,,) is an s-space. O

Corollary 3.30. Let P imply the Lindeldf property. Every homogeneous remainder of a
locally P p-space is an s-space.

Lemma 3.31 ([7, Theorem 2.7]). Any (some) remainder of an s-space in a compactifica-
tion of it is a Lindeldf ¥-space.

Theorem 3.32. If a locally Lindelof p-space X has a homogeneous remainder, then X =
LU Z for some closed Lindelof X-subspace L and open locally compact subspace Z .

Proof. Let bX be a compactification of X such that Y = bX \ X is homogeneous. Then

Y is an s-space (see Theorem 3.29). Since bY = Y is a compactification of Y and
L =bY N X is a closed subset of X, L = bY \ 'Y and hence L is a Lindel6f >-space
(see Lemma 3.31). Obviously Z = bX \ bY is a locally compact subspace of X and
X=LuZ. O

Corollary 3.33.

(1) Let P imply the Lindelof property. If a locally P p-space X has a homogeneous remain-
der, then X = LU Z for some closed Lindeldf Y-subspace L and open locally compact
subspace Z.

(2) Let P imply the Lindeldof property. If a locally P p-space X that is nowhere locally
compact has a homogeneous remainder, then X is a Lindeldf ¥-space.
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