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ABSTRACT 
 

The aim of this paper is to perform a State wise Analysis of the First and the Second COVID-19 Waves 

experienced by India using the Gompertz Curves and to estimate the maximum number of affected 

individuals for each wave with the best possible accuracy. A total of 21 large States are chosen for the 

analysis encompassing 97% of the Indian population. Data on cumulative number of cases is available 

till 31st October 2021. The entire dataset is segregated into two parts, i.e., the First and the Second 

Waves and then modelled individually by the Gompertz Curves with some generalizations.  

The predicted maximum cumulative numbers of COVID-19 affected individuals are found to be quite 

accurate. Besides, it is found to be possible to give a methodology how one can predict these numbers 

with a much smaller dataset. This is important as it can help the authorities in taking an informed 

decision on the efficient allocation of the limited health care resources.  
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1. INTRODUCTION AND OVERVIEW 
 

The current paper is a contribution to the literature on the analysis of the COVID-19 situation 

in India. We will explore how the different properties of the Gompertz Curves can be used as 

a convenient tool to study both the First and the Second Waves and offer an ingenious way to 

raise a timely alarm for a country to prepare itself. 

Most of the Indian States are heterogeneous and have large geographic areas and populations.  

It is not possible to plan the course of action by taking estimates from the aggregate all India 

data of COVID-19 infections, because of the inherent variations among the States of India. It 

may be possible that the aggregate data estimates hardly match that of any of the States. Hence, 

there arises a need to analyze the data for each State separately. Thus, we carry out the analysis 

by selecting 21 Indian States, accounting for about 97% of the total Indian population as per 

the 2020 estimates.  

 

Analytical research on COVID-19 can be primarily subdivided into two parts. A reasonable 

amount of literature has focused on proposing models for robust estimation of the daily 

infections while the other has attempted to model the cumulative number of infections. Given 
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these two broad categories of existing work, the present paper shall attempt to cater to the 

second by implementing the Gompertz Curves. One computational advantage of using the 

Gompertz Curves is that it can conveniently cater to both these objectives, thereby proving to 

be a handy tool to cater to both medical and economic aspects of the crisis. 

 

The paper's objective is not only to pointwise map out the trajectory of cumulative infections 

but also to provide a robust estimate of the “maximum” number of infections that can occur in 

a particular wave using a smaller dataset. This is crucial, especially from an economic 

viewpoint, as an early and accurate overall estimate of the maximum possible infections will 

result in a further efficient allocation of these scarce healthcare resources when limited data is 

available during the early phases of a new wave of rising infections. What we go on to discuss 

in the consecutive sections is how the Gompertz Curve as a tool stands out to distinctively 

analyze the objective of this paper. 

 

The literature on the use of Gompertz Curves in the context of COVID-19 is rather scarce. 

Mazuruk and Nenickova (2020) use the Gompertz Curve to model the COVID-19 cases of 

USA and also apply it to the data on COVID-19 deaths. They infer that in both cases, the 

Gompertz Curve has been able to provide a reasonably good approximation to the data. 

Mendietaet.al. (2020) also provide a similar conclusion from their analysis on Italy, Spain and 

Cuba. The authors had considered the Logistic curve and the Gompertz Curve and showed that 

for both countries, the Gompertz model had better estimates for the peak in confirmed cases 

and deaths. Rypdal and Rypdal (2020) make a detailed comparison of epidemic curves for 

Sweden and Norway using the Gompertz curves and they too observe that the epidemic curves 

for COVID-19-related deaths for most countries with a reliable reporting system are 

surprisingly well described by the Gompertz growth model. They also suggest that countries 

with rapid initial growth and slow later decay can be modelled satisfactorily using the 

Gompertz function. 

 

In the Indian context, Gupta and Kumar (2020) used exploratory data analysis to report the 

situation in the time period of January to March and used the ARIMA model to predict future 

trends. They inferred that a huge surge in the number of likely COVID-19-positive cases was 

predicted in April and May 2020. The average that was forecasted was the detection of 

approximately 7000 patients in a total span of 30 days in April 2020. However, in reality, the 

figures were much higher. 

 

A further enhanced study on India was done by Pandey et al. (2020). They used regression 

models for forecasting. According to them, expected cases may rise to about 5000 in a two-

week time period. This was far more accurate than the model predicted by Gupta and Kumar 

(2020) however actual scenario showed a bigger upsurge. 

 

Ghosh et al. (2020) take a unique approach to forecast COVID-19 infections in India. They 

consider the State wise data of infections and model them using the logistic and exponential 

curves. They infer that the predictions from one model might be misleading and hence suggest 

a linear combination of the exponential and logistic curves for the purpose of realistic 

predictions. 

 

Note that since the objective of our paper differs from those of the existing literature, our results 

are not directly comparable with the results of the corresponding papers. Although there is no 

gainsaying that a pointwise mapping of the COVID-spread is necessary, however, given the 
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huge population that needs to be catered to through relief measures in course of time, taking a 

myopic view and planning accordingly may lead to undesirable situations in the long run. 

 

The paper is divided into the following sections. Section 2 highlights some of the key aspects 

of the Gompertz Curves and our observations from all India data followed by the State-wise 

analysis in Section 3. Section 4 which is the key highlight of the study focused on the Prediction 

of the maximum number of cumulative infections using smaller datasets and develops a 

criterion for robust predictions and Section 5 concludes the paper by giving a summary of the 

findings. 

 

2. THE GOMPERTZ CURVES AND SOME OBSERVATIONS FOR INDIA 

 

2.1. Gompertz Curves and it’s properties 
 

For practical purposes, we consider the Gompertz Curve (GC) as: 

 

                                     𝐺𝐶: 𝑦 = 𝑒𝑎−𝑏𝑒−𝑐𝑡
 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏, 𝑐 > 0,                             … (2.1) 

 

Throughout the paper we will define: 

 

y = cumulative frequency of daily infections, 

 

N = Maximum cumulative frequency that can be attained (𝑒𝑎) i.e., the asymptote, 

 

b is the displacement on the x-axis and c is the growth rate.  Hence, essentially, b and c are the 

shape parameters. 

 

The following are some of the features of the Gompertz Curve: 

 

Feature 1: 

Equation (2.1) can also be extended to construct a generalized version of the Gompertz Curve 

as: 

𝑦 = 𝑒𝑎−𝑏𝑒𝑓(𝑡)
 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏 > 0, 

where,                               𝑓(𝑡) = 𝑐1𝑡 + 𝑐2𝑡2 + ⋯ + 𝑐𝑝𝑡𝑝 , 𝑝 ≥ 1,  is a polynomial in time. 

Winsor (1932) mentions that if we wish to use only a finite number of terms in the power series, 

we must keep an odd power of t for our highest term, so as to get a finite asymptote of y. Again, 

taking high degree polynomial involving many parameters may lead to estimation problems 

along with the efficiencies of the estimates. Hence, we consider our Generalized Gompertz 

Curve (GGC) as: 

 

                                   𝐺𝐺𝐶: 𝑦 = 𝑒𝑎−𝑏𝑒𝑐1𝑡+𝑐2𝑡2+𝑐3𝑡3

, 𝑎, 𝑏 > 0,                          … (2.2) 

For the GGC also, 𝑁 = 𝑒𝑎 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑐3 < 0. 



IER Volume 15, Issue 2 

48 

Feature 2: 

 

The Gompertz Curves provides us with an add-on benefit of not only enabling us to make short 

run predictions (say for a period of 10 days, 20 days etc.) but long-term predictions as well. 

This is perfectly aligned with the objective of our paper as we try to make robust estimations 

of the maximum possible cumulative infections which is given by lim
𝑡→∞

𝑦 = 𝑒𝑎. 

 

2.2. The Indian Scenario 

 

We first plot all India data over time as shown in Figure 2.1. As expected, the cumulative 

number of daily infections follows a sigmoid shape. However, since two major variants of 

COVID-19 drove the number of affected individuals, we observe two COVID-19 waves each 

having the expected sigmoid shape. Similar plots have been obtained for each of the States 

chosen for the analysis. 

 
Figure 2.1: Daily Cumulative Infections over Time at the All-India Level 

 

However, analysis of the two waves cannot be done together and hence there arises a need to 

split our datasets into 2 parts for the first and the second waves respectively. However, 

scientifically it has not been possible to demarcate a well-defined cutoff point for marking the 

end of the first wave and the beginning of the second wave. Hence, for the purpose of 

proceeding with the analysis, we need to subjectively decide on the cutoff points based on the 

above plot. It is worth mentioning that subjective determination of the cutoff points is not a 

point of grave concern because the predictions obtained by varying the cutoff points only differ 

marginally. The subjectively chosen cutoff points as per the author’s discretion for each of the 

chosen States has been given in the Appendix Table A1. 

 

The GC and the GGC can now be fitted to the data using the method of non-linear least squares 

(Gujarati et al.2021). However, we first need to obtain initial starting values of our parameters 

for non-linear least squares. 

 

We get the initial estimates by using the following linearized model. To illustrate the steps, we 

use the GC: 
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    𝑦 = 𝑒𝑎−𝑏𝑒−𝑐𝑡
 

ln(𝑦) = 𝑎 − 𝑏𝑒−𝑐𝑡 

ln(𝑎 − ln(𝑦)) = ln 𝑏 − 𝑐𝑡 

ln(�̅� − ln(𝑦)) = b∗ +𝑐∗𝑡 ,                                              … (2.3) 

Hence with known 𝑎 ̅ we can obtain 𝑏 = 𝑒𝑏∗
 and 𝑐 = −𝑐∗ 

 

Similarly, the expression for the GGC becomes: 

              ln(�̅� − ln(𝑦)) = b∗ +𝑐1𝑡 + 𝑐2𝑡2 + 𝑐3𝑡3 ,                   … (2.4) 

Similarly in this case, with known 𝑎 ̅ we can obtain 𝑏 = 𝑒𝑏∗
, 𝑐1, 𝑐2, 𝑐3. 

 

For obtaining the starting values of  𝑎 ̅, we proceed in the following way: 

 

For 𝑎, we know 𝑦𝑚𝑎𝑥 = 𝑒𝑎. From the dataset, this can be taken as the cumulative number of 

infections on the last day of the wave. We increment this by 20% and initialize a as �̅� =
ln (1.2 𝑦𝑚𝑎𝑥). However, for partial data one may not be able to guess the initial estimate of �̅�, 

and must take several trial values of �̅� and choose the one which gives the least value of the 

sum of the squared errors in the estimation of equation (2.4). 

 

3. THE STATE WISE ANALYSIS 

 

Having listed the 21 States under consideration and our observations from the all-India data, 

we can now evaluate whether the Gompertz Curve gives a reasonably good fit on the State 

level data. Data used in this paper pertains to the cumulative number of infections till 31st 

October 2021.  

 

We will now use the method of nonlinear least squares for fitting the curves for both the Waves 

by plugging in the initial estimates. Hence, the two models under our consideration are: 

 

➢ The Gompertz Curve, 𝐺𝐶: 𝑦 = 𝑒𝑎−𝑏𝑒−𝑐𝑡
, 

➢ The Generalized Gompertz Curve, 𝐺𝐺𝐶: 𝑦 = 𝑒𝑎−𝑏𝑒𝑐1𝑡+𝑐2𝑡2+𝑐3𝑡3

, 
 

Which model will fit better is decided on the basis of �̂�, the standard deviation of the residuals, 

which is obtained as �̂� = √
𝑅𝑆𝑆

𝑇−𝑘
 (where, RSS is the Residual Sum of Squares from the fitted 

regression, T is the total number of data points and k indicates the number of regressors), as 

presented in the Tables 1 and 2. 

 

Hence, we can observe unanimously that the GGC is a better fit in all the States for both the 

waves. GGC fit is a significant improvement over the GC fit. It also follows from the fact that 

at least one of 𝑐2 or 𝑐3 is significant for each state (not shown here). Note that only the �̂� values 

are reported as our conclusions remains unchanged with AIC criterion.  

 

A summary of our results from the GGC Fit on the State level data has been given in the 

Appendix Tables A2, A3. 
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4. PREDICTION OF THE MAXIMUM CUMULATIVE INFECTIONS THROUGH A 

SMALLER DATA SET 

 

Given the devasting intensity to which we have witnessed this pandemic, the fundamental 

target of any analyst would be to make an attempt to provide robust estimates of the maximum 

number of people that are expected to get affected by a COVID-19 wave as soon as possible.  

 

The objective of the present section is not merely to predict the cumulative number of infections 

on the basis of the fitted curve but also to give reasonably good estimates through a set of data 

with fewer number of observations. In the initial days of the onset of COVID-19; the 

government and other administrative agencies were interested in having a robust estimate of 

the maximum possible infections in each of the States with the limited data that was available. 

Hence, the current discussion provides some insights on how we can obtain the best possible 

prediction of the maximum possible infections with a smaller subset of dataset of only a few 

initial days. Since the GGC is more appropriate for modelling COVID-19 infections in the 

Indian States, for prediction purposes we shall continue with the GGC in this section.  

 

Suppose, our objective is to find the time point that gives the best possible prediction for a 

given subset of the available data: {𝑦𝑡} such that 𝑡 ∈ {𝑡1, 𝑡1 + 1, ⋯ , 𝑡2} where 𝑡2 < 𝑇.  Let us 

define: 

 

𝑁𝑇 = predicted maximum cumulative infections from the entire dataset            
 

Thus, 𝑁𝑇 = 𝑒𝑎�̂�  

 

Also let us denote: 

 

𝑁𝑡 = Predicted maximum cumulative infections obtained from the data till time t, where 𝑡 ∈
{𝑡1, 𝑡1 + 1, ⋯ , 𝑡2}. So, 𝑁𝑡 = 𝑒𝑎�̂�  

 

The optimum t value for which | 𝑁𝑡 − 𝑁𝑇| is minimum cannot be obtained theoretically simply 

because 𝑁𝑇 is not known in this case. All we can do is to give some empirical techniques and 

choose the best given the data. The technique is to be empirically tested for the data of each 

State to arrive at some conclusion. Before we go into our proposed technique let us try to 

visualize the situation. Suppose 𝑡0 is the optimum value, i.e., 𝑀𝑖𝑛𝑡| 𝑁𝑡 − 𝑁𝑇| is attained at t = 

𝑡0. However, it is important to note that although | 𝑁𝑡 − 𝑁𝑇| should be a monotonically 

decreasing function of t, this need not necessarily be true empirically. To illustrate, let us 

consider the following plots from the analysis of the Second Wave for All-India data for the 

first 80 days, as observed from Figures 4.1 and 4.2.  
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Figure 4.1: A Time Series Plot of | Nt − NT| for the 

Second Wave for All-India 

 

 

Figure 4.2: Daily Cases at the All-India Level for 80 

days in the Second Wave 

 

 

A possible reason for this counterintuitive observation can be attributed to the fact that COVID-

19 infections had not begun in all parts of the country at around the similar time. Similar plots 

have been obtained with the State-level data as well. Further, at the onset, the urban areas had 

witnessed a higher infection rate as compared to their rural counterparts. These heterogeneities 

can only be eliminated by performing the analysis on the data for a further granular level for 

each of the states, which, however is not possible due to the lack of reliable data. Hence, from 

the above Figure 4.1 and 4.2, it is clear that taking more data does not necessarily lead to better 

predictions. However, we can make some critical observations on the above plots. It is clear 

that | 𝑁𝑡 − 𝑁𝑇| tends to get overestimated when the data shows a “sudden jump/spike” in the 

number of daily cases and underestimated when there is a sudden fall in the data of daily 

number of infected cases. Sudden rise/fall is reflected by the high positive/negative values of 

the consecutive differences. This leads to a criterion which is neither close to the minimum or 

maximum values of the first differences. Hence, to get robust predictions, criterion should be 

taken in such a manner that will be immune to drastic fluctuations and that is nothing but the 

median or close the median values of the first differences. 

 

We proceed by fixing an interval {𝑡1, 𝑡1 + 1, ⋯ , 𝑡2}. Define 𝑐𝑡 as the cumulative number of 

cases at a time point t, 𝑡 = 1,2, … , 𝑇. Instead of finding the daily cases by taking the difference 

𝑐𝑡 − 𝑐𝑡−1, we take the daily proportions pt =
ct−ct−1

ct−1
  to make it comparable over different time 

points as the cumulative values are ever non-decreasing. We now take the first difference of pt 

as 

∆pt = (pt − pt−1), 
where  is the first difference operator. Since pt is the daily proportion of infected persons, 

high positive values of ∆pt reflects sudden jump and high negative values of ∆pt reflects 

sudden fall, we take the median of the ∆pt values and take the corresponding t value as the 

desired time point. 

 

Another criterion which follows from the same logic described above is to get the optimum t 

value by minimizing the absolute values of the first differences. We may call it Minimum 

Absolute First Difference (MIFD) criterion. 
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The above-mentioned reasonings are justified when the daily infection rates have chances to 

rise as well as to fall. But in the beginning of the wave, i.e., after one month from the start of 

the wave, say, the daily infection rates will only rise. Hence, there is no negative differences. 

Given that daily infection data are increasing, MIFD criterion should be almost same as the 

Minimum criterion. So, instead of MIFD we may take the t value for which ∆pt is the 

minimum. However, it may not be a sound criterion to take, because in this case, for optimum 

t, pt will be almost same as pt−1. The usual growth of the daily infections is not reflected here. 

 

In any case, let us see the efficacy of the Median and the Minimum criteria for the data of each 

of the chosen States for both the waves. t1 and t2 are taken as 30 and 40 as illustration. The 

findings are summarized in Tables 3 and 4. Note that NT
act refers to the actual maximum number 

of cumulative cases for each of the waves as obtained from the data. This is essentially the 

cumulative infections as observed on the last day of a particular wave. 

 

One can see from Tables 3 and 4, that except in one state each in the first and the second waves, 

percentage errors in the predictions by Median criterion are far less than that Minimum 

criterion. Thus, for both the Waves 1 and 2, the Median criterion gives better predictions than 

the Minimum criterion. 

 

5. DISCUSSION AND CONCLUSION 

 

Very recently the world has faced a sequence of waves of COVID-19 pandemic. India is too 

not an exception. Since complete State wise data on cumulative number of reported COVID-

19 cases for the first two waves are available for India, we have made an attempt to find out 

the maximum number of COVID-19-affected persons using an appropriate model. Since 

Gompertz curve is known to give good fit to the cumulative number of affected persons in 

similar situations, we used the same, but generalized it so that the model accommodates the 

inherent variations across the States in India, and gives better fit to the data for each of the 

States. However, non-medical interventions like lockdowns and quarantines could not be 

incorporated in the model. Further, daily state level data on the spatial distribution of the 

COVID-19 variants was also not available. This can be seen as a limitation of the study. 

 

The GGC was fitted to the data of major 21 States in India and the fit was very good for each 

State for both the waves. Before going to the State level data, we carried out the fitting for the 

all-India data, and the Generalized Gompertz curve gave very good fit to the data in both the 

waves (Pal and Adhikary, 2022). 

 

Along with the goodness of fit, we were also concerned with the robustness of the fitting. The 

key finding of our paper is that the GGC is seen to be capable of being robust for long run 

predictions (i.e., estimating of the “maximum” number of infections that can occur in a 

particular wave) even with smaller datasets.  In order to get an idea how robust it is, we carried 

out predictions using smaller datasets, but the choice of cut-off points of time has been a major 

problem, because the daily affected number of cases have up and down movements affecting 

the cumulative values also especially for the time points in the beginning of the wave. To tackle 

this problem, instead of taking a single point, we have taken an interval of some consecutive 

time points and have devised a criterion, which gives reasonably good fit to the entire data set, 

especially the maximum number of persons who are likely to be affected in each wave. The 

suggested cut-off point is the time point which corresponds to the median of the first differences 

of the proportional changes of cumulative number of COVID-19 affected persons. As a similar 

methodology is yet not available in the literature, the efficacy of the Median criterion is tested 
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against an alternative criterion (MIFD) as discussed in Section 4 of this paper. The Median 

criterion has turned out to be the best and is seen to be performing reasonably well for both the 

First and the Second Waves with a prediction accuracy of around 85% for both the waves even 

with as less data as the initial 30-40 days of onset of the wave as shown in Table 3 and 4. 

 

A closer inspection of data also reveals that more data need not necessarily mean better 

predictions. Once the time interval is chosen, the median criterion always gives a unique time 

point such that if we take data till this point, we will get reasonably good prediction for the 

given limited dataset. The criteria can be easily extended to any other time interval, hence is 

quite flexible. As a part of future research, the methodology can be readily used to study the 

COVID-19 waves of other countries and the impact of vaccinations can also be incorporated 

as an extension to enhance the efficacy of the median criterion. 

 
Availability of data and materials: The COVID-19 Dataset on India is available at: COVID-19 India 

API accessed on 29th January 2022. The updated dataset can be downloaded from: 

https://data.covid19india.org/ 

 
 

 

Table 1: Fitted Models for the First Wave 

States �̂�𝑮𝑪 �̂�𝑮𝑮𝑪 

Telangana 2255 1654 

Assam 4292 1544 

Jharkhand 1846 1659 

Bihar 4817 3983 

Madhya Pradesh 5064 4329 

Himachal Pradesh 2250 876.3 

Gujarat 2192 2040 

Chhattisgarh 3665 3174 

West Bengal 10520 4749 

Odisha 5534 2213 

Uttarakhand 2371 2248 

Andhra Pradesh 5702 4370 

Karnataka 14290 10270 

Maharashtra 48990 21070 

Punjab 3867 3813 

Tamil Nadu 7544 4360 

Haryana 5393 4524 

Uttar Pradesh 7661 7245 

Rajasthan 6978 3328 

Delhi 27190 8228 

Kerala 14690 12820 
  

https://data.covid19india.org/
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Table 2: Fitted Models for the Second Wave 

State �̂�𝑮𝑪 �̂�𝑮𝑮𝑪 

Telangana 8433 2150 

Assam 3515 3085 

Jharkhand 3155 1030 

Bihar 4614 1532 

Madhya Pradesh 12440 2277 

Himachal Pradesh 3899 2025 

Gujarat 14850 2667 

Chhattisgarh 9552 3981 

West Bengal 12670 5505 

Odisha 5436 4779 

Uttarakhand 4386 1383 

Andhra Pradesh 10410 9589 

Karnataka 25580 15840 

Maharashtra 77840 50410 

Punjab 16350 11240 

Tamil Nadu 35330 12340 

Haryana 12590 1465 

Uttar Pradesh 77840 50410 

Rajasthan 12370 1956 

Delhi 12680 3670 

Kerala 83030 13830 

 
Table 3: Comparison of the median and the MIFD criteria for the First Wave 

States 𝐍𝐓
𝐚𝐜𝐭 𝐭𝐦𝐞𝐝 

Percentage 

error 
𝐭𝐦𝐢𝐧 

Percentage 

error 
Telangana 298057 40 13.75 33 41.64 

Assam 216992 40 14.11 32 37.88 

Jharkhand 119283 40 15.64 33 48.11 

Bihar 261068 36 17.31 32 47.04 

Madhya Pradesh 253405 39 13.69 38 45.72 

Himachal Pradesh   57296 38 17.69 34   6.51 

Gujarat 261838 31 18.06 30 42.15 

Chhattisgarh 295949 30 15.52 40 41.78 

West Bengal 573387 38 15.97 30 49.20 

Odisha 336460 37 13.60 40 38.85 

Uttarakhand 96964 38 14.46 30 38.91 

Andhra Pradesh 887066 34 16.39 30 43.02 

Karnataka 934576 37 15.31 30 47.26 

Maharashtra 1906371 40 17.57 35 39.94 

Punjab 171522 39 14.98 30 45.25 

Tamil Nadu 837832 39 15.79 35 42.97 

Haryana 266309 33 18.00 40 46.77 

Uttar Pradesh 596528 35 14.71 31 39.17 

Rajasthan 318021 35 16.47 33 45.60 

Delhi 635639 32 17.34 30 44.50 

Kerala 1167191 36 20.88 34 48.57 
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Table 4: Comparison of the median and the MIFD criteria for the Second Wave 

States 𝐍𝐓
𝐚𝐜𝐭 𝐭𝐦𝐞𝐝 

Percentage 

error 
𝐭𝐦𝐢𝐧 

Percentage 

error 

Telangana 669932 35 2.91 34 18.93 

Assam 576149 31 22.81 35 63.86 

Jharkhand 347440 32 6.03 40 33.95 

Bihar 725235 30 0.75 35 63.09 

Madhya Pradesh 791970 31 25.46 38 3.630 

Himachal Pradesh 206589 39 24.97 36 68.97 

Gujarat 825085 34 20.22 30 57.67 

Chhattisgarh 1003439 30 1.52 38 68.06 

West Bengal 1534999 31 12.67 40 43.97 

Odisha 990075 38 10.44 33 57.46 

Uttarakhand 342502 33 28.66 30 47.64 

Andhra Pradesh 1987051 34 12.88 30 54.80 

Karnataka 2921049 31 14.65 40 52.46 

Maharashtra 6363442 34 16.79 31 67.03 

Punjab 599678 36 20.03 33 63.55 

Tamil Nadu 2581094 37 15.68 30 39.21 

Haryana 770130 33 24.76 31 63.99 

Uttar Pradesh 1708836 34 21.05 38 63.83 

Rajasthan 953870 36 0.26 33 64.44 

Delhi 1436889 30 0.21 35 53.02 

Kerala 4283494 38 14.54 34 41.20 

 

  



IER Volume 15, Issue 2 

56 

APPENDIX: 
 

Table A1: Subjectively determined cutoff points for the First Wave and the Second Wave 

States 
First Case 

Reported on: 

Start of 

First Wave 

End of 

First Wave 

Start of 

Second Wave 

End of 

Second Wave 

Telangana 2 March 2020 
21 March 

2020 

24 February 

2021 

26 March 

2021 

22 October 

2021 

Assam 31 March 2020 
19 May 

2020 

24 January 

2021 

13 February 

2021 

10 August 

2021 

Jharkhand 31 March 2020 
19 April 

2020 

13 February 

2021 

15 March 

2021 

10 August 

2021 

Bihar 22 March 2020 
10 April 

2020 

4 February 

2021 

24 February 

2021 
9 August 2021 

Madhya Pradesh 20 March 2020 
8 April 

2020 

23 January 

2021 

12 February 

2021 
9 August 2021 

Himachal Pradesh 14 March 2020 
22 May 

2020 

27 January 

2021 

16 February 

2021 
3 August 2021 

Gujarat 19 March 2020 
7 April 

2020 

1 February 

2021 

11 February 

2021 

10 August 

2021 

Chhattisgarh 19 March 2020 
27 May 

2020 

22 January 

2021 

2 February 

2021 

11 August 

2021 

West Bengal 17 March 2020 
5 April 

2020 

19 February 

2021 

11 March 

2021 

10 August 

2021 

Odisha 16 March 2020 
14 May 

2020 

18 February 

2021 

10 March 

2021 

11 August 

2021 

Uttarakhand 15 March 2020 
23 May 

2020 

17 February 

2021 

10 March 

2021 

11 August 

2021 

Andhra Pradesh 12 March 2020 
31 March 

2020 

25 January 

2021 

14 February 

2021 

11 August 

2021 

Karnataka 9 March 2020 
28 March 

2020 

22 January 

2021 

11 February 

2021 

10 August 

2021 

Maharashtra 9 March 2020 
7 April 

2020 

23 December 

2020 

12 January 

2021 

10 August 

2021 

Punjab 9 March 2020 
7 April 

2020 

22 January 

2021 

12 February 

2021 

11 August 

2021 

Tamil Nadu 7 March 2020 
26 March 

2020 

30 January 

2021 

20 February 

2021 

11 August 

2021 

Haryana 4 March 2020 
23 March 

2020 

17 January 

2021 

6 February 

2021 

11 August 

2021 

Uttar Pradesh 4 March 2020 
22 April 

2020 

17 January 

2021 

6 February 

2021 

11 August 

2021 

Rajasthan 3 March 2020 
22 March 

2020 

5 February 

2021 

26 February 

2021 

11 August 

2021 

Delhi 2 March 2020 
21 March 

2020 

4 February 

2021 

24 February 

2021 

11 August 

2021 

Kerala 30 January 2020 
16 April 

2020 

11 April 

2021 
21 April 2021 

8 September 

2021 
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Table A2: Parameter Estimates from the GGC Model for the First Wave 

States 𝐚 𝐛 𝐜𝟏 𝐜𝟐 𝐜𝟑 

Telangana 12.71 8.68 -0.003 -0.000096 -0.00000020 

Assam 12.28 6.03 -0.0128 -0.000028 -0.00000049 

Jharkhand 11.68 4.88 0.0177 -0.000295 -0.00000057 

Bihar 12.53 42.76 -0.034 0.000041 -0.0000000008 

Madhya Pradesh 12.60 4.49 0.003 -0.000098 -0.00000017 

Himachal Pradesh 10.96 1678.26 -0.1456 0.001066 -0.00000279 

Gujarat 12.61 5.38 -0.0115 0.000016 -0.00000007 

Chhattisgarh 12.78 24.61 -0.0273 0.000023 -0.00000003 

West Bengal 16.05 12.52 -0.0099 0.000016 -0.0000000005 

Odisha 12.72 4.33 0.0079 -0.000214 -0.00000029 

Uttarakhand 11.54 36.85 -0.0474 0.000197 -0.00000042 

Andhra Pradesh 13.74 7.21 0.0179 -0.000314 -0.00000066 

Karnataka 13.88 4.62 0.0188 -0.000262 -0.00000054 

Maharashtra 14.43 6.91 -0.0174 0.000108 -0.00000061 

Punjab 12.07 11.05 0.0008 -0.000159 -0.00000031 

Tamil Nadu 13.75 6.41 -0.0019 -0.00011 -0.00000024 

Haryana 12.55 19.06 -0.0271 0.000122 -0.00000034 

Uttar Pradesh 13.34 6.70 -0.0004 -0.00015 -0.00000032 

Rajasthan 12.70 15.05 -0.0263 0.000134 -0.00000038 

Delhi 13.37 132.59 -0.0815 0.000521 -0.00000120 

Kerala 14.01 405.63 -0.0573 0.000197 -0.00000030 

 
Table A3: Parameter estimates from the GGC Model for the Second Wave 

States 𝐚 𝐛 𝐜𝟏 𝐜𝟐 𝐜𝟑 

Telangana 17.30 4.85 -0.0043 0.000028 -0.00000006 

Assam 13.24 0.92 0.0017 0.000055 -0.00000143 

Jharkhand 12.75 1.02 0.0045 -0.000039 -0.00001028 

Bihar 13.56 0.8 0.0412 -0.001027 0.00000418 

Madhya Pradesh 13.68 0.94 0.0326 -0.000776 0.00000298 

Himachal Pradesh 12.51 1.24 0.0256 -0.000579 0.00000225 

Gujarat 13.74 0.98 0.0303 -0.000710 0.00000269 

Chhattisgarh 13.93 0.98 0.0316 -0.000667 0.00000235 

West Bengal 14.30 0.86 0.0289 -0.000884 0.00000383 

Odisha 13.79 0.96 0.0142 -0.000370 0.00000010 

Uttarakhand 12.74 1.27 -0.0068 0.000521 -0.00001247 

Andhra Pradesh 14.91 1.07 0.0139 -0.000286 0.00000101 

Karnataka 15.16 1.15 0.0223 -0.000467 0.00000168 

Maharashtra 15.83 1.12 0.0164 -0.000322 0.00000096 

Punjab 13.50 1.24 0.0161 -0.000461 0.00000177 

Tamil Nadu 15.24 1.39 0.0155 -0.000347 0.00000130 

Haryana 13.75 0.98 0.0278 -0.000575 0.00000207 

Uttar Pradesh 14.47 0.85 0.0362 -0.000748 0.00000271 

Rajasthan 13.83 0.86 0.0413 -0.001075 0.00000445 

Delhi 14.18 0.87 -0.0184 0.001008 -0.00001573 

Kerala 15.50 1.54 -0.0258 0.000273 -0.00000131 
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