

RESEARCH ARTICLE

Certain observations on local properties of topological spaces

Debraj Chandra^{*}, Nur Alam

Department of Mathematics, University of Gour Banga, Malda-732103, West Bengal, India

Abstract

Let \mathcal{P} be any topological property of a space X. We say that X is \mathcal{P} at $x \in X$ if there exist an open set U and a subspace Y of X satisfying \mathcal{P} such that $x \in U \subseteq Y$. We also say that X is locally \mathcal{P} if X is \mathcal{P} at every point of X. We study this local property and obtain the following results under certain topological assumptions on \mathcal{P} .

- (1) Every locally \mathcal{P} Hausdorff P-space can be densely embedded in a \mathcal{P} Hausdorff P-space.
- (2) If a Hausdorff P-space X is \mathcal{P} at $x \in X$, then $\chi(x, X) \leq \psi(x, X)^{\omega}$.
- (3) For a locally \mathcal{P} Hausdorff *P*-space $X, w(X) \leq nw(X)^{\omega} \leq |X|^{\omega}$.

Besides, few separation like properties are obtained and preservation under certain topological operations are also investigated. Finally we present certain observations on remainders of locally \mathcal{P} spaces.

Mathematics Subject Classification (2020). Primary: 54D20; Secondary: 54B15, 54C10, 54D40, 54D99

Keywords. \mathcal{P} at x, locally \mathcal{P} , locally Lindelöf, local properties, remainder

1. Introduction

By a space X we always mean a topological space. All notation and terminology not defined in this paper are given in [9, 19]. This article deals with the local variant of a topological property \mathcal{P} . Given a selective property \mathcal{P} its local version have been recently studied in [1,2,8] for the case of Menger, star-Menger, Menger-bounded, Hurewicz-bounded and Rothberger-bounded properties. For the notions of such selective covering properties we refer the reader to consult the papers [11–13].

Let \mathcal{P} be any topological property of a space X. We say that X is a \mathcal{P} space (or, in short X is \mathcal{P}) if X has the property \mathcal{P} . We now give the main definition of the paper.

Definition 1.1. We say that X is \mathcal{P} at $x \in X$ if there exist an open set U and a subspace Y of X satisfying \mathcal{P} such that $x \in U \subseteq Y$. We also say that X is locally \mathcal{P} if X is \mathcal{P} at every point of X.

^{*}Corresponding Author.

Email addresses: debrajchandra1986@gmail.com (D. Chandra), nurrejwana@gmail.com (N. Alam) Received: 08.01.2024; Accepted: 03.08.2024

Note that a space X is \mathcal{P} implies X is locally \mathcal{P} . In this article we investigate the property \mathcal{P} at x of a space X for arbitrary topological property \mathcal{P} . We present reformulations of the local version of any such \mathcal{P} in the context of regular spaces and Hausdorff *P*-spaces as well (recall that a space is called a *P*-space if every G_{δ} set is open). We observe that a locally \mathcal{P} Hausdorff *P*-space can be densely embedded in a \mathcal{P} Hausdorff *P*-space. Relations between character and pseudocharacter of a point, and weight and network weight are established in this context. We also obtain some separation like properties. A few intriguing investigations on preservation under certain topological operations are carefully carried out. We also present certain observations on remainders of this local variant.

2. Preliminaries

The weight w(X) of X is the smallest possible cardinality of a base for X and the character $\chi(x, X)$ of a point x in X is the smallest cardinality of a local base for x. A family N of subsets of X is said to be a network for X if for each $x \in X$ and any neighbourhood U of x there exists a $A \in \mathbb{N}$ such that $x \in A \subseteq U$. The network weight nw(X) of X is defined as the smallest cardinal number of the form $|\mathbb{N}|$, where N is a network for X. Clearly $nw(X) \leq w(X)$ and $nw(X) \leq |X|$. A family U of open sets of a T_1 space X is called a pseudobase for X at $x \in X$ if $\cap \mathcal{U} = \{x\}$. The pseudocharacter $\psi(x, X)$ of a point x in a T_1 space X is the smallest cardinality of a pseudobase for X at x.

Recall that a $\mathcal{A} \subseteq P(\mathbb{N})$ is said to be an almost disjoint family if each $A \in \mathcal{A}$ is infinite and for any two distinct elements $B, C \in \mathcal{A}, |B \cap C| < \omega$. For an almost disjoint family \mathcal{A} , let $\Psi(\mathcal{A}) = \mathcal{A} \cup \mathbb{N}$ be the Isbell-Mrówka space [15]. A space X is said to have the Rothberger property [11, 17] if for each sequence (\mathcal{U}_n) of open covers of X there is a sequence (U_n) such that $U_n \in \mathcal{U}_n$ for each n and $\{U_n : n \in \mathbb{N}\}$ covers X. Note that the Rothberger property is preserved under F_{σ} subsets, countable unions and continuous mappings [11].

3. Main results

3.1. The locally \mathcal{P} property

We start by observing that if a property \mathcal{P} implies a property \mathcal{Q} , then X is locally \mathcal{P} implies X is locally \mathcal{Q} . Note that an uncountable discrete space is locally compact but not Lindelöf. Accordingly for any property \mathcal{P} between compactness and the Lindelöf property the properties \mathcal{P} and locally \mathcal{P} are different. Also note that if \mathcal{P} implies the Lindelöf property and \mathcal{P} is closed under countable unions, then the properties \mathcal{P} and locally \mathcal{P} coincide. So, in this case, to distinguish between the local properties is equivalent to distinguish between the original properties.

A space X is said to be regular with respect to $x \in X$ if for each closed set F not containing x there exist disjoint open sets U and V such that $x \in U$ and $F \subseteq V$ (or equivalently, for each open set U containing x there exists an open set V containing x such that $\overline{V} \subseteq U$).

Lemma 3.1. If X is regular with respect to x and \mathcal{P} is inherited by closed subspaces, then the following statements are equivalent.

- (1) X is \mathcal{P} at x.
- (2) For every open set V containing x there are an open set U and a subspace Y of X satisfying \mathcal{P} such that $x \in U \subseteq Y \subseteq V$.
- (3) There is an open set U containing x such that \overline{U} has \mathfrak{P} .
- (4) X has a base at x consisting of closed neighbourhoods of x satisfying \mathcal{P} .

Note that every Lindelöf subspace of a Hausdorff *P*-space is closed.

Lemma 3.2 (Folklore). If a subspace Y of a Hausdorff P-space X is Lindelöf at any point $y \in Y$, then Y is of the form $U \cap F$ where U is open and F is closed in X.

Remark 3.3. Let X be a Hausdorff P-space. If \mathcal{P} is inherited by closed subspaces and \mathcal{P} implies the Linelöf property, then X is \mathcal{P} at x implies that X is regular with respect to x.

Theorem 3.4. Let \mathcal{P} be a property of a space X satisfying that if there exists a point x of X such that the complement of each open neighbourhood of x has \mathcal{P} , then X has \mathcal{P} . If in addition \mathcal{P} implies the Lindelöf property, and \mathcal{P} is invariant under closed subspaces and countable unions, then every locally \mathcal{P} Hausdorff P-space can be densely embedded in a \mathcal{P} Hausdorff P-space.

Proof. Consider a locally \mathcal{P} Hausdorff P-space (X, τ) . Suppose that X does not satisfy \mathcal{P} . Let $X' = X \cup \{p\}$, where $p \notin X$. Clearly $\tau' = \tau \bigcup \{U \subseteq X' : X' \setminus U \text{ is a } \mathcal{P} \text{ subspace of } X\}$ is a topology on X'. We now show that X' is a Hausdorff P-space. Choose $x, y \in X'$ such that $x \in X$ and $y \notin X$. Let U be an open set and Y be a \mathcal{P} subspace of X such that $x \in U \subseteq Y$. Thus we obtain two disjoint open sets U and $X' \setminus Y$ in X' with $x \in U$ and $y \in X' \setminus Y$. Hence X' is Hausdorff. Obviously X' is a P-space. Also observe that X is dense in X'. The inclusion mapping $\iota : X \to X'$ is an embedding of X into X'. From the construction of X' we can say that X' satisfies \mathcal{P} .

Theorem 3.5. Let X be a Hausdorff P-space. If X is Lindelöf at x, then $\chi(x, X) \leq \psi(x, X)^{\omega}$.

Proof. Let W be a Lindelöf neighbourhood of x. Since $\chi(x, X) = \chi(x, W)$ and $\psi(x, X) = \psi(x, W)$, we can assume that X is Lindelöf. Let B be a pseudobase for X at x of cardinality $\psi(x, X)$ consisting of closed neighbourhoods of x and let J be the family all intersections of countable subfamilies of B. If U is a neighbourhood of x, then $X \setminus U \subseteq \bigcup \{X \setminus B : B \in B\} = \bigcup \{X \setminus B_n : n \in \mathbb{N}\}$, where $B_n \in B$ for each $n \in \mathbb{N}$. So $x \in I = \bigcap \{B_n : n \in \mathbb{N}\} \subseteq U$. It follows that J is a base for X at x. Thus $\chi(x, X) \leq \psi(x, X)^{\omega}$ because $|\mathcal{J}| \leq \psi(x, X)^{\omega}$. \Box

Corollary 3.6. Let \mathcal{P} be any property stronger than the Lindelöf property and X be a Hausdorff P-space. If X is \mathcal{P} at x, then $\chi(x, X) \leq \psi(x, X)^{\omega}$.

Lemma 3.7 ([2, Lemma 3.1]). Let X be a Hausdorff P-space.

- (1) There exists a continuous bijective mapping of X onto a Hausdorff P-space Y such that $w(Y) \leq nw(X)^{\omega}$.
- (2) Moreover if X is Lindelöf, then $w(X) \leq nw(X)^{\omega}$.

Theorem 3.8. For a locally Lindelöf Hausdorff P-space X, $w(X) \leq nw(X)^{\omega}$.

Proof. Assume that $nw(X) = \kappa$. Let \mathbb{N} be a network for X such that $|\mathbb{N}| = \kappa$. For each $x \in X$ pick an open set V_x in X containing x with $\overline{V_x}$ is Lindelöf. Later for each $x \in X$ choose a $A_x \in \mathbb{N}$ with $x \in A_x \subseteq V_x$. It follows that there exists a collection $\{A_\alpha\}_{\alpha \in \Lambda} \subseteq \mathbb{N}$ such that for each $\alpha \in \Lambda$, $\overline{A_\alpha}$ is Lindelöf and $X = \bigcup_{\alpha \in \Lambda} A_\alpha$. For each $\alpha \in \Lambda$ one can easily obtain an open set V_α in X with $\overline{A_\alpha} \subseteq V_\alpha$ and $\overline{V_\alpha}$ is Lindelöf. By Lemma 3.7(2), $w(\overline{V_\alpha}) \leq \kappa^\omega$ because $nw(\overline{V_\alpha}) \leq nw(X) = \kappa$. Thus $w(V_\alpha) \leq \kappa^\omega$, i.e. there is a base \mathcal{B}_α for V_α such that $|\mathcal{B}_\alpha| \leq \kappa^\omega$. Since $\mathcal{B} = \bigcup_{\alpha \in \Lambda} \mathcal{B}_\alpha$ is a base for X and $|\mathcal{B}| \leq \kappa^\omega$, we get $w(X) \leq \kappa^\omega$, i.e. $w(X) \leq nw(X)^\omega$.

Corollary 3.9. Let \mathcal{P} be any property stronger than the Lindelöf property and X be a Hausdorff P-space. If X is locally \mathcal{P} , then $w(X) \leq nw(X)^{\omega} \leq |X|^{\omega}$.

In this connection we mention the classical result of F. Galvin, given in [10]. If X is a Lindelöf space, then X is a P-space if and only if X is a γ -set. If \mathcal{P} lies between Lindelöf and γ -set, then any P-space X is locally \mathcal{P} if and only if X is locally Lindelöf.

3.2. Separation like properties

Theorem 3.10. If \mathcal{P} is preserved under closed subspaces and countable unions and X is a regular locally \mathcal{P} space, then for each Lindelöf subspace L of X and each $x \in X \setminus L$ there exists a subset $B \subseteq X$ satisfying \mathcal{P} such that $L \subseteq B \subseteq X \setminus \{x\}$.

Proof. For each $y \in L$ choose an open set U_y such that $x \notin U_y$. By Lemma 3.1, we get an open subset V_y and a \mathcal{P} subspace B_y of X such that $y \in V_y \subseteq B_y \subseteq U_y$. Then $\{V_y : y \in L\}$ is a cover of L by open sets in X and hence there is a countable subfamily $\{V_{y_n} : n \in \mathbb{N}\}$ that covers L. Thus $B = \bigcup_{n \in \mathbb{N}} B_{y_n}$ is a \mathcal{P} subspace of X such that $L \subseteq B \subseteq X \setminus \{x\}$. \Box

Corollary 3.11. If \mathcal{P} implies the Lindelöf property and is preserved under closed subspaces and countable unions, and X is a locally \mathcal{P} Hausdorff P-space, then for each Lindelöf subspace L of X and each $x \in X \setminus L$ there exists a closed subset $B \subseteq X$ satisfying \mathcal{P} such that $L \subseteq B \subseteq X \setminus \{x\}$.

Theorem 3.12. If \mathcal{P} is preserved under closed subspaces and finite unions and X is a regular locally \mathcal{P} space, then for each compact subspace C of X and each $x \in X \setminus C$ there exists a closed subset $B \subseteq X$ satisfying \mathcal{P} such that $C \subseteq B \subseteq X \setminus \{x\}$.

Theorem 3.13. If \mathcal{P} implies the Lindelöf property and is preserved under closed subspaces and finite unions, and X is a regular locally \mathcal{P} space, then for each compact subspace C and each open subset V of X with $C \subseteq V$ there exists a closed subset $B \subseteq X$ satisfying \mathcal{P} such that $C \subseteq B \subseteq V$. Moreover there exists a continuous function $f : X \to [0,1]$ satisfying f(x) = 0 for all $x \in C$ and f(x) = 1 for all $X \setminus B$.

Proof. For each $x \in C$ choose an open set U_x such that $x \in U_x \subseteq \overline{U_x} \subseteq V$ and $\overline{U_x}$ satisfies \mathcal{P} . Since C is compact, we get a finite subset $F \subseteq C$ such that $C \subseteq \bigcup_{x \in F} U_x$. Thus $B = \bigcup_{x \in F} \overline{U_x}$ is a closed \mathcal{P} (hence normal) subspace of X with $C \subseteq B \subseteq V$. Observe that $B \setminus \operatorname{Int}(B)$ and C are disjoint closed subsets of B. Since B is normal, there exists a continuous function $g: B \to [0,1]$ with g(x) = 0 for all $x \in C$ and g(x) = 1 for all $x \in B \setminus \operatorname{Int}(B)$. We define a continuous function $f: X \to [0,1]$ by f(x) = g(x) if $x \in B$ and f(x) = 1 otherwise. This completes the proof.

Theorem 3.14. If \mathcal{P} implies the Lindelöf property and is preserved under closed subspaces and countable unions, and X is a locally \mathcal{P} Hausdorff P-space, then for each Lindelöf subspace L and each open subset V of X with $L \subseteq V$ there exists a closed subset $B \subseteq X$ satisfying \mathcal{P} such that $L \subseteq B \subseteq V$. Moreover there exists a continuous function $f: X \to$ [0,1] satisfying f(x) = 0 for all $x \in L$ and f(x) = 1 for all $X \setminus B$.

3.3. Preservation under certain topological operations

Observe that if \mathcal{P} is preserved under F_{σ} (respectively, closed, clopen) subsets and if a space X is \mathcal{P} at $x \in X$, then any F_{σ} (respectively, closed, clopen) subset of X containing x is also \mathcal{P} at x. If X is regular and \mathcal{P} is preserved under closed subsets, then X is \mathcal{P} at x implies any locally closed subset of X containing x is also \mathcal{P} at x. Moreover if \mathcal{P} is preserved under closed subsets, then a locally closed subset of a regular \mathcal{P} space need not be \mathcal{P} , the one point compactification of an uncountable discrete space is a counter example to it.

Note that if \mathcal{P} is preserved under continuous mappings, then continuous image of a locally \mathcal{P} space need not be locally \mathcal{P} . If \mathcal{P} is the Rothberger property, then the identity mapping $i: X \to Y$ is continuous, where $X = \mathbb{R}$ with the discrete topology and $Y = \mathbb{R}$ with the usual topology, but Y is not locally \mathcal{P} . Recall from [14] that a surjective continuous mapping $f: X \to Y$ is called

(1) weakly perfect if f is closed and for each $y \in Y$, $f^{-1}(y)$ is Lindelöf.

(2) bi-quotient if \mathcal{U} is a cover of $f^{-1}(y)$ by open sets in X for some $y \in Y$, then $\{f(U) : U \in \mathcal{U}\}$ has a finite subset that covers some open set containing y in Y.

Clearly open continuous surjective (and also perfect) mappings are bi-quotient.

Theorem 3.15. Let \mathcal{P} be invariant under continuous mappings and countable unions. If $f: X \to Y$ is a weakly perfect mapping and X is \mathcal{P} at every point of $f^{-1}(f(x))$ for some $x \in X$, then Y is \mathcal{P} at f(x).

Proof. Choose y = f(x) and $w \in f^{-1}(y)$. Let U_w be an open and Z_w be a \mathcal{P} subspace of X such that $w \in U_w \subseteq Z_w$. Then $\{U_w : w \in f^{-1}(y)\}$ is a cover of $f^{-1}(y)$ by open sets in X. Thus we get a set $\{w_n : n \in \mathbb{N}\} \subseteq f^{-1}(y)$ such that $f^{-1}(y) \subseteq \bigcup_{n \in \mathbb{N}} U_{w_n}$ and $f^{-1}(y) \subseteq \bigcup_{n \in \mathbb{N}} Z_{w_n}$. Observe that $Y \setminus f(X \setminus \bigcup_{n \in \mathbb{N}} U_{w_n})$ is an open subset and $f(\bigcup_{n \in \mathbb{N}} Z_{w_n})$ is a \mathcal{P} subspace of Y with $y \in Y \setminus f(X \setminus \bigcup_{n \in \mathbb{N}} U_{w_n}) \subseteq f(\bigcup_{n \in \mathbb{N}} Z_{w_n})$. Hence the result. \Box

Theorem 3.16. Let \mathcal{P} be invariant under continuous mappings and finite unions. If $f: X \to Y$ is a bi-quotient mapping and X is \mathcal{P} at every point of $f^{-1}(f(x))$ for some $x \in X$, then Y is \mathcal{P} at f(x).

Proof. Choose y = f(x) and $w \in f^{-1}(y)$. Let U_w be an open and Z_w be a \mathcal{P} subspace of X such that $w \in U_w \subseteq Z_w$. Then $\{U_w : w \in f^{-1}(y)\}$ is a cover of $f^{-1}(y)$ by open sets in X. Then we get a finite set $\{w_i : 1 \leq i \leq k\} \subseteq f^{-1}(y)$ and an open set $V \subseteq Y$ containing y such that $V \subseteq \bigcup_{i=1}^k f(U_{w_i})$. One can readily observe that $y \in \operatorname{Int} f(\bigcup_{i=1}^k U_{w_i})$ and $f(\bigcup_{i=1}^k Z_{w_i})$ is a \mathcal{P} subspace of Y such that $\operatorname{Int} f(\bigcup_{i=1}^k U_{w_i}) \subseteq f(\bigcup_{i=1}^k Z_{w_i})$. Hence Y is \mathcal{P} at y.

Corollary 3.17. Let \mathcal{P} be invariant under continuous mappings and finite unions. If $f: X \to Y$ is a perfect mapping and X is \mathcal{P} at every point of $f^{-1}(f(x))$ for some $x \in X$, then Y is \mathcal{P} at f(x).

Also observe that if \mathcal{P} is invariant under continuous mappings and $f: X \to Y$ is an open continuous mapping from X onto Y, and if X is \mathcal{P} at x, then Y is \mathcal{P} at f(x). It follows that if \mathcal{P} is invariant under continuous mappings and closed subsets, and if $f: X \to Y$ is an injective closed continuous mapping and Y is \mathcal{P} at $y \in f(X)$, then X is \mathcal{P} at $f^{-1}(y)$. If we replace 'injective closed continuous mapping' by 'open continuous mapping', then the result does not hold. For example, take \mathcal{P} as the Rothberger property and consider the projection mapping $p_1: X \to X_1 X = X_1 \times X_2$, where $X_1 = \Psi(\mathcal{A})$ is a Ψ -space and $X_2 = \mathbb{R}$ is the set of reals.

Theorem 3.18. Let \mathcal{P} be such that the collection of all \mathcal{P} subspaces of a space covers the space. If \mathcal{P} is invariant under continuous mappings, then for a space X the following assertions are equivalent.

- (1) A subset U is open in X provided that $U \cap Y$ is open in Y for every \mathcal{P} subspace Y of X.
- (2) A subset F is closed in X provided that $F \cap Y$ is closed in Y for every \mathfrak{P} subspace Y of X.
- (3) X is a quotient image of some locally \mathcal{P} space.

Proof. (1) \Rightarrow (3). If $\{Y_{\alpha} : \alpha \in \Lambda\}$ is the collection of all \mathcal{P} subspaces of X, then $\bigoplus_{\alpha \in \Lambda} Y_{\alpha}$ is locally \mathcal{P} . Observe that $f : \bigoplus_{\alpha \in \Lambda} Y_{\alpha} \to X$ given by $f(x, \alpha) = x$ is a quotient mapping.

 $(3) \Rightarrow (1)$. Let Z be a locally \mathcal{P} space and $q: Z \to X$ be a quotient mapping. Consider a set $U \subseteq X$ with $U \cap Y$ is open in Y for each \mathcal{P} subspace Y of X. Pick $x \in q^{-1}(U)$, an open set V and a \mathcal{P} subspace Y of Z such that $x \in V \subseteq Y$. Since q(Y) is a \mathcal{P} subspace of X, $U \cap q(Y)$ is open in q(Y) and $U \cap q(Y) = W \cap q(Y)$ for some open set W in X. It follows that $x \in q^{-1}(W) \cap V$. Since $q^{-1}(W) \cap V$ is open in Z with $q^{-1}(W) \cap V \subseteq q^{-1}(U)$, $q^{-1}(U)$ is open in Z and so U is open in X. Hence Z satisfies (1). \Box Let \mathcal{P} be such that if (x_n) is a sequence in a space X convergent to some $x \in X$, then the subspace $\{x_n : n \in \mathbb{N}\} \cup \{x\}$ satisfies \mathcal{P} . Note that every sequential space satisfies each of the conditions of Theorem 3.18 for such \mathcal{P} . Next we observe that a quotient image of a locally \mathcal{P} space need not be locally \mathcal{P} .

Example 3.19. Let \mathcal{P} be the Rothberger property. The space $X = \bigoplus_{\alpha < \omega_1} [0, 1]$ is a quotient image of some locally \mathcal{P} space by Theorem 3.18 (as X is a sequential space), but X is not locally \mathcal{P} .

Let $X = \bigcup_{\alpha \in \Lambda} X_{\alpha}$. If for some $\alpha \in \Lambda$, X_{α} is an open subspace of X such that X_{α} is \mathcal{P} at $x \in X_{\alpha}$, then X is \mathcal{P} at x. Note that if \mathcal{P} is the Rothberger property, then $[0, \omega_1) = \bigcup_{\alpha < \omega_1} [0, \alpha)$ does not satisfy \mathcal{P} , on the other hand for each $\alpha < \omega_1$, $[0, \alpha)$ satisfies \mathcal{P} . If \mathcal{P} is preserved under closed subsets, then the topological sum $\bigoplus_{\alpha \in \Lambda} X_{\alpha}$ is \mathcal{P} at (x, α) for some $\alpha \in \Lambda$ if and only if X_{α} is \mathcal{P} at x. Similarly this result need not hold for \mathcal{P} spaces if \mathcal{P} is the Rothberger property. The space $Y = \bigoplus_{\alpha < \omega_1} L$ does not satisfy the Rothberger property, where L is a Lusin set (i.e. an uncountable subset of reals whose intersection with every first category set of reals is countable).

Let $X = \bigcup_{\alpha \in \Lambda} X_{\alpha}$ and $x \in X$. We use $\Lambda(x)$ to denote the collection of all $\alpha \in \Lambda$ such that $x \in X_{\alpha}$.

Theorem 3.20. Consider $X = \bigcup_{\alpha \in \Lambda} X_{\alpha}$ with each X_{α} is closed in X. Let $\{X_{\alpha} : \alpha \in \Lambda\}$ be locally finite in X and $x \in X$. If \mathcal{P} is invariant under continuous mappings and finite unions, and if X_{α} is \mathcal{P} at x for all $\alpha \in \Lambda(x)$, then X is \mathcal{P} at x.

Proof. Clearly $Y = \bigoplus_{\alpha \in \Lambda} X_{\alpha}$ is \mathcal{P} at (x, α) for all $\alpha \in \Lambda(x)$ because X_{α} is \mathcal{P} at x for all $\alpha \in \Lambda(x)$. Let $f: Y \to X$ be defined by $f(y, \alpha) = y$ and for each $\alpha, \varphi_{\alpha}: X_{\alpha} \to Y$ be defined by $\varphi_{\alpha}(y) = (y, \alpha)$. Observe that for each closed F in $Y, f(F) = \bigcup_{\alpha \in \Lambda} \varphi_{\alpha}^{-1}(F)$ is closed in X. Let $y \in X$. Since $\{X_{\alpha} : \alpha \in \Lambda\}$ is locally finite in X, there exists an open set V containing y such that V intersects only finitely many members of it, say $X_{\alpha_1}, X_{\alpha_2}, \ldots, X_{\alpha_k}$. It is easy to see that $f^{-1}(y) = \bigoplus_{\{\alpha_i: 1 \leq i \leq k\}} \{y\}$. Thus f is perfect. By Corollary 3.17, X is \mathcal{P} at x.

A similar result in the context of *P*-spaces can be observed by using Lemma 3.21.

Lemma 3.21 (Folklore). For any locally countable family $\{X_{\alpha} : \alpha \in \Lambda\}$ of closed sets in a *P*-space $X, \bigcup_{\alpha \in \Lambda} X_{\alpha}$ is closed.

Theorem 3.22. Consider $X = \bigcup_{\alpha \in \Lambda} X_{\alpha}$ with each X_{α} closed in X. Let $\{X_{\alpha} : \alpha \in \Lambda\}$ be locally countable in X and $x \in X$. Suppose that \mathcal{P} is invariant under continuous mappings and countable unions. If X is a P-space and X_{α} is \mathcal{P} at x for all $\alpha \in \Lambda(x)$, then X is \mathcal{P} at x.

Theorem 3.23. Let \mathcal{P} be preserved under closed subsets, continuous mappings and finite unions, and let \mathcal{P} imply the Lindelöf property. Then a regular space X is both locally \mathcal{P} and locally metrizable if and only if X is bi-quotient image of some locally \mathcal{P} metrizable space.

Proof. If X is both locally \mathcal{P} and locally metrizable, then by Lemma 3.1, X has a basis consisting of closed \mathcal{P} neighbourhoods. It follows that X has a cover $\{X_{\alpha} : \alpha \in \Lambda\}$ with each X_{α} metrizable closed \mathcal{P} subspace. We can obtain a metrizable locally \mathcal{P} space $Y = \bigcup_{\alpha \in \Lambda} Y_{\alpha}$ such that Y_{α} 's are pairwise disjoint metrizable open \mathcal{P} subspaces of Y and for each αY_{α} is homeomorphic to X_{α} . For each α let $h_{\alpha} : Y_{\alpha} \to X_{\alpha}$ be a homeomorphism. Clearly the function $f: Y \to X$ given by $f(y) = h_{\alpha}(y)$ for $y \in Y_{\alpha}$ is bi-quotient.

Conversely let Y be a locally \mathcal{P} metrizable space and $g: Y \to X$ be a bi-quotient mapping. Then X is locally \mathcal{P} by Theorem 3.16. Let $\mathcal{U} = \{U_y : y \in Y\}$ be an open cover of Y with $y \in U_y \subseteq Z_y$ and Z_y is \mathcal{P} . Pick a $x \in X$. Then we get a finite set

 $\{U_{y_i}: 1 \leq i \leq k\} \subseteq \mathcal{U}$ and an open set U in X with $x \in U \subseteq \bigcup_{i=1}^k g(U_{y_i})$. Clearly $\bigcup_{i=1}^k Z_{y_i}$ is metrizable \mathcal{P} , i.e. second countable. Thus $g(\bigcup_{i=1}^k Z_{y_i})$ is a regular second countable \mathcal{P} space because the second countability is preserved under bi-quotient mappings and hence $g(\bigcup_{i=1}^k Z_{y_i})$ is metrizable. Thus X is locally metrizable \Box

Theorem 3.24. Let \mathcal{P} be preserved under closed subsets and continuous mappings, and let \mathcal{P} imply the Lindelöf property. Then a regular space X is both locally \mathcal{P} and locally metrizable if and only if X is open continuous image of some locally \mathcal{P} metrizable space.

The following facts can be easily verified.

- (1) If \mathcal{P} is closed under finite products, then X is \mathcal{P} at x and Y is \mathcal{P} at y imply $X \times Y$ is \mathcal{P} at (x, y).
- (2) Suppose that \mathcal{P} and \mathcal{Q} are such that if X is \mathcal{P} and Y is \mathcal{Q} , then $X \times Y$ is \mathcal{P} . Then X is \mathcal{P} at x and Y is \mathcal{Q} at y imply $X \times Y$ is \mathcal{P} at (x, y).
- (3) If \mathcal{P} is invariant under continuous mappings and if the Cartesian product $\prod_{\alpha \in \Lambda} X_{\alpha}$ is \mathcal{P} at x, then each X_{α} is \mathcal{P} at $p_{\alpha}(x)$ where for each $\alpha \in \Lambda$, $p_{\alpha} : \prod_{\alpha \in \Lambda} X_{\alpha} \to X_{\alpha}$ is the projection mapping.

Also the following result can be obtained.

Proposition 3.25. If \mathcal{P} is invariant under continuous mappings and the Cartesian product $\prod_{\alpha \in \Lambda} X_{\alpha}$ is \mathcal{P} at some point x, then X_{α} is \mathcal{P} for all but finitely many α .

Let \mathcal{P} be invariant under continuous mappings. Then it is immediate from the above result that if $\prod_{\alpha \in \Lambda} X_{\alpha}$ is locally \mathcal{P} , then X_{α} is \mathcal{P} for all but finitely many α . But the converse of this result does not hold. If \mathcal{P} is the Rothberger property, then the Cantor space 2^{ω} is the product of ω copies of \mathcal{P} spaces, whereas 2^{ω} is not \mathcal{P} .

3.4. Remainders and locally Lindelöf spaces

In this section it is assumed that every space is Tychonoff. For any compactification bX of X, $bX \setminus X$ is called a remainder of X. Recall from [2,4] that a space X is called a p-space if in any (in some) compactification bX of X if for each $n \in \mathbb{N}$ there is a collection \mathcal{U}_n of open sets in bX such that for each $x \in X$, $x \in \bigcap_{n \in \mathbb{N}} \bigcup \{U \in \mathcal{U}_n : x \in U\} \subseteq X$. Every metrizable space is a p-space (see [3,5]) and every closed subspace of a p-space is a p-space (see [2]). A space X is said to be a Lindelöf Σ -space [16] if it is a continuous image of a Lindelöf p-space. An s-space [6] is a space which has a countable open source [6] in any (in some) compactification of it. Also recall that every Lindelöf p-space is an s-space [6] and any remainder of a Lindelöf p-space is also a Lindelöf p-space (see [5, Theorem 2.1]). Let Y be a subspace of X. Then X has the property \mathcal{P} outside of Y whenever each closed set $F \subseteq X$ with $Y \cap F = \emptyset$ has the property \mathcal{P} .

Theorem 3.26. If Y is a remainder of a locally Lindelöf p-space X, then Y is a Lindelöf p-space outside of K (hence an s-space outside of K) for some compact subset K of it.

Proof. Let bX be a compactification of X such that $Y = bX \setminus X$. Since X is a locally Lindelöf p-space, we get an open cover \mathcal{U} of X with $\overline{\mathcal{U}}^X$ Lindelöf for each $U \in \mathcal{U}$. For each $U \in \mathcal{U}$ let V_U be an open set in bX with $V_U \cap X = U$. If $W = \bigcup \{V_U : U \in \mathcal{U}\}$, then Wis open in bX with $X \subseteq W$ and $K = bX \setminus W$ is compact with $K \subseteq Y$. We claim that Yis a Lindelöf p-space outside of K. Pick a closed set $F \subseteq Y$ with $K \cap F = \emptyset$. Observe that $\overline{F}^{bX} \subseteq W$ and consequently we get a finite set $\{V_{U_i} : 1 \leq i \leq k\} \subseteq \{V_U : U \in \mathcal{U}\}$ such that $\overline{F}^{bX} \subseteq \bigcup_{i=1}^k V_{U_i}$. Clearly $C = \bigcup_{i=1}^k \overline{U_i}^X$ is a Lindelöf p-space and $Z = \overline{C}^{bX}$ is a compactification of C. Thus $Z \cap Y$ is a Lindelöf p-space because it is the remainder of Cin Z. It is easy to see that F is a closed subset of $Z \cap Y$. Consequently F is a Lindelöf p-space and the proof is now complete. **Corollary 3.27.** Let \mathcal{P} imply the Lindelöf property. If Y is a remainder of a locally \mathcal{P} p-space X, then Y is a Lindelöf p-space outside of K (hence an s-space outside of K) for some compact subset K of it.

We call a space X homogeneous if for any $x, y \in X$ there is a homeomorphism $f: X \to X$ with f(x) = y.

Lemma 3.28 ([18]). A finite union of closed s-spaces is an s-space.

Theorem 3.29. Every homogeneous remainder of a locally Lindelöf p-space is an s-space.

Proof. Let Y be a homogeneous remainder of a locally Lindelöf p-space X. Then we get a compact set $K \subseteq Y$ such that Y is a Lindelöf p-space outside of K (see Theorem 3.26). The case is trivial when Y = K. Suppose that $K \subsetneq Y$. Since $Y \setminus K$ is open in Y for every $y \in Y \setminus K$, we get an open subset U_y of Y such that $y \in U_y \subseteq \overline{U_y}^Y \subseteq Y \setminus K$ and $\overline{U_y}^Y$ is a Lindelöf p-space. Pick $x \in Y$. Let $y \in Y \setminus K$ be fixed. Since Y is homogeneous, there exists a homeomorphism $f: Y \to Y$ such that f(y) = x. Then we can obtain an open set $U_y \subseteq Y$ such that $y \in U_y$ and $\overline{U_y}^Y$ is a Lindelöf p-space. Thus $V_x = f(U_y)$ is an open subset of Y with $x \in V_x$ and $\overline{V_x}^Y$ is a Lindelöf p-space, i.e. an s-space. Consequently we have a finite set $\{x_i: 1 \leq i \leq k\} \subseteq Y$ such that $K \subseteq \bigcup_{i=1}^k V_{x_i}$. Obviously $Y \setminus \bigcup_{i=1}^k V_{x_i}$ is an s-space. By Lemma 3.28, $Y = (\bigcup_{i=1}^k \overline{V_{x_i}}^Y) \cup (Y \setminus \bigcup_{i=1}^k V_{x_i})$ is an s-space. \Box

Corollary 3.30. Let \mathcal{P} imply the Lindelöf property. Every homogeneous remainder of a locally \mathcal{P} p-space is an s-space.

Lemma 3.31 ([7, Theorem 2.7]). Any (some) remainder of an s-space in a compactification of it is a Lindelöf Σ -space.

Theorem 3.32. If a locally Lindelöf p-space X has a homogeneous remainder, then $X = L \cup Z$ for some closed Lindelöf Σ -subspace L and open locally compact subspace Z.

Proof. Let bX be a compactification of X such that $Y = bX \setminus X$ is homogeneous. Then Y is an s-space (see Theorem 3.29). Since $bY = \overline{Y}^{bX}$ is a compactification of Y and $L = bY \cap X$ is a closed subset of X, $L = bY \setminus Y$ and hence L is a Lindelöf Σ -space (see Lemma 3.31). Obviously $Z = bX \setminus bY$ is a locally compact subspace of X and $X = L \cup Z$.

Corollary 3.33.

- (1) Let \mathcal{P} imply the Lindelöf property. If a locally \mathcal{P} p-space X has a homogeneous remainder, then $X = L \cup Z$ for some closed Lindelöf Σ -subspace L and open locally compact subspace Z.
- (2) Let \mathcal{P} imply the Lindelöf property. If a locally \mathcal{P} p-space X that is nowhere locally compact has a homogeneous remainder, then X is a Lindelöf Σ -space.

Acknowledgements

The authors are thankful to the referee(s) for numerous useful comments and suggestions that considerably improved the presentation of the paper.

References

- N. Alam and D. Chandra, On certain localized version of uniform selection principles, Filomat 36 (20), 6855-6865, 2022.
- [2] N. Alam and D. Chandra, On localization of the Menger property, Quaest. Math. 46 (6), 1069-1092, 2023.

- [3] A.V. Arhangel'skii, A class of spaces which contains all metric and all locally compact spaces, Mat. Sb. (N.S.) 67 (109), 55-88, 1965, English translation: Amer. Math. Soc. Transl. 92, 1-39, 1970.
- [4] A.V. Arhangel'skii, Mappings and spaces, Russian Math. Surveys 21 (4), 115-162, 1966.
- [5] A.V. Arhangel'skii, Remainders in compactifications and generalized metrizability properties, Topology Appl. 150, 79-90, 2005.
- [6] A.V. Arhangel'skii and M.M. Choban, Some generalizations of the concept of a pspace, Topology Appl. 158, 1381-1389, 2011.
- [7] A.V. Arhangel'skii, A generalization of Čech-complete spaces and Lindelöf Σ-spaces, Comment. Math. Univ. Carolin. 54 (2), 121-139, 2013.
- [8] D. Chandra and N. Alam, On localization of the star-Menger selection principle, Hacet. J. Math. Stat. 50 (4), 1155-1168, 2021.
- [9] R. Engelking, *General Topology*, Heldermann Verlag, Berlin, 1989.
- [10] J. Gerlits and Zs. Nagy, Some properties of C(X), I, Topology Appl. 14 (2), 151-161, 1982.
- [11] W. Just, A.W. Miller, M. Scheepers and P.J. Szeptycki, The combinatorics of open covers (II), Topology Appl. 73, 241-266, 1996.
- [12] Lj.D.R. Kočinac, Star-Menger and related spaces, Publ. Math. Debrecen 55, 421-431, 1999.
- [13] Lj.D.R. Kočinac, Selection principles in uniform spaces, Note Mat. 22 (2), 127-139, 2003.
- [14] E.A. Michael, Bi-quotient maps and cartesian products of quotient maps, Ann. Inst. Fourier (Grenoble) 18 (2), 287-302, 1968.
- [15] S. Mrówka, On completely regular spaces, Fund. Math. 41, 105-106, 1954.
- [16] K. Nagami, Σ -spaces, Fund. Math. **65**, 169-192, 1969.
- [17] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69, 31-62, 1996.
- [18] H. Wang and W. He, On remainders of locally s-spaces, Topology Appl. 278, 107231, 2020.
- [19] S. Willard, General Topology, Addison Wesley Publishing Co., 1970.