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A fundamental mathematical field with many applications in 
science and engineering is linear algebra. This paper investigates 
the various applications of linear algebra in the fields of traffic 
flow analysis, electric circuits, cubic spline interpolation, and 
genetics. This research delves into individual applications while 
emphasizing cross-disciplinary insights, fostering innovative 
solutions through the convergence of genetics, cubic spline 
interpolation, circuits, and traffic flow analysis. 

The research employs specific methodologies in each 
application area to demonstrate the practical integration of linear 
algebra in genetics, cubic spline interpolation, electric circuits, 
and traffic flow analysis.  

In genetics, linear algebra techniques are utilized to 
represent genetic data using matrices, analyze genotype 
distributions across generations, and identify genotype-phenotype 
associations. For cubic spline interpolation, linear algebra is 
employed to construct smooth interpolating curves, involving the 
derivation of equations for spline functions and the determination 
of coefficients using boundary conditions and continuity 
requirements. In electric circuit analysis, linear algebra is crucial 
for modeling circuit elements, formulating systems of linear 
equations based on Kirchhoff's laws, and solving for voltage and 
current distributions in circuits. In traffic flow analysis, linear 
algebra techniques are used to represent traffic movement in 
networks, formulate systems of linear equations representing 
traffic flow dynamics, and solve for traffic flow solutions to 
optimize transportation networks. 

By addressing contemporary challenges, emerging research 
frontiers, and future trajectories at the intersection of linear 
algebra and diverse domains, this study underscores the profound 
impact of mathematical tools in advancing understanding and 
resolving complex real-world problems across multiple fields. 
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1 INTRODUCTION 

This research work delves into the versatile applications of linear algebra in 

genetics, cubic spline interpolation, electric circuits, and traffic flow analysis. As a 

foundational mathematical discipline, linear algebra serves as a unifying framework 

transcending disciplinary boundaries [9]. It plays a pivotal role in genetic data 

analysis, employing techniques like eigenvalues eigenvectors and diagonalization of 

matrix [8]. In cubic spline interpolation, linear algebra forms the bedrock, 

influencing applications in image processing, computer graphics, and motion analysis 

as demonstrated [10]. 

This study extends its focus to electric circuits, where linear algebra simplifies 

simple circuit analysis, fostering efficient design and optimization [2]. Additionally, 

linear algebra contributes significantly to modelling and analysing traffic flow 

systems, offering insights into network behaviour, optimization, and control. This 

research unravels the interconnected contributions of linear algebra across these 

diverse domains, emphasizing its cross-disciplinary significance and potential to 

revolutionize problem-solving in genetics, cubic spline interpolation, circuits, and 

traffic flow analysis [5]. 

The research identifies a critical gap in existing studies that have individually 

explored the application of linear algebra in genetics, cubic spline interpolation, 

electric circuits, and traffic flow. The lack of comprehensive research addressing the 

synergies and cross-disciplinary implications of employing linear algebra across these 

diverse domains constitutes a significant research gap. The study aims to bridge this 

gap by systematically applying linear algebraic principles, offering a unified 

perspective on the interconnectedness of mathematical principles across these 

scientific realms. The motivation behind the study lies in the potential to discover 

novel connections, optimize mathematical models, and improve solutions within 

each domain, contributing to advancements and fostering interdisciplinary 

collaboration. The novelty of the research lies in its integrative approach, providing 

a fresh perspective on problem-solving methodologies and offering new avenues for 

research and practical applications. Overall, the study is expected to contribute 

significantly to knowledge by uncovering hidden patterns and relationships, fostering 

a nuanced understanding of underlying structures. 
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The literature presents a multifaceted exploration of various research studies. 

In one instance, [5] underscores the significance of a strategic approach to modeling 

electrical power systems within communication networks, highlighting diverse 

methods such as experimental, software-based, and analytical modeling. [6] employs 

the cubic spline interpolation method to effectively interpolate original noise data, 

ensuring the seamless connection of noise data for a detailed description and 

recognition of characteristics within the output layer. In a different context, [1] 

introduces a cubic spline interpolation algorithm to categorize emotions in speech 

using curve-fitting techniques, utilizing datasets like Ryerson Audio-Visual Berlin 

(Emo-DB), Surrey Audio-Visual Expressed Emotion (SAVEE), and Database of 

Emotional Speech and Song (RAVDESS). Furthermore, [7] delves into the significance 

of linear algebra methods in solving systems of linear equations, exploring techniques 

such as scalar augmentation, determinants, and vector space. Each study contributes 

unique insights and methodologies to their respective fields of research. 

The paper presents a comprehensive exploration of the practical integration 

of linear algebra across genetics, cubic spline interpolation, electric circuits, and 

traffic flow analysis. In genetics, the research provides a systematic approach for 

analyzing genotype distributions and identifying genetic markers associated with 

diseases. For cubic spline interpolation, it offers a methodical process for 

constructing accurate interpolating curves, enhancing applications in computer 

graphics and data analysis. In electric circuits, the study advances understanding by 

demonstrating how linear algebra facilitates the analysis and design of circuits, 

crucial for electronics and power systems. Moreover, in traffic flow analysis, the 

research elucidates how linear algebra techniques optimize transportation networks, 

leading to insights into traffic dynamics and urban planning. Overall, the paper's 

findings underscore the profound impact of linear algebra in advancing 

understanding and resolving complex real-world problems across diverse scientific 

and engineering disciplines, offering valuable contributions to each field. 
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2 METHODOLOGY 

2.1 Genetic Data Representation Using Matrices 

The genotype distribution of a particular trait in a population in the nth 

generation can be represented by a genotype vector; 

n

n

n

n

f

P g

h

 
 

=
 
  

 (1) 

where ,n nf g  and 
nh  are the portion with population AA, Aa and aa respectively in 

the nth generation. Since the genotype distribution changes over time, the 

succession of genotype distributions from one generation to the next will be 

represented in the form; 

n n 1P TP −=  (2) 

for a suitable matrix T as n = 1,2,3,… an explicit description of nP  whose formula 

for each nP  does not depend on T or on the preceding terms in the sequence other 

than the initial term 0P  (the initial genotype distribution in the population),will 

given as; 

n n 1 2 n 2 0... nP TP T P T P− −= = = =  (3) 

Therefore, the explicit expression for nT  will be obtained by diagonalizing T. Hence, 

n 1nT VD V −=  (4) 

where V= Eigenvector and D=Diagonal Matrix of T 

Solving for , nV D  and 1V − , the obtained outcome becomes 

1

2

3
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0 0 0 0 0

D V







   
   

= = − −
   
      

  and  1

1 1 1

0 1 2

0 0 1

V −

 
 

= − −
 
  

                (5) 

Substituting (5) in (4), it gives as shown in (Kizilaslan & Acer, 2023); 

1

2

3

0 0 1 1 1 1 1 1

0 0 0 1 2 0 1 2

0 0 0 0 0 0 0 1

nT







     
     

= − − − −
     
          

                             (6) 
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Putting (6) into (3), the result is 

( ) ( )

( ) ( )
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1 1
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 

               (7) 

(7) is the expression for the distribution of the three possible genotypes ,AA Aa  and 

aa  in the population after any number of generations. 

2.1.1 Genetics problem algorithm 

Step 1: Define the genetics problem and identify the aspect it relates to. 

Step 2: Create a matrix or set of linear equations considering the relevant genetic 

variables and principles. 

Step 3: Collect the necessary genetic information, including genotype/phenotype 

frequencies and known inheritance patterns. 

Step 4: Solve the matrix equation using linear algebraic techniques. 

Step 5: Evaluate the outcomes in relation to the genetics puzzle and verify the 

solution by comparing it with empirical or experimental data. 

It is noteworthy that in the Genetics Problem Algorithm (Step 2), the selection of 

genetic variables and principles is guided by fundamental genetic principles and the 

specific traits under investigation. This includes considering variables relevant to the 

traits being studied and applying principles such as Mendelian inheritance and allele 

frequencies. The rationale for these choices ensures that the resulting matrices 

accurately represent the genetic dynamics of the problem at hand. By aligning with 

established genetic principles, the algorithm facilitates the creation of matrices that 

effectively capture the genetic variation within populations across generations. 

2.2 Cubic Spline Representation Using Linear Algebra 

The general form of a cubic spline is given as; 

( )

( )

( )

( )

0 0 1

1 1 2

1 1

,

,

,n n n

S x x x x

S x x x x
S x

S x x x x− −

 


 
= 

  

M
                                          (8) 
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where ( ) ( ) ( )1 2 1, ,..., SnS x S x x−
 are cubic polynomials. For convenience, (6) is 

written in the form;  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 3

0 0 0 0 0 0 0 0 0 1

2 3

1 1 1 1 1 1 1 1 1 2

2 3

1 1 1 1 1 1 1 1 1

,

,

,n n n n n n n n n n

S x e f x x g x x h x x x x x

S x e f x x g x x h x x x x x

S x e f x x g x x h x x x x x− − − − − − − − −

= + − + − + −  

= + − + − + −  

= + − + − + −  

M
    (9) 

The ' , f ' , g 'k k ke s s s and 'kh s constitute a total of 4 4n− coefficients that must be 

determined to specify ( )S x  completely as demonstrated in [1]. If these coefficients 

are chosen so that ( )S x  interpolates the n specified points in the plane 

( ) ( )', SS x x  and ( )' 'S x  are continuous, then the resulting interpolating curve is 

called a Cubic Spline [3-4]. A cubic spline has four condition and two boundary 

condition which are used to get the equations required. These conditions are stated 

below; 

1.  ( )S x  interpolates the points ( ), , k 0,1,...,k kx y n= . 

2. ( )S x  is continuous on  0 , nx x . 

3. ( )'S x  is continuous on  0 , nx x  

4. ( )' 'S x  is continuous on  0 , nx x . 

The boundary conditions are; 

1. Free/Natural Cubic Spline; 
( )

( )

' '

0 0

''

1

0

0n n

S x

S x−

=

=
 

2. Clamed/Complete Cubic Spline;  
( ) ( )

( ) ( )

' '

0 0 0

' '

1n n n

S x f x

S x f x−

=

=
 

Applying the four cubic spline conditions on (9) and the boundary conditions, 

the following equations are obtained; 
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0 0

1 1

1 1n n

e y

e y

e y− −

=

=

=

                                                                                     (10) 

( ) ( ) ( )
2 3

1 1 1 1 1 1 1n n n n n n n ne f x x g x x h x x y− − − − − − −+ − + − + − =                         (11) 
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+ − + − + − =
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+ − + −
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− =+

M
                         (12) 

( ) ( )

( ) ( )

( ) ( )

2

0 0 1 0 1 1

2

1 1 1 1 1 2

2

1 1 1 1 1

2 3

2 3
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n n

n n n n n n

f g x x h x x f

f g x x h x x f

f g x x h x x f

− −
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− − − − −

+ − + − =

+ − + − =

+ − + − =
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                                      (13) 

( )

( )

( )

0 0 1 1

0 0 1 2

1 1 1

2 6 2

2 6 2

2 6 2

n

n

n n n n

g h x x g

g h x x g

g h x x g

−

−

− − −

+ − =

+ − =

+ − =

                                                         (14) 

The equations (10), (11), (12), (13), (14) and either the natural cubic spline 

boundary condition or the clamped cubic spline boundary condition are utilized to 

constitute a linear system which are then solved by Gauss-Jordan elimination method 

is used to get the values of the constants in (9) [6]. 

2.2.1 Cubic spline interpolation algorithm 

Step 1: Identify data points for cubic spline interpolation.  

Step 2: Calculate the number of intervals between data points.  

Step 3: Formulate a system of linear equations.  

Step 4: Express the equations as (Ty = b).  

Step 5: Solve the matrix equation to obtain coefficients for the cubic spline function. 

In the Cubic Spline Interpolation Algorithm (Step 1), identifying data points for 

interpolation involves a thoughtful selection process aimed at capturing the behavior 
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of the function or dataset accurately. Firstly, data points should ideally be uniformly 

distributed across the range to ensure comprehensive coverage of the function's 

behavior. This entails including critical points such as extrema and inflection points, 

which offer valuable insights into the curve's behavior. However, it's crucial to strike 

a balance between data sparsity and richness; too few points may lead to 

inaccuracies, while an excessive number could result in overfitting. Additionally, the 

quality of data points must be ensured, avoiding inaccuracies or outliers that could 

compromise the reliability of the interpolation. Context is also vital; data points 

should align with the specific application's requirements and provide meaningful 

insights into the problem at hand. By adhering to these guidelines, the selection of 

suitable data points lays the foundation for an accurate and meaningful interpolation 

process, facilitating a robust analysis of the function or dataset. 

2.3 Matrix Representation of Circuits 

Linear algebra stands as a crucial tool in the arsenal of electricians working 

with electrical circuits. Among the fundamental principles applied in this domain is 

the use of matrices, particularly in constructing systems of linear equations based 

on Kirchhoff's voltage law, Kirchhoff's current law, and Ohm's law for simple 

electrical circuits. While a single permutation suffices to solve equations in 

straightforward circuits, more intricate circuits demand node analysis. To elucidate, 

consider the electrical circuit depicted in Figure 1 as an example. 

 
Figure 1. Simple Electric Circuit 

Central Concept: Kirchhoff's Voltage Law dictates the flow of current, 

asserting that the algebraic sum of voltages or voltage drops along any closed path 

within a network, oriented in a single direction, equals zero. This principle serves as 

the foundational concept for establishing the system of equations. The resulting 

system of linear equations follows a specific form due to this fundamental law. 

RI V=                                                       (15) 
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where R= Resistance (Ohms), I= Current (Ampere) and V= Voltage (Volts). In this 

scenario, equation (15) signifies the fundamental principle known as Ohm's Law, 

which relates the current (I) flowing through a resistor to its resistance (R) and the 

resulting voltage drop (V) across it. Ohm's Law serves as a cornerstone in electrical 

engineering, establishing a direct relationship between a circuit component's 

resistance, the current passing through it, and the voltage across it. By applying 

Ohm's Law, we can predict the behavior of current and voltage in response to 

variations in resistance or applied voltage, crucial for comprehending and 

engineering electric circuits. Employing Kirchhoff’s voltage law on each loop, the 

following equations will be constituted;  

Loop 1: 1 4 1 1 2 1 3 4 sI R I R I R I R V+ − − = −   

( )1 4 1 2 1 3 4 sR R I I R I R V+ − − = −                                                                  (16) 

Loop 2: 1 1 2 1 2 2 2 3 3 3 0I R I R I R I R I R− + + + + =   

( )1 1 1 2 3 2 3 3 0I R R R R I I R− + + + + =                                                             (17) 

Loop 3: 1 4 2 3 3 3 3 4 3 5 0I R I R I R I R I R− + + + + =  

( )1 4 2 3 3 4 5 3 0I R I R R R R I− + + + + =                                                            (18) 

Equations (16), (17), and (18) undergo transformation into a linear system, yielding: 

( )

( )

( )

1 4 1 4 1

1 1 2 3 3 2

1 3 3 4 5 3

0

0

 

sR R R R I V

R R R R R I

R R R R R I

+ − − −     
     

− + + =     
     − + +     

 

The augmented matrix of the linear system is obtained as; 

( )

( )

( )

1 4 1 4

1 1 2 3 3

1 3 3 4 5

0

0

sR R R R V

R R R R R

R R R R R

 + − − −
 

− + + 
 − + +   

The Gauss-Jordan elimination method is utilized to achieve the reduced-row 

echelon form of the matrix, which is subsequently employed to obtain the solution 

for the circuit, as exemplified in [7]. 
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2.3.1 Electric circuit algorithm 

Step 1: Describe the electric circuit components and connections. 

Step 2: Assign variables to unknown quantities in the circuit. 

Step 3: Apply Kirchhoff's laws to formulate equations. 

Step 4: Create a system of linear equations representing relationships. 

Step 5: Solve the matrix equation using linear algebra techniques to analyze voltages 

and currents. 

In the Electric Circuit Algorithm (Step 1), understanding Kirchhoff's laws is pivotal 

for analyzing electrical circuits. Kirchhoff's Voltage Law (KVL) dictates that the sum 

of voltage changes around any closed loop in a circuit equals zero, providing insights 

into voltage distribution. Similarly, Kirchhoff's Current Law (KCL) states that the 

total current entering a junction equals the total current leaving, facilitating the 

analysis of current flow. These laws serve as foundational principles, guiding 

engineers in formulating equations that represent circuit behavior. By adhering to 

Kirchhoff's laws, analysts can systematically analyze complex circuits, predict their 

behavior, and solve for circuit variables using linear algebra techniques. This 

understanding is crucial for designing, troubleshooting, and optimizing electrical 

circuits effectively. 

2.4 Network Representation of Traffic System 

The movement of traffic along the branches is examined to derive systems of 

linear equations. To establish these equations, an assumption is made that the traffic 

entering an intersection must exit that intersection, ensuring a balance where the 

flow into and out of each node is equal. Additionally, it is assumed that the total 

traffic entering the network equals the total traffic leaving the network, emphasizing 

the importance of a well-balanced network. To gain a deeper understanding of traffic 

flow dynamics, Figure 2 is analyzed. 
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Figure 2. A Traffic Flow Pattern 

The system of linear equations will have the form; Flow In Flow Out=  

At the 1st Node ; Flow In Flow Out=  

                    1 1 1 2a x b x+ = +  

                 1 2 1 1x x b a− = −                                                                     (19) 

At the 2nd Node; Flow In Flow Out=  

                  2 2 3 2x a x b+ = +  

                 2 3 2 2x x b a− = −                                                                    (20) 

At the 3rd Node ; Flow In Flow Out=  

                  3 3 4 3x a x b+ = +   

                3 4 3 3x x b a− = −                                                                    (21) 

At the 4th Node ; Flow In Flow Out=  

                 4 4 1 4x a x b+ = +
  

               4 1 4 4x x b a− = −
                                                                   (22) 

Using (3.40), (3.41), (3.42) and (3.43) to generate a linear system in the form Ax=b; 

1 1 1

2 2 2

3 3 3

4 4 4

1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1

x b a

x b a

x b a

x b a

−−     
     −−
     =
     −−
    

−−       
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The augmented matrix of the linear system is represented as; 

1 1

2 2

3 3

3 3

1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1

b a

b a

b a

b a

 − −
 

−− 
 −−
 

−−    

Utilizing the Gauss-Jordan elimination technique, the reduced-row echelon form of 

the matrix will be obtained, allowing for the solution of the traffic flow problem. 

2.4.1 Traffic flow algorithm 

Step 1: Define the traffic flow problem. 

Step 2: Gather relevant data on the road network. 

Step 3: Formulate the traffic flow problem mathematically. 

Step 4: Solve the system of equations using linear algebra techniques. 

Step 5: Interpret the mathematical solution to gain insights into traffic flow 

dynamics. 

In the Traffic Flow Algorithm (Step 1), understanding the importance of a balanced 

network is crucial for effectively modeling traffic dynamics. A balanced network 

ensures that the flow of traffic into and out of each intersection or node is equal, 

maintaining equilibrium and efficient traffic movement throughout the network. For 

example, in a well-balanced network, the total number of vehicles entering an 

intersection matches the total number exiting, preventing congestion or bottlenecks. 

This balance is essential for optimizing traffic flow, minimizing delays, and ensuring 

smooth transportation operations. By considering the significance of network 

balance, analysts can accurately model traffic flow dynamics, formulate systems of 

linear equations, and devise effective strategies for traffic management and urban 

planning. Therefore, ensuring a balanced network is a fundamental aspect of the 

Traffic Flow Algorithm, facilitating the accurate analysis and optimization of 

transportation systems. 

2.5 Numerical Methods for Linear Systems 

  Linear algebraic methods, notably Gaussian Elimination and Gauss-Jordan 

Elimination, play a crucial role in efficiently and accurately finding solutions to 

problems in various scientific, engineering, and mathematical fields. Gaussian 
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Elimination systematically transforms linear systems into upper triangular form, 

facilitating efficient determination of variable values through back substitution. 

Gauss-Jordan Elimination refines systems into reduced row-echelon form, simplifying 

solution extraction and providing comprehensive insights into system properties, 

even in complex scenarios. These methods rely on basic row operations and are 

fundamental in solving linear systems across diverse domains. In the Traffic Flow 

Algorithm (Step 1), employing techniques like Gaussian elimination or Gauss-Jordan 

elimination enhances comprehension and analysis of traffic flow dynamics, 

streamlining solution processes and optimizing transportation networks effectively. 

Understanding these numerical methods enhances the Traffic Flow Algorithm's 

efficacy in traffic flow dynamics analysis and optimization. 

3 NUMERICAL ANALYSIS 

Experiment 1: In a controlled experimental farm, there exists a substantial 

population of flowers encompassing all potential genotypes (AA, Aa, and aa) with 

initial frequencies denoted as f0 = 0.05, g0 = 0.90, and h0 = 0.05. It is assumed that 

these genotypes determine flower color, and each flower is fertilized by a flower 

sharing a similar genotype. The task is to derive an expression for the genotype 

distribution in the population after four generations and to make predictions 

regarding the long-term genotype distribution after an infinite number of 

generations. 

A concise explanation of the significance of the experiment involves 

investigating the dynamics of genotype distribution in a flower population across 

generations. Initially, the population encompasses three genotypes (AA, Aa, and aa) 

with frequencies f0 = 0.05, g0 = 0.90, and h0 = 0.05, respectively, presumed to 

determine flower color. Flowers with similar genotypes fertilize each other, and 

through genetic inheritance principles, the experiment aims to deduce the genotype 

distribution after four generations. This analysis offers insights into short-term 

genotype frequency changes and predicts long-term distributions. Understanding 

such dynamics has practical applications in agriculture and conservation, guiding 

breeding strategies, preserving genetic diversity, and effectively managing 

populations, thereby enhancing crop yields, biodiversity preservation, and ecosystem 

sustainability. 
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Experiment 2: Employ a linear algebra technique to construct a natural cubic 

spline that passes through the points (1, 2), (2, 3) and (3, 5). 

To accurately interpolate data points and capture the underlying behavior of the 

dataset in experiment 2, it is imperative to design a natural cubic spline. When 

piecewise cubic polynomial functions are connected smoothly across data points and 

function and derivative values remain continuous, the result is a natural cubic spline. 

Natural cubic splines offer a trustworthy representation of the data by minimizing 

interpolation mistakes and guaranteeing smoothness and continuity. Due to the 

ability to precisely approximate data and fit curves, this is advantageous for 

applications including image processing, computer graphics, and motion analysis. For 

instance, using the linear algebra approach, in the scenario where the points (1, 2), 

(2, 3), and (3, 5) are supplied, matrices are created and equations are solved to find 

the coefficients of the cubic spline that passes through these points. 

Experiment 3: Use linear algebra method to determine the three loop 

currents 1I , 2I  and 3I  in the circuit. 

Figure 3. Designed Circuit Problem 

 

Experiment 4: The network in the Figure 4.3 shows the traffic flow (in 

vehicles per hour) over several one-way street in the downtown area of a certain 

city during a typical lunch time. Determine the general flow pattern for the network. 

What is the maximum possible value of 4x ? 
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Figure 4. Traffic Flow Diagram 

 

The numerical solutions of experiment 1, 2, 3 and 4 are obtained using the 

algorithms described in (2.1.1), (2.2.1), (2.3.1) and (2.4.1), the results are shown in 

the tables below. 

 

Table 1. Computational Result for Experiment 1 

No. of Generation 

( n ) 
nf  ng

 nh
 

0 0.05 0.90 0.05 

1 0.28 0.45 0.28 

2 0.39 0.23 0.39 

3 0.44 0.11 0.44 

4 0.47 0.06 0.47 

  0.5 0 0.5 

 

Table 2. Computational Result of Experiment 2 

Constants Values 

0e
 

2 

0f  
3
4  

0g
 

0 

0h
 

1
4  

1e  
3 

1f  
3
2  

1g
 

3
4  

1h  
1
4

−
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Table 3. Comparative Result of Experiment 3 

Linear Algebra Method Iteration Time (millisecond) 

Gaussian Elimination - 0.00 

Gauss-Jordan Elimination - 0.00 

Jacobi 11 1.27 

Gauss-Seidel 6 1.17 

 

Table 4. Computational Result of Experiment 4 

Unknowns Flow Pattern 

1x  4600 x−
 

2x
 4400 x+

 

3x
 4300 x−

 

4x
 

Free 

5x
 

300 

 

Table 1 shows the expression for the genotype distribution of the population 

after 4 generation and after an infinite number of generations. In Table 1, the 

genetic distributions represent the frequencies of different genotypes (AA, Aa, and 

aa) within a population across multiple generations. As the generations progress from 

0 to 4, there are observable changes in the genotype frequencies. Initially, at 

generation 0, the frequencies are f0 = 0.05, g0 = 0.90, and h0 = 0.05 for genotypes 

AA, Aa, and aa, respectively. Subsequently, with each generation, there are shifts in 

these frequencies due to genetic recombination, mutation, selection, and other 

evolutionary processes. For instance, by generation 4, the frequencies have changed 

to f4 = 0.47, g4 = 0.06, and h4 = 0.47. These changes in genotype frequencies over 

generations provide insights into the genetic dynamics of the population, including 

patterns of inheritance, allele frequencies, and the impact of evolutionary forces. 

Analyzing these trends provides valuable insights into genetic dynamics, inheritance 

patterns, and population evolution. 

Table 2 presents the computed values of constants necessary for constructing 

a natural cubic spline in Experiment 2. These constants determine the coefficients 

of cubic polynomials, ensuring smooth interpolation between specified data points. 

The table's data facilitates accurate representation of data and curve fitting, 
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benefiting applications like image processing and motion analysis. The values of the 

constants have been calculated as depicted in Table 2. Substituting the values of the 

constants in (9), the natural cubic spline function will now be stated as;  

  

33 1
0 4 4

2 33 3 1
1 2 4 4

( ) 2 ( 1) ( 1) ,

( ) 3 ( 2) ( 2) ( 2) , 2 3

1  2S x x x

S x x x x

x

x

= + − + −

= + − + − −







− 

                                        

Table 3 showcases the application of different linear algebra techniques to 

determine the loop currents in Experiment 3's electric circuit problem. Direct 

methods like Gaussian Elimination and Gauss-Jordan Elimination, alongside iterative 

approaches such as Jacobi and Gauss-Seidel, were employed. These methods yield 

crucial insights into electric circuit analysis, elucidating how electric charge flows 

through the circuit's branches. Interpretations of the obtained loop currents, 

denoted as 1 2.06I A=  , 2 0.41I A= − , and 3 0.22I A= , provide clarity on current 

distribution, voltage drops, and power dissipation within the circuit. Such insights 

facilitate advancements in electrical engineering, aiding in circuit analysis, design, 

and troubleshooting by discerning component behavior and assessing circuit 

performance. Direct methods like Gaussian elimination and Gauss-Jordan elimination 

provide precise solutions efficiently, suitable for complex circuit configurations. 

These methods guarantee accurate results but have a computational complexity of 

O(n^3). In contrast, iterative methods such as Jacobi and Gauss-Seidel offer 

advantages for large-scale circuit problems, with a computational complexity of 

O(n^2). Although iterative methods may converge slowly, they are more suitable for 

systems with numerous equations.  

Table 4 depicts the flow pattern or general solution that describes the flow of 

the traffic system in experiment 4. Examining the flow pattern, it is observed from 

a practical point of view that all flow must be non-negative and this force 4 300x   

The unknowns in experiment 4 stand in for different sections or segments of 

the downtown road network. The numbers assigned to these unknowns in Table 4 

indicate the traffic flow (in vehicles per hour) along each road segment. Each 

unknown 1 2 3 4 5( , , , )x x x x and x corresponds to a particular road segment. For example, 

the variables 4x indicates freely fluctuating variables, and 1 2 3 5, ,x x x and x  reflect 

flow values on specific streets, respectively. The traffic patterns and directional flow 
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along these route segments are depicted in Table 4. Comprehending the road 

network's flow pattern is essential to enhancing traffic control tactics, enhancing 

transportation effectiveness, and mitigating urban congestion. Therefore, in order 

to improve the efficiency and security of urban transport systems, policymakers and 

urban planners can make better decisions by examining the flow patterns of road 

networks. Experiment 4 provides insights into the flow pattern of vehicles in a traffic 

network, offering practical implications for traffic system management. By analyzing 

the flow pattern, transportation authorities can identify congestion points, optimize 

signal timings, and improve overall traffic efficiency. This information informs 

decision-making in traffic management, leading to reduced travel times and 

enhanced transportation functionality. Therefore, the findings from Experiment 4 

contribute to the development of strategies for mitigating congestion and improving 

urban transportation networks. 

Recognizing the inherent constraints and assumptions within each application 

field is crucial when practically integrating linear algebra into areas such as traffic 

flow analysis, cubic spline interpolation, genetics, and electric circuits. The accuracy 

of genetic predictions depends on factors such as the complexity of genetic models, 

data availability, and assumptions regarding genetic inheritance patterns. In cubic 

spline interpolation, the assumptions of continuity and smoothness may be 

challenged by noisy or sparse data. In electric circuit analysis, simplifying circuit 

models is common, leading to discrepancies between theoretical predictions and 

real-world behavior. Similarly, traffic flow analysis often simplifies real-world traffic 

systems, assuming uniform traffic conditions and homogeneous behavior. 

Acknowledging these constraints enhances study transparency, aids in interpreting 

findings, and directs future research towards resolving these issues, thereby 

increasing the adaptability of linear algebraic approaches across various contexts. 

4 CONCLUSION 

In conclusion, this study delved into the practical integration of linear algebra 

across various domains, including genetics, cubic spline interpolation, electric 

circuits, and traffic flow analysis. Through detailed methodologies and analyses, key 

insights were gained. The investigation of genetic distributions over generations 

provided understanding of evolutionary processes and inheritance patterns. The 
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application of cubic spline interpolation facilitated precise data representation and 

curve fitting in diverse fields. Electric circuit analysis showcased the importance of 

linear algebra techniques in understanding current flow, voltage distribution, and 

circuit performance. Additionally, traffic flow analysis highlighted the role of linear 

systems in modeling and optimizing transportation networks. Overall, this study 

underscores the profound impact of linear algebra in solving complex real-world 

problems and advancing understanding across multiple disciplines, paving the way 

for future research and innovation in interdisciplinary studies. The implications of 

this research emphasize the indispensability of linear algebra in addressing complex 

real-world problems across diverse domains. By harnessing the computational power 

and analytical rigor of linear algebra, researchers and practitioners can gain deeper 

insights into the underlying mechanisms of biological systems, develop more 

accurate predictive models, design efficient electrical systems, and optimize 

transportation infrastructures. Ultimately, the integration of linear algebra 

contributes to advancements in science, engineering, and technology, driving 

innovation and progress in the modern world. 
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