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ESTIMATION AND TESTING FOR COINTEGRATION:
A SPECTRAL REGRESSION APPROACH

Yilmaz AKDI* David A. DICKEY™

ABSTRACT

A popular topic in the econometrics and time series area is the cointegrating
relationship among the components of a veclor autoregressive time series.
The problem became important after the work of Engle and Granger (1987)
and has been addressed by many authors: Johansen (1988), Stock and
Watson among many others. Engle and Granger's least squares method and
Johansen’s conditional maximum likelihood method have received the most
attention. These tests are routinely applied to economic time series because
the notion of cointegration has a natural interpretation. Our method uses low
[frequency components of the cross periodogram to estimate the cointegration
relationship between coimtegrated time series. The method improves the
results of ordinary least squares method proposed by Engle and Granger in
some cases.

Keywords: Time series, Cointegration, Periodogram ordinate, Spectral regression.

1. INTRODUCTION

Unit root tests comprise a standard diagnostic tool in applied time series analysis. There
are several procedures to test for a unit root (e.g. Dickey and Fuller, 1979). Test
procedures have also been developed to test for seasonal unit roots (Dickey, Hasza and
Fuller (1984), Hylleberg, Engle, Granger and Yoo, 1990). Dickey and Pantula (1987)
propose a procedure to test for multiple unit roots. Series with unit roots described as
integrated. Akdi and Dickey (1998) developed a procedure to test for a unit root using
the periodogram ordinates of a univariate time series.

Time series variables with a common (joint) stochastic trend form a cointegrated
system, That is, if all of the individual time series are integrated, say of order one, it is
sometimes possible that some linear combination of the series will be integrated of
order zero (that is, stationary). Thus, the multiple time series ¥, is a vector of

’
nonstationary time series, but there exists a vector (or a matrix) ;_9 such that é Y, isa

stationary system. This notion is known as cointegration and £ is called the
cointegrating vector (or matrix).

Engle and Granger (1987) have proposed an estimation procedure for the cointegrating
vector. They used a regression approach to estimate the cointegrating vector S.
Johansen (1988) gave an estimation procedure that has become very popular. Levy
(2002) take adventage of a squared coherency, phase and gain to study the cointegrating
relationship for a bivariate cointegrated system. He derives some restrictions by
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studying cross-spectral properties of a cointegrated bivariate system. Boswijk and Lucas
(2003) considers a semi-nonparametric cointegration test by using LM-testing
principles. Breitung (2002) variance ratio testing procedure to test for a unit root and he
suggests a generalization of the variance ratio test for cointegration. Chen and Hurvich
(2003) study the asymptotic distribution of a tapered narrow-band least squares
estimator of the cointegrating vector £ in the framework of fractional cointegration.

Deo and Hurvich (2001) study the estimators based on the log periodogram regression
and they obtain the asymptotic bias and variance. They suggest to use low frequencies
in the context of the long memory stochastic volatility model. Finite sample properties
of spectral regression estimators have been studied by Chambers (2001) with
simulation. Marunicci (2000) deals with a somewhat related problem. He considers
spectral regression for cointegrated time series with long memory innovations. He
provides a functional central limit theorem as a quadratic forms in nonstationary
fractionally integrated processes. We investigate an estimation procedure for the
cointegrating vector based on the periodogram. For simplicity, bivariate series are
considered in detail and the extensions to higher dimensional autoregressive processes
are discussed.

In section 2, some notation and definitions are introduced. Section 3 deals with the
estimation procedures and consistency results. Several estimation strategies are given.
These are regression using the frequency components of the series and different number
of frequencies used. Simulation results indicate that using all frequencies in the
regression gives the worst result. Even in this case, better results are obtained than those
of least squares. Section 4 discusses the extension of the method to higher dimensional
processes and finally Section 5 include real data example and a Monte-Carlo simulation
study.

2. NOTATION AND MOTIVATION
Consider a first order vector autoregressive (VAR(1)) time series model

Yi =AY +¢& (1

where €, is a sequence of independent normally distributed random variables with

mean vector 0 and variance covariance matrix V . Note that the process is stationary if
all eigenvalues of A are less than 1 in absolute value and nonstationary otherwise.

If the coefficient matrix A has distinct eigenvalues, then there are matrices Q and M
such that AQ=QM where M is a diagonal matrix of the eigenvalues of A. The
transformation Z; :Q_IL gives the canonical form of the series. For example, a

bivariate series with
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the canonical form of the series can be obtained by settingA=QMQ™" as
Z,=MZ_, +§, where Z,=U.S,) and U =U_, +¢, and S =0.6S_ +¢&,,.
Substacting Y from both sides of (1) we have
Y. =Y., =(A-1Y,, +e =IIY,  +¢,. That is, VY =IIY,, +e,. In our example,
notice that the matrix IT can be written as

18 -08] [1 0] [08 —-08] [08
M=A—1= - = =l -1]=aep
12 —02| o 1] 12 -12| |12

such that W, =0.6W,_, +¢, is stationary. Here, W, = 8 Y ,.

The inverse transformation displays the cointegration relationship. One way to estimate
this cointegrating vector in a bivariate case is to regress Y, on Y. If the residual series

is stationary, then the bivariate series is cointegrated. This has been studied by Engle
and Granger (1987) and consistency properties have been discussed by Stock (1987).

In a dimension p process, Y, = AY,_; +&; subtract Y _, from both sides to obtain
Y =Y =(A-DY, +e =IIY, +¢

where [I=A-1 = gﬁ’. If Tl.isof rank r, (O<r < p) and gj. is nonsingular , the

series is a linear combination of r stationary and p—r unit root canonical series, as
used by Johansen (1988). We have shown IT for our bivariate example.

When a bivariate series Y, is given, each component of the series can be considered as
a sum of a stationary and a nonstationary series:

Yl,t = q11Ut + quSt

(2
Yz,t = qZIUt + qZZSt

where U, and S, represent nonstationary (unit root series) and stationary series,
respectively. From this representation, it can be seen that

Yo =0y, /)Y, = (@5 — (0,05, /9,,))S, =€S, is stationary.  That is, BY; is

’ !
stationary when S =(-Q,,/q,,,1). Thatis, S is a cointegrating vector. Of course, the
coefficient matrix A is unknown and thus has to be estimated.

Periodograms: Assume that a bivariate series Y, with components Y,, and Y, is

given and assume that the representation in (2) is available. For any univariate time
series X, ,t=1,2,3,...,n, the periodogram ordinate at the frequency w, is defined by

IX(WK):g(ak2 +bk2)

TUIK, istatistik Arastirma Dergisi, Ozel Say1 2013
TurkStat, Journal of Statistical Research, Special Issue 2013

97



98

Estimation and Testing for Cointegration: A Spectral Regression Approach

where a, = %Z(Xt —wycos(w,t) , b, = %Z(Xt — w)sin(w,t). Here, u is the mean
t=1

t=1

n n

of the series and when W, =27K/n, since Zcos(wkt) = Zsin(wkt) =0 the
t=1 =1

periodogram is invariant to the mean whether it is known or estimated.

Given a set of observations {L ,Xz,...,xn} the periodograms of U, and S, are defined
as in (3) below:

n n
Iu,n (W) = E(aik + buz,k ) ’ Is,n (W) = E(asz,k + bsz,k) 3)
and the real part of the cross periodogram ordinate between U, and S, is defined as
n
Real {I u,s.n (Wk )} = E (au,kas,k + bu,kbs,k ) (4)

where w, =27k/n,k =0,1,2,...,[n/2] (here, [X] denotes the integer part of Xx). The

Fourier coefficients for the series U, and S, are

Ak = %Zut COS(Wkt) » gy = EZ St COS(Wkt).
o S 5)
b, ==Y U sin(wt) , by, == S, sin(w,t).
’ NS ’ no

For any stationary time series X,, the normalized periodogram ordinate is
asymptotically distributed as chi-square with two degrees of freedom.

3. ESTIMATION AND CONSISTENCY RESULTS

In this section, an estimation procedure for the cointegrating vector based on the
periodogram ordinates is discussed. Note that, if a vector process is stationary, then
each component is marginally stationary. Akdi and Dickey (1998) show that the
periodogram of the unit root process U, satisfies

ak*r?

Tflu,n(wk)—sz(ZHZf) as n —» oo 6)
Here, Z, and Z, are independent standard normal random variables. This result can be
used to test for a unit root. The critical values of the distribution under the null
hypothesis of a unit root is tabulated in Akdi and Dickey (1998). For a stationary time
series {S,,t=1.23,...n}, 1., (w,)=(n/2)(a? +b?)=0,(1) as shown in Fuller (1996).
This means that the unit root dominates all the asymptotic properties. The cited
references show that a,, =0,(n'?), a,, =0,(n""?) and b, =0,(n"?),

u

by, =0, (n"""?). Thus we have
Re al {I u,s,n (Wk )} = g(au,kas,k + bu,kbs,k )

=0(m|[0, ()0, (1""2) + 0, (n""*)0, ("""*)]= 0, (n).

Theorem 1. Consider the transformation in (2). For ease of notation and to emphasize
the analogy to regression, write X, for Y,, and Y, for Y, . For each fixed k, the ratio
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v, =Re al{IXY (w, )} to x, =1, (w,) is a consistent estimator of the ratio g,, /q,,. That

is, for each fixed k

Real{IXY (wk)} P ,@
Iy (w,) 91

C,(w)= , as n—» oo,

Proof: Notice that

2 . 2 .
by (w,)= ;ZX, sin(w, 1) :*Z(QHUr +4,,S,)sin(w, 1) =q,,b, , +q,,b,,

t=1 t=1

and similarly a, ,(w,) = q,,a,, +q,,a,, and thus
niZIX ( Wk ) = ( 2n )4 (a;,k + b)sz ): ( 2” )71 [(QIlau,k + q12as,k )2 + (qllbu,k + blZas,k )2]
=(2n)"[g2 (a2, + B2, ]+ O, (07 ) =g (01, (w, )+ O, (n™).

Likewise the cross periodogram ordinate of X, and Y, can be written as follows:

Re al{niz Iy (W, )} =419 (nleu (wy ))"‘ 0, (nh)
and thus,

C,(w)=

Rcdﬂn(wﬁ}:Rmd%4QyWQﬁ:QU%l+0(n4)
Iy (w,) n_zlx (W) q'zl '

which completes the proof.

As a result of Theorem 1, when we fix the number of frequencies in the regression, we
still have the concictency. That is, consider the following regression model
v, =pPx,+¢& . k=123,..m @)

where y, is the real part of the cross periodogram ordinate of the series X, and Y, as
defined in (4) at frequency k, and x, is the periodogram ordinate of the series X,.
Then the ordinary least squares estimate ,6A’Ln of £ in model (7) is a consistent estimator
of the ratio g,, /q,,. That is,

m 1 nm
R Z X Vi ; Z Xe Vi q
o=t —= P as e ®)

2 2 91

X — > x

Lx

k=1

Moreover, using the intercept term in the regression,

v, =a+pBx, +¢&,k=123,...m 9
the ordinary least squares estimate of [ is still a consistent estimator of the ratio
4,/ q,,. Thatis,

~ Z(xk_j)(yk_y)
B, = L 522 as n—ow. (10)

i(xk _})2 91
k=1
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4. HIGHER ORDER SERIES

In this section, higher order and higher dimension vector autoregressive time series are
considered. Consider the following time series model

Y =AY G +AY LAY e (11)
where Y, is a k-variate random vector, A ’s are appropriate matrices and e, is a
sequence of i.i.d. random vectors with mean-vector 0 and variance-covariance matrix
2. Subtracting Yo from  both  sides, the model  becomes
VY, =IIY, , +B VY, +..+B, VY,  +¢ where M=1-A-A-..-A,,
B, =—(A, + A, +..+A,). The number, p—r, of unit roots of the characteristic
equation ImPl -mP"'A —..— A, I=0 is the rank deficiency of II. In this case, there
exist rank r matrices @ and f such that IT =« £'. We assume that each element of

the response vector Y, has a unit root and stationary first difference. That is, Y, is
integrated of order 1. Thus, it is clear that

VY, =AY, +BW, (12)

where W, , being a linear combination of stationary series, is stationary. Thus, the
problem reduces to estimating the coefficient matrix IT.

Using a similar argument to that in section 2 and partitioning Y,, the following
representation is available for the higher dimensional processes, too.

Xl,t = Qllgt + Q12§t

(13)
Xz,t = QZIQt + Q22§t

where U, represents the components with unit roots and S, represents stationary

components of the series. Therefore, the problem reduces to estimating Q,,Q,,'. We are
assuming Q,, is (p—r)x(p—r) and of full rank, by which assumption we have

identified as a set of series to construct Y,  involves all of the p—r nonstationary
comment trends. That is, Q,'Y,, is U, plus stationary components. Only in this way,
Y. can be used to remove all the nonstationary components from the other series.
Analogous to the bivariate case Q,,Q;,' is to be estimated. Exactly as in the bivariate
case, the order of the unit root parts of the Fourier transforms of the data dominate.
Specifically, the Fourier coefficient matrices for Y, are:

2 o2& '
Al,k = HZXM cos(w,t) , Bl,k ZHZXIJ sin(w,t)
t=1

t=1

2 2 .
Az,k = Hzxz,t cos(w,t) , Bz,k = HZXz,t sin(w,t)

t=1 t=1
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and those for the series U, and S, are similar and denoted by lower case letters

correspondingly; a,,, &,,, b, b, . The relationship between the Fourier coefficients

A, Bix,i=12and a,,,a,,.b,,. b, is as follows:
A =0Q,a,, +Qpay, » By =Q,b,, +Q,b,,
A =Qy8, +Qpagy » By =Qy b, +Qyb4,

The periodogram ordinate of Y, can be calculated as follows:

n ! !
Pll(Wk) = E[Al.k Al,k + Bl,k Bl,k j

and the real part of the cross periodogram ordinate will be

n ’ 1
R, (W) = E(Alk Ay +Bx By j

Now define the cointegrating spectrum as
C, (W) = Ry, W)[R, (W] (14)

The following are the multivariate versions of Theorem 1.
Theorem 2. The estimator in (14) is a consistent estimator of Q,,Q,,' for each fixed k.

As before, a fixed number of frequencies can be combined in a multivariate regression
to give a consistent estimate.

Theorem 3. Using the transformations in (13), the ordinary least squares estimator ﬁn
of S is a consistent estimator for Q,,Q;;' using the regression model
Y. =8X, +E ,k=12,..m

where Y, and X, are as before and the estimator is defined as

m ' m ’ -1
B, :[ZYk xk](zxk ij :
k=1 k=1
5. AN EXAMPLE AND SIMULATIONS

A. Demonstration with Real Data: As an example, we use quarterly US consumption
and income data set of Beaulieu and Miron (1993). It covers the period 1946:1 through
1985:4. Data are log transformed and seasonally adjusted using X12 adjustment
program. First of all, we check if the series are of 1(1). The time series plots and their

identification plots are given in Figure 1 below.

Both series are modelled with first order autoregressive model, AR(1) as suggested by
the values of AIC and SBC statistics obtained from PROC ARIMA in SAS. The
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autocorrelations decay very slowly. Here, X and Y denote income and consumption
under the logarithmic transformation, respectively. First differenced series and their
identification plots are given in Figure 2.

The stationarity of the series have been checked with standard Dickey-Fuller test and
the periodogram based unit root test proposed by Akdi and Dickey (1998). The models
for X and Y are

Xi=ay o toy X +ey, ,1=123..160

Vo= ay, +ay, Yo + &, t=123,.,160

and the results heve been summarized below:

Table 1. Summary of the Results

7 Critical | Periodogram | T (w,) Critical | Conclusion

a Value " Value
X, 3.201 -2.89 66.9539 688.254 0.178 Unit Root
Y, 2.415 -2.89 50.6841 300.582 0.178 Unit Root
VX, |- 13.442 -2.89 0.0040204 0.03953 0.178 | Stationary
VY, -14.811 -2.89 0.0041481 0.024176 | 0.178 | Stationary

The periodogram test is left tailed. We fail to reject the null hypothesis of a unit root for
each series. That is, both series are integrated of order 1 according to the results of
Dickey-Fuller and periodogram tests. The periodiogram based method has certain
advantages over conventional tests. Firstly, conventional tests require the estimation of
too many AR parameters to account for the dynamics/seasonality of the series.
Secondly, test results change with the sample size in conventional tests, while the
periodogram based method requires no parameter estimation except for variance.
Thirdly, the critical values of the test statistics are free of sample size constraints. Thus,
these might have considerable advantages, especially for small samples.

In order to check whether these series are cointegrated, we calculate the periodograms
and the real part of the cross periodograms of the series and regress the real part of the
cross periodograms on the periodogram of one of the series (income). The estimate of
the regressioon coefficient with spectral regression is 0.86814 ~ 0.87. The time series
and its identification plots of Z, =Y, —0.87X, given in Figure 3, seem to show a

stationary series but this requires a statistical check. If this series is stationary, then the
estimated cointegration vector is S =(-0.87 ,1)'. The values of AIC statistic and the

identification plots imply an AR(1) model for Z,,Z, =aZ,_, +v,. To test H,:a =1
against H, :la I<1 one canregress D, =Z, —Z, , on Z,_, and calculate the standard t -
statistic as: 7, = &/S(&) ~—3.325 which is smaller than 10% critical value —3.134
(obtained by simulation- see Table 2) and we reject H, at the 10% level. The parameter
estimates and their standard errors are given below:
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VZ, = aq, + & Z,
Est. -0.0192 —-0.104
Std.Err. 0.0056 0.0313

t —stat —3.428 -3.325

The power is approximated as 0.804 which is obtained in a similar way given in Table
3 in the Annex.

Income Consumption
. © o % . © M M
Series : income Series : consumption
ERE &34
N 0 5 10 15 20 N 0 5 10 15 20
Lag Lag
Series : income Series : consumption
] &
S T T T ™ g T T
0 s 0 15 2 0 s 0 15 2
Lag Lag

Figure 1. Original Series and Their Identification Plots
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Figure 2. First Differences and Their Identification Plots
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This critical value comes from a simulation reported in Table 2. Bivariate series with
roots 1 and p were generated, Z was computed by the periodogram method shown
here and then the differenced Z was regressed on its first lag Z and empirical
percentiles computed. The percentiles of 7, can be used as the critical values for testing
the null hypothesis of no cointegration. The table is similar to the table of Engle and
Granger but here the periodogram method is used rather than ordinary regression to
construct Z . In other words, adjusted consumption and income are cointegrated at 10%
significance level. In a similar way, the performance of the test is tabulated for different
p’s as listed in Table 3. Here, 1000 replications are used and for different p’s the
number of rejections were counted.

In addition, the cointegrating relationship between consumption and income is analyzed
with the Engle and Granger approach. The estimated cointegrating vector
(0.856996 = 0.86) is very close to the one estimated through the spectral regression

approach. When the first differenced residual series R, (obtained from the regression of

Y, on X,)isregressed on R, , we get the following estimation results:

VR, = —0.000684 — 0.10886R,
Std.Err 0.0011)  (0.0327)
t - stat ~0.620 ~3.326

Since, 7,(E -G) =-3.326 < -3.033, we reject the null hypothesis of no cointegration

at the 10% level. The critical value —3.033 is obtained by simulation with 5000
replications. Note that both tests fail to reject the null hypothesis of no cointegration at
5% significance level.

Moreover, the Johansen (1988) method is also applied for investigating the
cointegration relation between these variables. The corresponding squared canonical
correlations are 0.099310 and 0.050393. Then, the value of Johansen’s trace statistics

= —160[1n(1 —0.099310) +In(1 - 0.050393)] =25.008 which is

greater than 10% critical value (10.3) and we reject the null hypothesis of no
cointegration. Thus, we find that the consumption and income series are cointegrated at
10% significance level.

is calculated as A,

B. Simulation Study: We consider the series generated from a normal distribution
with mean zero and variance 1 according to (15). That is, €, ~ N(0,1), e,, ~ N(0,1)
with U = pU _, +e, and S, = p,S_, +e,, for p, =1, | p, I<1. The equations in (2)
allow us to write

Z,,=U +2S,

15
Z,, =3U, +4S, (15)
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where U, represent a unit root time series and S, represents a stationary time series.
Notice that both series Z,, and Z, are nonstationary because both include U, . That is,

the nonstationary bivariate series can be written as

Z, 1 2||U,
= . (16)
Z,, 3 41 'S,
But Z,, —3Z,, =-2S, which is stationary. Based on this cointegration relationship, in

the following simulations we expect to get estimates close to 3 for different numbers of
observations. We run 10,000 regressions for each case (different p, and n) and
average these spectral regression estimates of the cointegrating vectors. We also run
10,000 regressions of Z,, on Z,, for each case and average these 10,000 ordinary least
squares estimates of the cointegrating coefficient as in Engle and Granger (1987),
labeled OLS in Table la. All frequency regressions does not have fixed k as n gets
large so our asymptotic theory does not apply to it. Different number of frequencies
were considered in the regressions and we observed that using all frequencies in the
regression gives the worst result. We also analyze the bivariate series with Johansen’s
method. Standard deviations and mean squared errors of estimation are reported for
comparison. For the bivariate case, the sample sizes used as n=50,100, 200. The

values of the parameters p; =1 and p, =0.7, 0.8, 0.9, 0.95, 0.99 are considered and
the results are tabulated in Table 1b. Notice that there is no cointegration when p, =1.

In our simulations, we observe that Johansen’s method produces some bizarre outliers
which cause large mean squared error and standard deviations and therefore the bias of
Johansen’s method is large.

In Table 1a, we take the average of 10,000 regression estimates obtained from both
ordinary least squares and spectral regression for different values of p,. We are

looking for the values close to 3. Using all frequencies in the regression yields the
worse results. Even in the worst case spectral regression gives a better result than that
obtained from ordinary least squares. As it is seen from the table, the estimates gets
further away from 3 as p, approaches 1. In Table 1b, SRE is our periodogram

estimator using all frequencies in the regression. When p, takes the value 1, there is no
cointegration because the matrix IT has rank of zero.

6. CONCLUSION

In this study, periodogram based cointegration method have been proposed. The method
improves the OLS method proposed by Engle and Granger (1987) in certain cases.
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ESBUTUNLESME iCiN TAHMIN VE TEST:
SPEKTRAL BiR REGRESYON YAKLASIMI

OZET

Ekonometri ve zaman serileri alan:ndaki populer bir konu, vektor
otoregressif zaman serilerinin  bilegenleri arasindaki egbutinlesme
iliskisidir.  Engle ve Granger (1987)’in ¢alismalarindan sonra problem
6nemli hale gelmis ve Johansen (1988), Stock ve Watson gibi baska pek ¢cok
yazar tarafindan da bu probleme isaret edilmistir. Engle ve Granger’in en
kiigiik kareler metodu ile Johansen’in kogullu maksimum olabilirlik metodu
en ¢ok dikkati ¢ekenlerdendir. Bu testler ekonomik zaman serilerine rutin
olarak uygulanmstir  ¢iinkii egbltiinlesme nosyonu dogal bir yoruma
sahiptir. Bizim metodumuz, esbltlnlesmis zaman serileri arasindaki
esbutinlesme iliskisini tahmin etmek igin ¢apraz periyodogrammn dusik
frekansl: bilesenlerini kullanzr. Baz: durumlarda bu metod, Engle ve Granger
tarafindan onerilen swadan en kiiciik kareler metodunun sonuglarin
gelistirir.

Anahtar Kelimeler: Zaman serileri, Esbuttinlesme, Periyodogram ordinat, Spektral regresyon.
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Annex. Tables

Table 1a. Simulations (* marks the closest average to 3 in each row)

| 5Freq | 10Freq. | AllFreq. | OLS
n=50
P, =07 | 2.641%* 2.619 2.600 2.482
P, =08 | 2.524* 2.511 2.498 2.421
P2 =09 2.273 2.367* 2.362 2.329
0, =095 | 2.282* 2.280 2.279 2.268
0, =099 | 2.221* 2.221 2.220 2.217
n=100
P, =07 | 2.843% 2.822 2.786 2.617
0, =08 | 2.736* 2.715 2.684 2.552
0, =09 | 2.536* 2.523 2.507 2.436
0, =095 | 2.380* 2.373 2.367 2.337
pr, =099 | 2.235% 2.234 2233 2.231
n=200
p, =07 | 2.957* 2.948 2916 2.746
0, =0.8 | 2.905*% 2.890 2.852 2.687
0, =09 | 2.746* 2.727 2.693 2.569
P, =095 | 2.546* 2.533 2514 2.446
P, =099 | 2.267* 2.267 2.265 2.260

TUIK, istatistik Arastirma Dergisi, Ozel Say1 2013
TurkStat, Journal of Statistical Research, Special Issue 2013

109



Estimation and Testing for Cointegration: A Spectral Regression Approach

Table 1b. Simulations (Comparisons for SRE with OLS and Johansen with respect to MSE and
STD, used all frequencies in SRE)

110

N=50 py =07 pr =0.8 pr =09 Py =0.95 Py =0.99
SRE 2.600 2.498 2.362 2.279 2.220
MSE(SRE) | 0.245 0.344 0.510 0.626 0.715
STD(SRE) | 0.292 0.305 0.321 0.325 0.327
OLS(EG) 2.482 2421 2.329 2.268 2.217
MSE(EG) 0.311 0.381 0.310 0.238 0.247
STD(EG) 0.205 0.215 0.310 0.238 0.247
JOH 3.632 2.408 3.286 8.48 2.449
MSEJOH) | 3482.5 7081.5 833.22 36382835 2427.5
STD(JOH) 59.01 84.15 28.87 603.187 49.268
N=100

SRE 2.786 2.684 2.507 2.367 2.233
MSE(SRE) | 0.097 0.169 0.333 0.500 0.693
STD(SRE) | 0.227 0.264 0.300 0.315 0.326
OLS(EG) 2.617 2.552 2.436 2.337 2.231
MSEEG) 0.178 0.238 0.364 0.491 0.652
STD(EG) 0.179 0.194 0.215 0.228 0.246
JOH 2.968 2.936 -70.28 1.0248 2.178
MSE(JOH) | 193.68 257.95 52078513 17247 1610.06
STD(JOH) 13.91 16.06 7216.53 131.319 40.119
N=200

SRE 2916 2.852 2.693 2.514 2.265
MSE(SRE) | 0.026 0.057 0.161 0.324 0.649
STD(SRE) | 0.168 0.188 0.258 0.297 0.332
OLS(EG) 2.746 2.687 2.569 2.446 2.260
MSE(EG) 0.084 0.124 0.223 0.353 0.608
STD(EG) 0.141 0.162 0.193 0.216 0.248
JOH 3.014 3.051 3.527 9.018 2.789
MSE(JOH) |0.021 8.733 3028.01 35054277 14941.76
STD(JOH) |0.144 2.95 55.03 592.06 122.24
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Table 2. Critical values for 7, (5,000 replicates) The values for p =1 are used for testing the null

hypothesis of no cointegration.

| 001 | 005 | 010 [ 09 [ 095 [ 099
N=50
p=1 -4.121 -3.464 -3.173 -0.885 -0.488 0.290
p =0.95 -4.225 -3.613 -3.264 -1.203 -0.880 -0.300
£ =0.90 -4.318 -3.685 -3.336 -1.412 -1.148 -0.593
£ =0.80 -4.498 -3.906 -3.610 -1.774 -1.530 -1.079
p=0.70 -4.788 -4.164 -3.873 -2.065 -1.851 -1.419
N=100
p=1 -4.125 -3.434 -3.114 -0.967 -0.602 0.188
p =0.95 -4.183 -3.659 -3.370 -1.523 -1.255 -0.677
£ =0.90 -4.420 -3.938 -3.655 -1.936 -1.714 -1.226
L =0.80 -5.146 -4.513 -4.233 -2.563 -2.368 -1.982
p=0.70 -5.650 -5.032 -4.737 -3.031 -2.835 -2.489
N=160
p=1 -4.050 -3.415 -3.134 -1.005 -0.588 0.159
p=0.95 -4.330 -3.810 -3.544 -1.820 -1.605 -1.133
£ =0.90 -4.815 -4.305 -4.043 -2.426 -2.231 -1.823
£ =0.80 -5.726 -5.183 -4.924 -3.318 -3.132 -2.735
p=0.70 -6.432 -5.880 -5.629 -3.969 -3.796 -3.403
N=200
p=1 -3.994 -4.424 -3.121 -1.047 -0.646 0.105
p=0.95 -4.446 -3.925 -6.643 -1.995 -1.781 -1.317
£ =0.90 -5.022 -4.544 -4.278 -2.703 -2.502 -2.107
£ =0.80 -6.043 -5.538 -5.307 -3.734 -3.526 -3.099
p=0.70 -6.807 -6.361 -6.103 -4.494 -4.261 -3.848
Table 3. Power of 7, (number of rejections out of 1,000 replications)
a =0.05 a=0.10
pJ, N o 100 160 200 p¢ N > 100 160 200
1.00 0.041 0.045 0.047 1.00 0.107 0.093 0.103
0.95 0.087 0.133 0.169 0.95 0.160 0.213 0.290
0.90 0.167 0.329 0.516 0.90 0.287 0.533 0.705
0.80 0.452 0.866 0.960 0.80 0.649 0.950 0.978
0.70 0.734 0.984 1.000 0.70 0.868 0.996 1.000
0.60 0.886 1.000 1.000 0.60 0.964 1.000 1.000
0.50 0.965 1.000 1.000 0.50 0.992 1.000 1.000
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