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In the realm of multi-criteria decision making (MCDM), this study introduces the Measurement Relying 

on the Impacts of an Exponential Curve Function (MIEXCF) as a novel approach for objectively 

determining criteria weight coefficients. Utilizing exponential curve interactions among criteria, 

MIEXCF is designed to enrich the MCDM literature. The dataset comprises criterion values extracted 

from Global Innovation Index (GII) evaluations for 19 G20 members. Results demonstrate the efficacy 

of MIEXCF in objectively deriving criteria weights for diverse nations. Comparative analyses with other 

methods (ENTROPY, CRITIC, SD, SVP, LOPCOW, MEREC) further validate MIEXCF's credibility, 

reliability, and stability. Notably, the simulation analysis indicates MIEXCF's effectiveness in discerning 

criteria weights and stability across scenarios. In conclusion, MIEXCF stands out as a robust objective 

criterion weighting technique, offering substantial contributions to exponential functions and the broader 

MCDM literature. 
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1. INTRODUCTION 

Multi-criteria decision making (MCDM) is a field utilized in intricate decision-making processes and 

mathematical modelling, where a multitude of factors are considered. This method aims to assess and rank 

alternatives based on the preferences and priorities of decision-makers. To achieve this, it is imperative to 

ascertain the weights of the criteria that reflect the preferences of the decision-makers (Bircan, 2020). 

In the extensive landscape of (MCDM) literature, one encounters a plethora of techniques (such as ENTROPY, 

CRITIC, SD, SVP, MEREC, LOPCOW) designed to ascertain weight coefficients (Keleş, 2023). Within this 

body of literature, the objective weights assigned to criteria exhibit two fundamental characteristics. The first 

pertains to the degree of contrast in the performance of decision alternatives concerning each criterion, 

encapsulating the disparity between maximum and minimum values across the criteria. The second 

characteristic relates to the distinctiveness or conflict among these criteria. By elucidating and leveraging these 

inherent characteristics embedded in the data defining the multi-criteria problem, decision-makers can derive 

valuable insights to inform their decision-making process (Ecer, 2020). Within this framework, criteria that 

exhibit a heightened degree of interdependence can manifest a more pronounced distinctiveness when 

compared to other criteria in terms of their discriminative capacity. Beyond these established methods, such 

as MIEXCF (Measurement Relying on the Impacts of an Exponential Curve Function), this study introduces 

a novel approach for calculating objective weight coefficients for variables based on exponential curve 
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functions. This method facilitates the analysis and modelling of variables in light of their exponential curve 

relationships. Consequently, the research centers its attention on exploring the analytical and modeling 

potential inherent in exponential curve, as these functions have a well-documented history of utility in diverse 

domains and have proven effective in addressing various problem-solving challenges (Chakrabarty & Rahman, 

2007). 

The primary objective of composing this article is to introduce an alternative and objective approach for 

determining weighting coefficients of criteria within the domain of MCDM methods, with a foundation in 

exponential curve measurement. It has come to our attention that the existing literature contains methods that 

rely solely on exponential curve calculations and are marked by limitations. Therefore, this study puts forth a 

novel method. The core aim of this research is to establish a framework that effectively captures the impact 

values among criteria through exponential curve functions, transforms these impact values into criteria 

weighting coefficients, and thereby produces dependable outcomes. The method outlined in this article is 

expected to more precisely reflect the intensity of the interplay among criteria, facilitating the calculation of 

criteria weighting coefficients. Consequently, this study is perceived as a valuable addition to the existing body 

of literature concerning methods for computing criteria weighting coefficients, offering a fresh perspective to 

the field. 

Within this context, the research is two goals. First, it aims to introduce a novel method for computing the 

weight coefficients of criteria concerning decision alternatives within the realm of MCDM. The second 

objective is to promote the utilization of exponential curve functions and enhance awareness of their inherent 

potential, given their significant role in addressing and dissecting complex problems. To achieve these goals, 

the research literature elucidates both objective weighting methods and the attributes of exponential curve 

functions. In this context, the method section of the study elucidates objective criteria weight coefficients, the 

exponential curve function, relationship between calculating Criterion Weights and exponential curve 

function, data set and description of the proposed method (MIEXCF). According to the proposed method, the 

weights of criteria for the 19 countries in G20 group, demonstrating validity and reliability, are measured and 

ranked using the Logistic Performance Index data for these countries. Secondly, sensitivity analyses are 

conducted to assess the method's sensibility. Subsequently, thirdly, comparative analyses are performed to 

gauge the method's credibility and reliability levels. Finally, simulation analyses are provided to deconstruct 

the criteria weights and establish the stability level of the method. 

2. MATERIAL AND METHOD 

2.1. Methods for Calculating Criterion Weights in the Scope of MCDM 

The process of choosing among different alternatives is a crucial aspect of many decision-making procedures. 

However, in such situations, it often happens that each alternative exhibits varying performances on different 

criteria. Therefore, accurately determining the relative importance of these criteria is essential for effectively 

comparing the performance of decision alternatives and ultimately selecting the most suitable one (Saaty, 

2008). This is because, traditionally, the significance of criteria is established by assigning weight coefficients 

in MCDM problems (Ecer, 2020). 

Subjective weight coefficients are primarily derived from the personal experiences and evaluations of decision-

makers, making them inherently dependent on individual opinions. Consequently, these values tend to vary 

among different individuals (Baş, 2021). These weight coefficients are typically determined based on expert 

judgments. However, relying solely on subjective assessments by experts can introduce errors and biases into 

the decision-making process. In contrast, objective methodologies do not account for decision-makers' 

inconsistencies and uncertainties. Instead, they leverage mathematical models and the information within the 

decision matrix to compute the criteria weights. In essence, objective weighting techniques consider the 

underlying data structure in the evaluation process (Paksoy, 2017; Arslan, 2020; Demir et al., 2021). 

Within the realm of MCDM literature, one encounters a variety of objective weighting methods, including 

CRITIC (Criteria Importance Through Inter Criteria Correlation),  ENTROPY, CILOS (Criterion Impact 

Loss), IDOCRIW (Integrated Determination of Objective Criteria Weights), SVP (Statistical Variance 

Procedure), SD (Standard Deviation), MEREC (Method Based On Removal Effects of Criteria), LOPCOW 
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(Logarithmic Percentage Change-driven Objective Weighting) and,  SECA (Simultaneous Evaluation of 

Criteria and Alternatives) (Ecer, 2020). The CRITIC method, in particular, operates on the principle of utilizing 

information inherent in a system. Accordingly, the more disorder or distinctiveness a criterion exhibits 

compared to others, the greater its importance becomes. Thus, the CRITIC method relies on the 

interrelationships among criteria. This technique involves scrutinizing the correlations between criteria to 

pinpoint any inconsistencies among them. Subsequently, these contradictions related to the criteria are 

weighted using the standard deviation, thus facilitating the determination of criterion weight coefficient values. 

The CRITIC method commences with the creation of a decision matrix. Next, the normalized values of this 

matrix are computed. By examining the correlations among the criteria based on these normalized values, the 

criteria weights can be quantified (Diakoulaki et al., 1995). 

The ENTROPY method proves to be a valuable tool in the decision-making process. In this approach, after 

constructing the decision matrix, the standard values of the decision matrix and the ENTROPY measure of the 

criteria are employed to ascertain the ENTROPY-based criterion weights (Ayçin, 2019). 

Within the CILOS method, the relative importance of criteria hinges on the degree of impact deviation of other 

criteria from their respective ideal maximum and minimum values. In essence, if a criterion exhibits a lower 

impact deviation, its weight coefficient is correspondingly increased. The methodology involves a step-by-

step process, including the calculation of the decision matrix, normalization, square matrix, and the weight 

system matrix values. Subsequently, a system of linear equations is solved to determine the weight coefficients 

for the criteria (Zavadskas & Podvezko, 2016; Sel, 2020). 

The IDOCRIW method is a fusion of both the ENTROPY and CILOS methods. This approach centers around 

the determination of the relative impact of a missing index. Initially, the weight coefficients for the criteria are 

ascertained through the ENTROPY and CILOS methods, utilizing the decision matrix values. Subsequently, 

the ENTROPY and CILOS weights are integrated to yield the IDOCRIW weights (Zavadskas & Podvezko, 

2016). 

SVP, as a target weighting method, is designed to provide objective weights for the computation of criterion 

weights or their relative importance levels (Nasser et al., 2019). This method quantifies the weight values 

assigned to criteria objectively, ensuring that they are not influenced by expert opinions or subjective 

evaluations. The SVP method's approach to calculating criterion weights is rooted in the variance metrics 

associated with these criteria (Gülençer & Türkoğlu, 2020) After determining the variance values for each 

criterion, the weights for individual criteria are computed by dividing the variance value of each criterion by 

the total variance value encompassing all criteria. In essence, the SVP method serves as an objective approach 

for determining weights, enabling the computation of criterion weights or their significance levels based on 

variance values linked to the criteria (Odu, 2019). 

The SD method relies on assessing the distance of criteria values from the arithmetic mean of these criteria. 

To apply this method, the initial step involves normalizing the decision matrix using the values contained 

within it. Subsequently, the standard deviation values for each criterion are computed, serving as a basis for 

determining the criteria weights (Uludağ & Doğan, 2021). In the case of the SVP method, criterion weights 

are determined by calculating the variances of the criteria using the values from the decision matrix (Demir et 

al., 2021). 

Within the MEREC method, much like other weighting methodologies, the process commences with obtaining 

the decision matrix and its normalized counterpart. Following this, the total performance values of the decision 

alternatives are computed using a structure based on natural logarithms. Subsequently, by considering the value 

of each decision alternative, adjustments in the performance values of the other decision alternatives are 

recalculated based on the natural logarithm. Towards the conclusion of this method, the weight values for the 

criteria are determined through the calculation of the removal effect on each criterion, specifically the sum of 

absolute deviations. Furthermore, in this method, as the impact of criteria on decision alternatives grows, the 

weight coefficients of the criteria also increase (Keshavarz-Ghorabaee et al., 2021). 
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The LOPCOW method involves the integration of data from various dimensions to derive appropriate or ideal 

weights. Additionally, this approach aims to narrow the gaps between the most significant and least significant 

criteria. Moreover, LOPCOW takes into consideration the relationships between criteria. In this method, the 

initial step involves preparing the decision matrix, followed by normalizing the values within that matrix. 

Subsequently, the average square value, expressed as a percentage of the criterion's standard deviation, is 

calculated to mitigate the variations caused by the data's magnitude, ultimately determining the weight 

coefficients for the criteria (Ecer & Pamucar, 2022). 

The SECA method offers a means to assess both the performance of decision alternatives and the weight 

coefficients of criteria concerning these alternatives. In this approach, the values within the decision matrix 

are standardized. Subsequently, disagreement degrees and standardization values are computed using the 

standard deviation. This data serves as the basis for calculating the weights of the criteria, achieved by solving 

a multi-objective linear model through model optimization (Keshavarz-Ghorabaee et al., 2018). 

The DEMATEL method can be used to reveal the interaction between criteria, as well as to subjectively 

determine the weights of criteria based on their relationships. To do this, the effects of criteria on each other 

are determined using subjective evaluations, where 0 represents no effect and 4 represents a very high effect. 

This information is used to create a direct relationship matrix, which is then used to calculate the standard 

relationship matrix, total relationship matrix, relationship diagram, threshold value, and finally, the weight 

coefficients of the criteria (Fontela & Gobus, 1976). Altıntaş (2021), emphasized that the effects of criteria on 

each other can also be determined using the Somers' d correlation coefficient, which allows for the objective 

calculation of the weight coefficients of the criteria. This eliminates the need for subjective evaluations in the 

direct relationship matrix. Upon a review of the literature, it becomes evident that numerous studies have 

utilized objective weighting and relationship-oriented DEMATEL methods. The ongoing research pertaining 

to the discussed weighting is outlined in Table 1. 

Table 1. Present Studies Concerning Criteria Weighting 

Author(s) Methods Research Theme 

Alrababah & Gan, 2023 CRITIC based VIKOR 

The Impact of the Hybrid CRITIC–VIKOR 

Method on Product Aspect Ranking in Customer 

Reviews 

Wang et al., 2023 ENTROPY based MARCOS  
Sustainable Evaluation of Major Third-Party 

Logistics providers 

Ali et al., 2022 

SAW-AHP, SAW-CILOS, SAW-AHP-CILOS, 

TOPSIS-AHP, TOPSIS-CILOS, TOPSIS-AHP-

CILOS, CoCoSo-AHP, CoCoSo-CILOS, 

CoCoSo-AHP-CILOS, MARCOS-AHP, 

MARCOS-CILOS, and MARCOS-AHP-CILOS  

Lessons learned from the COVID-19 pandemic 

in planning the future energy systems of 

developing countries 

Ayan et al., 2023 
CILOS, IDOCRIW, FUCOM, LBWA, SAPEVO-

M, and MEREC 

A Comprehensive Review of the Novel 

Weighting Methods 

Vavrek, 2019 CRITIC, SD,SVP, MR based TOPSIS 

Evaluation of the Impact of Selected Weighting 

Methods on the Results of the TOPSIS 

Technique 

Mukhametzyanov, 2021 Entropy, CRITIC, SD 
specific character of objective methods for 

determining weights of criteria 

Sümerli Sarigül et al., 2023 MEREC based MARCOS and COCOSO  evaluating airport service quality 

Ersoy, 2023 LOPCOW based RSMVC 
Performance Measurement in the BIST Retail 

and Trade Sector 

Rasmussen et al., 2023 F-AHP based F-TOPSIS and SECA 
Supplier selection for aerospace & defense 

industry 

Göncü & Çetin, 2022 Dematel and ANP Method 
Supplier Selection Criteria in Healthcare 

Enterprises 
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2.2. Exponential Curve Function 

The Exponential Curve function is based on the exponential function. A function written in the form of 𝑓(𝑥) =
𝑏𝑥, where 𝑏 ∈ 𝑅+ − {1} and 𝑥 ∈ 𝑅+, is referred to as an exponential function. Here, ′′𝑏′′  is called the base, 

and ′′𝑥′′ is referred to as the exponent. The domain of exponential functions is the set of real numbers, while 

the range consists of positive numbers (Önalan, 2010; Balaban, 2015; Ertik et al., 2015; Eroğlu, 2017). If 0 <
𝑏 < 1, the function 𝑦 = 𝑏𝑥 exhibits a decreasing characteristic, approaching the ′′𝑦′′  axis for increasing values 

of the base ''b''. If 𝑏 > 1, the function 𝑦 = 𝑏𝑥 is an increasing function, and again, it approaches the ′′𝑦′′  axis 

for growing values of the base ′′𝑏′′ (Kartal et al., 2014; Bernett et al., 2015; Kuruüzüm & İpekçi, 2015; 

Pekkaya, 2016).  In a function written as 𝑦 = 𝑏𝑥, if the irrational number ′′𝑒 ≈ 2,718281829… . .′′is used 

instead of the base ′′𝑏′′, the function becomes 𝑦 = 𝑒𝑥 (Kuruüzüm & İpekçi, 2015). 

The Exponential Curve function fundamentally arises from the composition of the ′′𝑒𝑥′′ ' function with any 

constant value, forming the function 𝑦 = 𝑎. 𝑒𝑏𝑥. The logarithmic transformation of this function can be 

expressed as 𝐼𝑛(𝑦) = 𝐼𝑛(𝑎) + 𝑏𝑥 (Chakrabarty & Rahman, 2007; IBM, 2013). 

 

Figure 1. Exponential Curve Function (Note: Figure 1 was obtained using the SPSS 23 program) 

The given expression  𝑦 = 𝑢. 𝑒𝑣𝑥models the relationship between the constants "𝑢" and "𝑣" and the variable 

"𝑥" in an exponential function. "𝑢" represents the initial value of the function (the y-intercept) and "𝑣" controls 

the rate of growth. As the value of "𝑥" increases, the value of "𝑦" changes exponentially, increasing if "𝑣" is 

positive and decreasing if "𝑣" is negative. Positive "𝑣" indicates growth with increasing "𝑥", while negative 

"𝑣" indicates a decrease in "𝑦" with increasing "𝑥" (Thomas, 1991; Chakrabarty & Rahman, 2007). 

The exponential curve function provides significant advantages in mathematical modeling. Firstly, due to the 

function's continuity and differentiability, it possesses a suitable structure for modeling physical systems. 

Secondly, the function's monotonic property facilitates the derivation, integration, and other operations, 

simplifying predictions of the function's behavior. This enhances the predictability of the function's behavior. 

Thirdly, the function's limits allow for easy estimation of how the function behaves at extreme points. Fourthly, 

the logarithmic transformation of the function results in a symmetric curve, making it easier to understand 

relationships between variables visually. Lastly, the logarithmic transformation can lead to a linear form, 

simplifying the function's structure and overcoming complexity (Shparlinski & Konyagin, 1999; Lin, 2014; 

Kahn, 2015; Joujan, 2018). 

Upon reviewing the literature, it has been observed that many studies have been conducted utilizing the 

exponential curve function (Natalija, 2021). In their work, Landsberg (1977) explained that the exponential 

curve function is widely applicable in biological research and is an appropriate function for such studies. 
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Chakrabarty and Rahman (2007) utilized the exponential curve function to estimate and project the overall 

population in India. Weon & Je (2014) developed a versatile survival distribution based on the stretched 

exponential curve function, incorporating an age-dependent shaping exponent. Alfaro et al. (2020) employed 

the exponential curve function to forecast real-time returns of U.S.A stocks by considering unforeseen 

alterations in the progression of COVID-19 infections. Fosu and Edunyah (2020) employed the exponential 

curve function to estimate the effectiveness of measures developed against the COVID-19 pandemic in 

developing and impoverished countries. Hamill et al. (2005) utilized the exponential curve function in the 

development of a methodology that facilitates the creation of information security strategies and applies 

measures to assess them. Jones (2023) elucidated that the utilization of the exponential curve function is 

instrumental in describing the exponential growth resulting from combinatorially chosen samples extracted 

from standard thin-tailed distributions defined mathematically. Murillo-Escobar et al. (2023) introduced a 

methodology developed within the realm of encryption algorithms for clinical signals. This methodology 

enhances the randomness of five specifically chosen chaotic maps by incorporating trigonometric functions 

(sine, cosine, and tangent) and exponential curve functions. Wood (2023) has developed a new model using 

structural equation modeling software that allows for the combination of logistic and exponential curve 

functions. 

2.3. Calculating Weight Coefficients for Criteria in the Context of MCDM with the Exponential 

Function (Theoretical Background) 

In determining the weights of criteria, the distinctiveness and conflict among criteria bring out the nature of 

the criteria (Ecer, 2020). Accordingly, in the DEMATEL literature, criteria with higher impact values in 

interactional models lead to greater prioritization and significance compared to other criteria (Fontela & Gobus, 

1976; Akın, 2017). Similarly, in structural equation modeling, especially in non-recursive models, when one 

criterion influences another criterion to a greater extent in absolute terms, the criterion causing a greater impact 

in the relationship between these two criteria is explained to contribute more to the relational structure and is 

considered more important in that relationship. On the other hand, in recursive models, if one criterion has a 

greater impact value in absolute terms on other criteria, it is stated to be the most important criterion (Bayram, 

2010; Çelik & Yılmaz, 2013; Meydan & Şeşen, 2015; Özdamar, 2016; Civelek, 2018; Gürbüz, 2019; Kline, 

2019). 

Another attribute to consider in assessing the criteria is their potential for mutual influence, as quantified by 

quantitative outcomes. If one criterion has a modest positive impact on another, it opens up opportunities to 

develop strategies to enhance the influenced criterion by leveraging the influencing one. Conversely, when a 

positive influence of one criterion hinders the progress of another, strategies can be devised to reduce or 

mitigate the influence of the influencing criterion on the influenced one. Consequently, it becomes possible to 

formulate strategies, policies, and recommendations for advancing the criteria based on the interdependencies 

among them within a given context. In this context, exponential curve functions can be utilized to calculate 

the weight coefficients of criteria. This is due to the fact that, with exponential curve functions, the values of 

criteria influencing one another can be determined as dependent and independent variables (Karagöz, 2017). 

Another crucial advantage of the exponential curve function is its capability to perform regression analysis 

between two variables. Accordingly, exponential curve equations describing the relationship between two 

variables based on the data of these variables can be established through regression analysis (curve estimation) 

using SPSS. This enables the calculation of the quantitative impact between two variables (IBM, 2013; 

Karagöz, 2017). In comparison to many functions in the literature, the exponential curve function allows for a 

more precise and controlled determination of how much the dependent variable changes with the smallest 

change in the independent variable (Lin, 2014). Therefore, this situation provides an opportunity for accurate 

and reliable modeling in the relationship or interaction structure between two variables (Chakrabarty & 

Rahman, 2007). 

The derivative 𝑓′(𝑥) is referred to as the antiderivative or indefinite integral of the function 𝑓(𝑥). 𝑓′(𝑥) equals 

can be expressed as 𝑓′(𝑥)𝑑𝑥 = 𝑑𝑓(𝑥). This expression is commonly represented using the infinite and 

continuous summation symbol ∫ . From this equation, we can derive the equation ∫ 𝑓′(𝑥)𝑑𝑥 = 𝑓(𝑥). Hence, 

the function to be integrated is 𝑓′(𝑥). Moreover, ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝐶, where ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑝)
𝑝

𝑟
− 𝐹(𝑟) 
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represents the definite integral. In this context, ′′𝑟′′ denotes the lower limit of the integral, while ′′𝑝′′  signifies 

the upper limit (Kartal et al., 2014). Therefore, after establishing the exponential curve relationships between 

the criteria using the exponential curve, one can measure the extent to which the variation of the independent 

variable ′′𝑥′′  between the limits ′′𝑝′′ and  ′′𝑟′′ impacts or alters the dependent variable ′′𝑦′′ through definite 

integration (Kuruüzüm & İpekçi Çetin, 2015). The visual representation of this situation is illustrated in Figure 

2 (IBM, 2013). 

 

Figure 2. Exponential Curve Function and Its Impact on Criterion (𝑝) with Criterion (𝑟) Model 

(Note: Figure 2 was obtained using the SPSS 23 program) 

After creating a exponential curve function between the values of two criteria (𝑝, 𝑟) in the decision matrix 

based on decision alternatives, the impact of one criterion (𝑝) on the other critera (𝑟), or how changes in the 

independent variable (𝑟) criterion affect the dependent variable criterion, can be calculated by determining the 

maximum and minimum values of the criterion taken as the independent variable in the decision matrix. In 

any decision matrix containing cost or benefit-oriented criteria with no zeros or negative values, the maximum 

value of the independent criterion is 1 when the criteria are normalized between 0 and 1. If any value in any 

decision matrix is negative or zero, the exponential curve interaction between the criteria does not occur (Kartal 

et al., 2014). Because the exponential curve function is logarithmically transformed, the relationship between 

the criteria remains undefined (Shparlinski & Konyagin, 1999; Lin, 2014). Accordingly, 𝑓(𝑥) = 𝑢𝑒𝑣.𝑥 where 

𝑓(𝑥)’s derivative is determined as 𝑓(𝑥)′ = 𝑢𝑣𝑒𝑢𝑥. Subsequently, the impact of the 𝑝 criterion on the 𝑟 

criterion can be calculated with Equation 1. 

∫ 𝑓(𝑥)′𝑑𝑥 = 𝐹(𝑥)]𝑟𝑚𝑖𝑛.

𝑝𝑚𝑎𝑥. = 𝐹(𝑃𝑚𝑎𝑥) −

𝑝𝑚𝑎𝑥.=1

𝑟𝑚𝑖𝑛.

𝑓(𝑟𝑚𝑖𝑛)                                                                                            (1) 

2.4. Data Set and Analysis of the Study 

The dataset for the research consists of the Logistic Performance Index (LPI) criteria for the year 2022 for 19 

countries in the G20 group. The reason for selecting this dataset in the study is to determine the discriminative 

power of the proposed model criteria among countries, considering the significant differences in values within 

this dataset. In this regard, abbreviations for this dataset are explained in Table 2 for convenience in the 

research. 
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Table 2. LPI Criteria Abbreviations (Arvis et al., 2023) 

LPI Criteria Criteria Abbreviations 

Customs LPI1 

Infrastructure LPI2 

International Shipments LPI3 

Logistics Competence and Quality LPI4 

Timeliness Score LPI5 

Tracking and Tracing LPI6 

 

2.4. Proposed Method: Measurement Relying on the Impacts of an Exponential Curve Function 

(MIEXCF) 

The fundamental logic of the proposed method is based on the exponential curve effect of criteria on each 

other. Regarding this, the method for calculating the weight coefficients of criteria according to the MIEXCF 

method is explained below. 

Altıntaş (2023) established the mathematical model based on cubic effects among the criteria to determine the 

weights of criteria. Within this scope, in this study, Altıntaş's (2023) modeling approach was utilized in the 

following steps: in the third step, functions were formulated; in the fourth step, impact values among the criteria 

were calculated based on these functions; in the fifth step, total impact values of each criterion according to 

the function structures were computed; and finally, in the sixth step, Altıntaş's (2023) logic was employed in 

determining the criterion weights. 

Step 1: Obtaining the Decision Matrix 

𝑖: 1, 2, 3. . . 𝑛 : where n represents the number of decision alternatives 

𝑗: 1, 2, 3. . . 𝑚: where m represents the number of criteria 

𝐷: Decision matrix 

𝐸𝐶𝐹: Criterion  

dij: The decision matrix is constructed according to Equation 2, where "𝑖𝑗" represents the 𝑖 − 𝑡ℎ decision 

alternative on the 𝑗 − 𝑡ℎ criterion. 

𝐷 = [𝑑𝑖𝑗]𝑛𝑥𝑚
=

[
 
 
 
 
𝐸𝐶𝐹1

𝑥 11

𝐸𝐶𝐹2

  𝑥 12
⋯

𝐸𝐶𝐹𝑚

𝑥 1𝑚

𝑥21

⋮
𝑥𝑛1

𝑥22

⋮
𝑥𝑛2

⋯
⋮
⋯

𝑥2𝑚

⋮
𝑥𝑛𝑚 ]

 
 
 
 

                                                                                              (2)   

Step 2: Normalization of Decision Matrix (𝑑𝑖𝑗
∗ ) 

The normalization of the decision matrix is conducted through the utilization of the subsequent equation. 

Benefit criteria undergo normalization using Equation 3, whereas cost criteria are subjected to normalization 

employing Equation 4. 

𝑑𝑖𝑗
∗ =

𝑚𝑖𝑛. 𝑑𝑖𝑗

𝑑𝑖𝑗
                                                                                                                                                                      (3) 

𝑑𝑖𝑗
∗ =

𝑑𝑖𝑗

𝑚𝑎𝑥. 𝑑𝑖𝑗
                                                                                                                                                                     (4) 
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Step 3: Generation of Exponential Curve Functions 

Based on the number of criteria, m, exponential curve function (𝑓(𝑥) = 𝑦 = 𝑎𝑒𝑏𝑥) are generated for the 

variables up to a quantity of using SPSS assistance (Regression-CURVE ESTIMATION), considering the 

exponential curve relationship between them. 

(1)  𝑓(𝐸𝐶𝐹1) = 𝐸𝐶𝐹2, 𝑓(𝐸𝐶𝐹1) = 𝐸𝐶𝐹3, ……  𝑓(𝐸𝐶𝐹1) = 𝐸𝐶𝐹𝑚                                                                            (5) 

(2) 𝑓(𝐸𝐶𝐹2) = 𝐸𝐶𝐹1, 𝑓(𝐸𝐶𝐹2) = 𝐸𝐶𝐹3, ……  𝑓(𝐸𝐶𝐹2) = 𝐸𝐶𝐹𝑚                                                                             (6) 

(3) 𝑓(𝐸𝐶𝐹3) = 𝐸𝐶𝐹1, 𝑓(𝐸𝐶𝐹3) = 𝐸𝐶𝐹2, ……  𝑓(𝐸𝐶𝐹3) = 𝐸𝐶𝐹𝑚                                                                             (7) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

                   
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

                    
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

 

(𝑚) 𝑓(𝐸𝐶𝐹𝑚) = 𝐸𝐶𝐹1, 𝑓(𝐸𝐶𝐹𝑚) = 𝐸𝐶𝐹2, ……  𝑓(𝐸𝐶𝐹𝑚) = 𝐸𝐶𝐹𝑚−1                                                                    (8) 

Step 4: Calculation of Exponential Curve Impact Value between Criteria 

In this stage, we assess the influence or alteration of a dependent variable (one criterion) by an independent 

variable (another criterion) within the scope of its minimum and maximum values, achieved through the 

application of definite integral calculations. In this context, 't' represents the exponential curve impact value of 

one criterion on the other. It is important to ensure the absolute value of the impact values after the integral 

calculation. 

(1)  𝑓(𝐸𝐶𝐹1) = 𝐸𝐶𝐹2 , ∫ (𝑓′(𝐸𝐶𝐹1)) 𝑑𝑥

𝐸𝐶𝐹1𝑚𝑎𝑥.

𝐸𝐶𝐹1𝑚𝑖𝑛.

= |𝑡𝐸𝐶𝐹1→𝐸𝐶𝐹2
|                                                                               (9) 

(2)  𝑓(𝐸𝐶𝐹1) = 𝐸𝐶𝐹3 , ∫ (𝑓′(𝐸𝐶𝐹2)) 𝑑𝑥

𝐸𝐶𝐹1𝑚𝑎𝑥.

𝐸𝐶𝐹1𝑚𝑖𝑛.

= |𝑡𝐸𝐶𝐹1→𝐸𝐶𝐹3
|                                                                    (10) 

(3)  𝑓(𝐸𝐶𝐹1) = 𝐸𝐶𝐹4 , ∫ (𝑓′(𝐶1)) 𝑑𝑥

𝐸𝐶𝐹1𝑚𝑎𝑥.

𝐸𝐶𝐹1𝑚𝑖𝑛.

= |𝑡𝐸𝐶𝐹1→𝐸𝐶𝐹4
|                                                                         (11) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

                   
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

                    
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

 

(
𝑚!

(𝑚 − 2)!
)  𝑓(𝐸𝐶𝐹𝑚) = 𝐸𝐶𝐹𝑚−1 , ∫ (𝑓′(𝐸𝐶𝐹𝑚)) 𝑑𝑥

𝐸𝐶𝐹𝑚𝑚𝑎𝑥.

𝐸𝐶𝐹𝑚𝑚𝑖𝑛.

= |𝑡𝐸𝐶𝐹𝑚→𝐸𝐶𝐹𝑚−1
|                                                (12) 

Step 5: Calculation of the Total Exponential Curve Impact Values of Each Criterion (𝑆𝐸𝐶𝐹) 

During this stage, we aggregate the exponential curve impact values of one criterion on the remaining criteria 

to quantify the comprehensive exponential curve impact value of that criterion on the others. 
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(1) 𝑓𝑜𝑟 𝐸𝐶𝐹1 |𝑡𝐸𝐶𝐹1→𝐸𝐶𝐹2
| + |𝑡𝐸𝐶𝐹1→𝐸𝐶𝐹3

|……+ |𝑡𝐸𝐶𝐹1→𝐸𝐶𝐹𝑚
| = (∑ |𝑡𝐸𝐶𝐹1→𝐸𝐶𝐹𝑗+1

|

𝑚−1

𝑗=1

) = 𝑆𝐸𝐶𝐹1
               (13) 

(2) 𝑓𝑜𝑟 𝐸𝐶𝐹2 |𝑡𝐸𝐶𝐹2→𝐸𝐶𝐹1
| + |𝑡𝐸𝐶𝐹2→𝐸𝐶𝐹3

| ……+ |𝑡𝐸𝐶𝐹2→𝐸𝐶𝐹𝑚
| = ( ∑ |𝑡𝐸𝐶𝐹2→𝐸𝐶𝐹𝑗+1

|

𝑚−1

𝑗=0,𝑗≠1

) = 𝑆𝐸𝐶𝐹2
         (14) 

(3) 𝑓𝑜𝑟 𝐸𝐶𝐹3  |𝑡𝐸𝐶𝐹3→𝐸𝐶𝐹1
| + |𝑡𝐸𝐶𝐹3→𝐸𝐶𝐹2

| ……+ |𝑡𝐸𝐶𝐹3→𝐸𝐶𝐹𝑚
| = ( ∑ |𝑡𝐸𝐶𝐹3→𝐸𝐶𝐹𝑗+1

|

𝑚−1

𝑗=0,𝑗≠2

) = 𝑆𝐸𝐶𝐹3
         (15)    

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

                   
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

                    
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

 

(𝑚) 𝑓𝑜𝑟 𝐸𝐶𝐹𝑚 |𝑡𝐸𝐶𝐹𝑚→𝐸𝐶𝐹1
| + |𝑡𝐸𝐶𝐹𝑚→𝐸𝐶𝐹2

|……+ |𝑡𝐸𝐶𝐹𝑚→𝐸𝐶𝐹𝑚−1
| = (∑ |𝑡𝐸𝐶𝐹𝑚→𝐸𝐶𝐹𝑗+1

|

𝑚−1

𝑗=1

) = 𝑆𝐸𝐶𝐹𝑚
    (16) 

Step 6: Determination of Criterion Weight Values (𝑤𝑗)  

In this stage, the collective exponential curve impact value of each criterion on the remaining criteria is divided 

by the sum of the collective exponential curve impact values of all criteria. This division enables the 

computation of the weight coefficient for each criterion. 

𝑤𝑗 =
𝑆𝐸𝐶𝐹𝑗

∑ 𝑆𝐸𝐶𝐹𝑗

𝑚
𝑗=1

                                                                                                                                                      (17)  

The proposed method has numerous advantages. The first of these is the non-linear nature of the method. This 

is because the exponential curve function, being non-linear, is more successful in accurately predicting 

relationships between variables than linear methods. This situation ensures a more accurate resolution of 

relationships between variables compared to linear models (Chakrabarty & Rahman, 2007). Therefore, since 

the MIEXCF method is based on the exponential curve function, accurate results can be obtained in 

determining the relationships between criteria and, consequently, the weights of criteria. However, in other 

objective criterion weighting methods (ENTROPY, CRITIC, SD, SVP, and MEREC), the determination of 

criterion weights is not based on a non-linear linear structure. Therefore, these methods cannot benefit from 

the advantages provided by a non-linear structure. 

Secondly, in the MIEXCF method, the calculation of the mutual influence value of variables is conducted 

through the integral method. The integral precisely and accurately demonstrates the total change or impact of 

the dependent variable in the variation of the independent variable within the boundary values of the 

independent variable. Therefore, this circumstance elucidates the original effect of the independent variable 

on the dependent variable without requiring a process (Bernett et al., 2015). In this context, within the scope 

of the MIEXCF method, the weights of criteria can be calculated more sensitively and realistically. In contrast, 

in other objective criterion weighting methods, the computation of criterion weights occurs as a result of highly 

transformative processes involving the values of the decision matrix. 

Finally, the third aspect is the opportunity provided by the MIEXCF method for enhancing criteria. In the 

interactive analysis of variables, the variable or variables with the highest impact value can promote the 

development of other variables by influencing them (Karagöz, 2017). Because of the metric structure of the 
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relationship between criteria, within the scope of the MIEXCF method, the criterion with the highest weight 

coefficient can be evaluated to determine its impact on the criteria that need improvement (those with the least 

impact) or to assess whether the criteria with lower impact or requiring improvement need to enhance their 

influence on other criteria. In contrast, in other objective weighting methods, since the weight values of criteria 

are not determined based on their influence on each other, opportunities to enhance criteria remain limited. 

The MIEXCF method possesses both advantages and also drawbacks. One of its disadvantage is the 

complexity of calculations required for determining criteria weight coefficients, particularly compared to many 

objective weighting methods in the literature. As the number of criteria increases, the calculations become 

more intricate due to the numerous interaction values between criteria. However, these calculations can be 

easily performed using the MATLAB program or the Python programming language. Another drawback is the 

reliance on SPSS or other statistical software programs to identify exponential relationships between criteria. 

Without SPSS, the calculation of weight coefficients becomes more complex and time-consuming. However, 

the exponential relationship between the criteria can be obtained by transferring the formulas to the EXCEL 

program within the scope of regression analysis. As a result, the calculation operations can be simplified. A 

third disadvantage arises when there is no theoretical cause-and-effect relationship between criteria, limiting 

opportunities for criteria improvement. The aforementioned disadvantage is also present in the CRITIC, 

MEREC and DEMATEL methods. This is because the CRITIC method determines the weight coefficients of 

the criteria based on the level of Pearson correlation between the criteria. On the other hand, the logic of 

calculating the weight values of the criteria in the MEREC method is based on the effect of the criteria on the 

decision alternatives. In addition to these, the weights of the criteria in the DEMATEL method depend on the 

extent to which they impact each other and are affected by each other. Therefore, in the determination of the 

weight coefficients of the criteria, the cause-and-effect relationship between the criteria in the CRITIC and 

DEMATEL methods and the cause-and-effect relationship between the criteria and the decision alternatives 

in the MEREC method are not taken into account in a theoretical sense. In other words, in the CRITIC and 

DEMATEL methods, there is no a theoretical necessity for a cause-and-effect relationship between the criteria 

and MEREC, there is a no theoretical necessity for a cause-and-effect relationship between the criteria and the 

decision alternatives. Finally, the fourth drawback involves the need for transformation using Z-scores when 

values in the decision matrix are negative or 0 to ensure positive and non-zero values. This challenge is also 

present in the ENTROPY and MEREC methods, both relying on logarithmic measurements. 

3. RESULTS AND DISCUSSION (THE CASE STUDY) 

3.1. Computational Analyses 

Considering the data set of the research, the weight coefficients of criteria for the 19 countries in the G20 group 

in 2022 were calculated using the LPI criterion data with the MIEXCF method. In this regard, in the first step 

of the method, a decision matrix was created with the help of Equation 2 and is presented in Table 3. 

In the second step of the method, as all LPI criteria are beneficial, the normalized decision matrix was 

calculated using Equation 3 based on the decision matrix values described in Table 3 and is presented in Table 

4. 

In the third step of the model, with the presence of six components, we employ the functional equation 

expressed as to demonstrate the exponential relationships among these components. 

To capture the interactions among the components effectively, we established 30 exponential curve function 

equations, denoted as Equations 5, 6, 7, and 8, using CURVE analysis (regression models) through SPSS. 

These respective functions are detailed in Table 5. 

In the fourth phase of the approach, we calculated exponential curve influence factors among the criteria using 

equations 9, 10, 11, and 12. The process for determining the impact values between criteria are explained in 

the following sections. 

𝒇(𝑳𝑷𝑰𝟏) 
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f(LPI1)=LPI2 

deriv(0.305 𝒆1.22𝑥  , 𝑥) =
3721𝒆

61𝑥
50

10000
 

∫
3721𝒆

61𝑥
50

10000
𝑑𝑥

1

0.6

=
61𝒆

61
50 − 61𝒆

183
250

200
= 0,399 

 

f(LPI1)=LPI3 

deriv(0.381 𝒆0.827𝑥  , 𝑥) =
315087𝒆

827𝑥
1000

1000000
 

∫
315087𝒆

827𝑥
1000

1000000
𝑑𝑥

1

0.6

=
381𝒆

827
1000 − 381𝒆

2481
5000

1000
= 0,245 

f(LPI1)=LPI4 

deriv(0.32 𝒆1.112𝑥  , 𝑥) =
1112𝒆

139𝑥
125

3125
 

∫
1112𝒆

139𝑥
125

3125
𝑑𝑥

1

0.6

=
8𝒆

139
125 − 8𝒆

417
625

25
= 0,349 

f(LPI1)=LPI5 

deriv(0.477 𝒆0.688𝑥  , 𝑥) =
20511𝒆

86𝑥
125

62500
 

∫
20511𝒆

86𝑥
125

62500
𝑑𝑥

1

0.6

=
477𝒆

86
125 − 477𝒆

258
625

1000
= 0,228 

f(LPI1)=LPI6 

deriv(0.303 𝒆1.106𝑥  , 𝑥) =
167559𝒆

553𝑥
500

500000
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∫
167559𝒆

553𝑥
500

500000
𝑑𝑥

1

0.6

=
303𝒆

553
500 − 303𝒆

1659
2500

1000
= 0,327 

𝒇(𝑳𝑷𝑰𝟐) 

f(LPI2)=LPI1 

deriv(0.287 𝒆1.229𝑥  , 𝑥) =
352723𝒆

1229𝑥
1000

1000000
 

∫
352723𝒆

1229𝑥
1000

1000000
𝑑𝑥

1

0.628

=
287𝒆

1229
1000 − 287𝒆

192953
250000

1000
= 0,360 

f(LPI2)=LPI3 

deriv(0.377 𝒆0.821𝑥  , 𝑥) =
309517𝒆

821𝑥
1000

1000000
 

∫
309517𝒆

821𝑥
1000

1000000
𝑑𝑥

1

0.628

=
377𝒆

821
1000 − 377𝒆

128897
250000

1000
= 0,226 

f(LPI2)=LPI4 

deriv(0.311 𝒆1.122𝑥  , 𝑥) =
174471𝒆

561𝑥
500

500000
 

∫
174471𝒆

561𝑥
500

500000
𝑑𝑥

1

0.628

=
311𝒆

561
500 − 311𝒆

88077
125000

1000
= 0,326 

f(LPI2)=LPI5 

deriv(0.474 𝒆0.678𝑥  , 𝑥) =
80343𝒆

339𝑥
500

250000
 

∫
80343𝒆

339𝑥
500

250000
𝑑𝑥

1

0.628

=
237𝒆

339
500 − 237𝒆

53223
125000

500
= 0,208 

f(LPI2)=LPI6 
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deriv(0.298 𝒆1.698𝑥  , 𝑥) =
126501𝒆

849𝑥
500

250000
 

∫
126501𝒆

849𝑥
500

250000
𝑑𝑥

1

0.628

=
149𝒆

849
500 − 149𝒆

133293
125000

500
= 0,762 

𝒇(𝑳𝑷𝑰𝟑) 

f(LPI3)=LPI1 

deriv(0.301 𝒆1.257𝑥  , 𝑥) =
378357𝒆

1257𝑥
1000

1000000
 

∫
378357𝒆

1257𝑥
1000

1000000
𝑑𝑥

1

0.622

=
301𝒆

1257
1000 − 301𝒆

390927
500000

1000
= 0,400 

f(LPI3)=LPI2 

deriv(0.313 𝒆1.239𝑥  , 𝑥) =
387807𝒆

1239𝑥
1000

1000000
 

∫
387807𝒆

1239𝑥
1000

1000000
𝑑𝑥

1

0.622

=
313𝒆

1239
1000 − 313𝒆

385329
500000

1000
= 0,404 

f(LPI3)=LPI4 

deriv(0.297 𝒆1.269𝑥  , 𝑥) =
376893𝒆

1269𝑥
1000

1000000
 

∫
376893𝒆

1269𝑥
1000

1000000
𝑑𝑥

1

0.622

=
297𝒆

1269
1000 − 297𝒆

394659
500000

1000
= 0,403 

f(LPI3)=LPI5 

deriv(0.424 𝒆0.886𝑥  , 𝑥) =
23479𝒆

443𝑥
500

62500
 

∫
23479𝒆

443𝑥
500

62500
𝑑𝑥

1

0.622

=
53𝒆

443
500 − 53𝒆

137773
250000

125
= 0,293 
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f(LPI3)=LPI6 

deriv(0.28 𝒆1.268𝑥  , 𝑥) =
2219𝒆

317𝑥
250

6250
 

∫
2219𝒆

317𝑥
250

6250
𝑑𝑥

1

0.622

=
7𝒆

317
250 − 7𝒆

98587
125000

25
= 0,379 

𝒇(𝑳𝑷𝑰𝟒) 

f(LPI4)=LPI1 

deriv(0.283 𝒆1.286𝑥  , 𝑥) =
181969𝒆

643𝑥
500

500000
 

∫
181969𝒆

643𝑥
500

500000
𝑑𝑥

1

0.619

=
283𝒆

643
500 − 283𝒆

398017
500000

1000
= 0,397 

f(LPI4)=LPI2 

deriv(0.277 𝒆1.229𝑥  , 𝑥) =
340433𝒆

1229𝑥
1000

1000000
 

∫
340433𝒆

1229𝑥
1000

1000000
𝑑𝑥

1

0.619

=
277𝒆

1229
1000 − 277𝒆

760751
1000000

1000
= 0,354 

f(LPI4)=LPI3 

deriv(0.345 𝒆0.968𝑥  , 𝑥) =
8349𝒆

121𝑥
125

25000
 

∫
8349𝒆

121𝑥
125

25000
𝑑𝑥

1

0.968

=
69𝒆

121
125 − 69𝒆

14641
15625

200
= 0,028 

f(LPI4)=LPI5 

deriv(0.447 𝒆0.78𝑥  , 𝑥) =
17433𝒆

39𝑥
50

50000
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∫
17433𝒆

39𝑥
50

50000
𝑑𝑥

1

0.619

=
447𝒆

39
50 − 447𝒆

24141
50000

1000
= 0,251 

f(LPI4)=LPI6 

deriv(0.277 𝒆1.229𝑥  , 𝑥) =
340433𝒆

1229𝑥
1000

1000000
 

∫
340433𝒆

1229𝑥
1000

1000000
𝑑𝑥

1

0.619

=
277𝒆

1229
1000 − 277𝒆

760751
1000000

1000
= 0,354 

𝒇(𝑳𝑷𝑰𝟓) 

f(LPI5)=LPI1 

deriv(0.191 𝒆1.687𝑥  , 𝑥) =
322217𝒆

1687𝑥
1000

1000000
 

∫
322217𝒆

1687𝑥
1000

1000000
𝑑𝑥

1

0.707

=
191𝒆

1687
1000 − 191𝒆

1192709
1000000

1000
= 0,402 

f(LPI5)=LPI2 

deriv(0.203 𝒆1.646𝑥  , 𝑥) =
167069𝒆

823𝑥
500

500000
 

∫
167069𝒆

823𝑥
500

500000
𝑑𝑥

1

0.707

=
203𝒆

823
500 − 203𝒆

581861
500000

1000
= 0,403 

f(LPI5)=LPI3 

deriv(0.228 𝒆1.411𝑥  , 𝑥) =
80427𝒆

1411𝑥
1000

250000
 

∫
80427𝒆

1411𝑥
1000

250000
𝑑𝑥

1

0.707

=
57𝒆

1411
1000 − 57𝒆

997577
1000000

250
= 0,317 

f(LPI5)=LPI4 

deriv(0.198 𝒆1.64𝑥  , 𝑥) 
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∫
4059𝒆

41𝑥
25

12500
𝑑𝑥

1

0.707

=
99𝒆

41
25 − 99𝒆

28987
25000

500
= 0,389 

f(LPI5)=LPI6 

deriv(0.193 𝒆1.592𝑥  , 𝑥) =
38407𝒆

199𝑥
125

125000
 

∫
38407𝒆

199𝑥
125

125000
𝑑𝑥

1

0.707

=
193𝒆

199
125 − 193𝒆

140693
125000

1000
= 0,354 

𝒇(𝑳𝑷𝑰𝟔) 

f(LPI6)=LPI1 

deriv(0.292 𝒆1.323𝑥  , 𝑥) =
96579𝒆

1323𝑥
1000

250000
 

∫
96579𝒆

1323𝑥
1000

250000
𝑑𝑥

1

0.595

=
73𝒆

1323
1000 − 73𝒆

157437
200000

250
= 0,455 

f(LPI6)=LPI2 

deriv(0.305 𝒆1.302𝑥  , 𝑥) =
39711𝒆

651𝑥
500

100000
 

∫
39711𝒆

651𝑥
500

100000
𝑑𝑥

1

0.595

=
61𝒆

651
500 − 61𝒆

77469
100000

200
= 0,460 

f(LPI6)=LPI3 

deriv(0.351 𝒆1.001𝑥  , 𝑥) =
351351𝒆

1001𝑥
1000

1000000
 

∫
351351𝒆

1001𝑥
1000

1000000
𝑑𝑥

1

0.595

=
351𝒆

1001
1000 − 351𝒆

119119
200000

1000
= 0,318 

f(LPI6)=LPI4 
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deriv(0.303 𝒆1.271𝑥  , 𝑥) =
385113𝒆

1271𝑥
1000

1000000
 

∫
385113𝒆

1271𝑥
1000

1000000
𝑑𝑥

1

0.595

=
303𝒆

1271
1000 − 303𝒆

151249
200000

1000
= 0,435 

f(LPI6)=LPI5 

deriv(0.46 𝒆0.788𝑥  , 𝑥) =
4531𝒆

197𝑥
250

12500
 

∫
4531𝒆

197𝑥
250

12500
𝑑𝑥

1

0.595

=
23𝒆

197
250 − 23𝒆

23443
50000

50
= 0,276 

In the fifth stage of the process, we computed the cumulative exponential curve impact values for each criterion 

using formulas 13, 14, 15, and 16. These calculated values are presented in Table 6. 

Table 3. Decision Matrix 

Economies LPI1 LPI2 LPI3 LPI4 LPI5 LPI6 

Argentina 2.7 2.8 2.7 2.7 3.1 2.9 

Australia 3.7 4.1 3.1 3.9 3.6 4.1 

Brazil 2.9 3.2 2.9 3.3 3.2 3.5 

Canada 4 4.3 3.6 4.2 4.1 4.1 

China 3.3 4 3.6 3.8 3.7 3.8 

France 3.7 3.8 3.7 3.8 4.1 4 

Germany 3.9 4.3 3.7 4.2 4.1 4.2 

India 3 3.2 3.5 3.5 3.6 3.4 

Indonesia 2.8 2.9 3 2.9 3.3 3 

Italy 3.4 3.8 3.4 3.8 3.9 3.9 

Japan 3.9 4.2 3.3 4.1 4 4 

Korea, Rep. 3.9 4.1 3.4 3.8 3.8 3.8 

Mexico 2.5 2.8 2.8 3 3.5 3.1 

Russia Fed. 2.4 2.7 2.3 2.6 2.9 2.5 

Saudi Arabia 3 3.6 3.3 3.3 3.6 3.5 

South Africa 3.3 3.6 3.6 3.8 3.8 3.8 

Türkiye 3 3.4 3.4 3.5 3.6 3.5 

United King. 3.5 3.7 3.5 3.7 3.7 4 

USA 3.7 3.9 3.4 3.9 3.8 4.2 
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Table 4. Normalized Matrix 

Countries LPI1 LPI2 LPI3 LPI4 LPI5 LPI6 

Argentina 0.889 0.964 0.852 0.963 0.936 0.862 

Australia 0.649 0.659 0.742 0.667 0.806 0.610 

Brazil 0.828 0.844 0.793 0.788 0.906 0.714 

Canada 0.600 0.628 0.639 0.619 0.707 0.610 

China 0.727 0.675 0.639 0.684 0.784 0.658 

France 0.649 0.711 0.622 0.684 0.707 0.625 

Germany 0.615 0.628 0.622 0.619 0.707 0.595 

India 0.800 0.844 0.657 0.743 0.806 0.735 

Indonesia 0.857 0.931 0.767 0.897 0.879 0.833 

Italy 0.706 0.711 0.677 0.684 0.744 0.641 

Japan 0.615 0.643 0.697 0.634 0.725 0.625 

Korea, Rep. 0.615 0.659 0.677 0.684 0.763 0.658 

Mexico 0.960 0.964 0.821 0.867 0.829 0.807 

Russia Fed. 1.000 1.000 1.000 1.000 1.000 1.000 

Saudi Arab. 0.800 0.750 0.697 0.788 0.806 0.714 

South Afr. 0.727 0.750 0.639 0.684 0.763 0.658 

Türkiye 0.800 0.794 0.677 0.743 0.806 0.714 

United Kin. 0.686 0.730 0.657 0.703 0.784 0.625 

USA 0.649 0.692 0.677 0.667 0.763 0.595 

Furthermore, in Equation 17, we calculate weight coefficients that represent the significance levels of each 

criterion. These coefficients measure the relative importance of the criteria within the scope of the analysis. 

The resulting values are presented in Table 7. 

After a comprehensive analysis of Table 4, we have organized the significance attributed to the various 

components of the LPI (Exponential Impact) as follows: LPI6 carries the highest weight coefficient, followed 

by LPI2, LPI3, LPI5, LPI1 and, finally, LPI4. This sequence clarifies the differing levels of importance 

assigned to each constituent within the LPI framework. 

3.2. Sensibility Analysis 

In the context of this research, we conducted an evaluation of the MIEXCF method to assess its methodological 

sensitivity. Sensitivity analysis, within the framework of MCDM, involves applying various criteria weighting 

methods to the same dataset, enabling a comparison of the resulting values and rankings. To ensure the 

sensitivity of the weight coefficient calculation method, the weight rankings of the criteria identified using the 

method chosen for sensitivity analysis are expected to differ from the weight coefficient rankings obtained 

with other methods (Gigovic et al., 2016). 

Following this approach, for the purpose of sensitivity analysis, we calculated and organized the weighting 

coefficients associated with the components of the LPI using well-established objective weighting techniques 

that are commonly found in scholarly literature. Some notable examples of these techniques include 

ENTROPY, CRITIC, SD (Standard Deviation), SVP (Statistical Variance Procedure), MEREC, and 

LOPCOW. The corresponding numerical results have been thoroughly documented in Table 8. 
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Table 5. Exponential Curve functions Derived from the Correlation Among the Criteria 

IDC DC Function 

LPI1→ 

LPI2 y=0.305𝑒1.220𝑥 

LPI3 y=0.381𝑒0.827𝑥 

LPI4 y=0.320𝑒1.112𝑥 

LPI5 y=0.477𝑒0.688𝑥 

LPI6 y=0.303𝑒1.106𝑥 

LPI2→ 

LPI1 y=0.287𝑒1.129𝑥 

LPI3 y=0.377𝑒0.821𝑥 

LPI4 y=0.311𝑒1.122𝑥 

LPI5 y=0.474𝑒0.678𝑥 

LPI6 y=0.298𝑒1.098𝑥 

LPI3→ 

LPI1 y=0.297𝑒1.269𝑥 

LPI2 y=0.301𝑒1.257𝑥 

LPI4 y=0.313𝑒1.239𝑥 

LPI5 y=0.424𝑒0.886𝑥 

LPI6 y=0.280𝑒1.268𝑥 

LPI4→ 

LPI1 y=0.283𝑒1.286𝑥 

LPI2 y=0.291𝑒1.288𝑥 

LPI3 y=0.345𝑒0.968𝑥 

LPI5 y=0.447𝑒0.780𝑥 

LPI6 y=0.277𝑒1.229𝑥 

LPI5→ 

LPI1 y=0.191𝑒1.687𝑥 

LPI2 y=0.203𝑒1.646𝑥 

LPI3 y=0.228𝑒1.411𝑥 

LPI4 y=0.198𝑒1.640𝑥 

LPI6 y=0.193𝑒1.592𝑥 

LPI6→ 

LPI1 y=0.292𝑒1.323𝑥 

LPI2 y=0.305𝑒1.302𝑥 

LPI3 y=0.351𝑒1.001𝑥 

LPI4 y=0.303𝑒1.271𝑥 

LPI5 y=0.450𝑒0.788𝑥 

IDC: Independent Criteria, DC: Dependent Criteria 
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Table 6. The Total Exponential Curve Impact Values of LPI Components on Each Other 

Independent Component Dependent Criteria Effect 

LPI1→ 

LPI2 0.399 

LPI3 0.245 

LPI4 0.349 

LPI5 0.228 

LPI6 0.327 

 Total 1.548 

LPI2→ 

LPI1 0.36 

LPI3 0.226 

LPI4 0.326 

LPI5 0.208 

LPI6 0.762 

 Total 1.882 

LPI3→ 

LPI1 0.4 

LPI2 0.404 

LPI4 0.403 

LPI5 0.293 

LPI6 0.379 

Total 1.879 

LPI4→ 

LPI1 0.397 

LPI2 0.354 

LPI3 0.028 

LPI5 0.251 

LPI6 0.354 

 Total 1.384 

LPI5→ 

LPI1 0.402 

LPI2 0.403 

LPI3 0.317 

LPI4 0.389 

LPI6 0.354 

 Total 1.865 

LPI6→ 

LPI1 0.455 

LPI2 0.46 

LPI3 0.318 

LPI4 0,435 

LPI5 0,276 

 Total 1,944 
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When Tables 6 and 7 are compared side by side, it becomes clear that the prioritization of criteria weighting 

coefficients for the Global Logistic Performance Index (LPI) differs when calculated using the MIEXCF 

method compared to other approaches. This demonstrates the sensitivity of the MIEXCF method. 

3.3. Comparative Analysis 

The comparative analysis assesses the relationships and positions of the proposed method against other 

objective weight coefficient calculation methods. The proposed method should be credible, reliable, and 

consistent with other methods, while also demonstrating a positive and significant correlation with different 

weight coefficient methods (Keshavarz-Ghorabaee et al., 2021). Based on the data presented in Table 7, the 

positions of the methods are illustrated in Figures 3, 4 and 5. 

Table 7. Weighting Coefficients (𝑤) of the LPI Criteria 

LPI Criteria Total Effects (𝒘) Ranking 

LPI1 1.548 0.1474 5 

LPI2 1.882 0.1792 2 

LPI3 1.879 0.1789 3 

LPI4 1.384 0.1318 6 

LPI5 1.865 0.1776 4 

LPI6 1.944 0.1851 1 

Total 10,502    ------ ----- 

 

Table 8. Results from Alternative Methods of Calculating Objective Weighting Coefficients 

LPI Criteria 
ENTROPY CRITIC SD 

Score Rank Score Rank Score Rank 

LPI1 0.223513 1 0.157853 3 0.196183 1 

LPI2 0.210311 2 0.130547 4 0.189777 2 

LPI3 0.131934 5 0.295611 1 0.149215 5 

LPI4 0.177685 3 0.088489 6 0.173718 3 

LPI5 0.083043 6 0.204207 2 0.120169 6 

LPI6 0.173513 4 0.123294 5 0.170939 4 

LPI Criteria 
SVP LOPCOW MEREC 

Score Rank Score Rank Score Rank 

LPI1 0.200922 2 0.15136 5 0.147113 5 

LPI2 0.224147 1 0.146976 6 0.131193 6 

LPI3 0.113687 5 0.187393 1 0.180158 3 

LPI4 0.183917 4 0.162869 4 0.151631 4 

LPI5 0.091382 6 0.172376 3 0.190409 2 

LPI6 0.185945 3 0.179025 2 0.199497 1 
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Figure 3. Positions of the ENTROPY, CRITIC, SD, SVP, LOPCOW, and MEREC Methods (Note: The axises 

is graduated in increments of 0.30, 0.25, 0.20, 0.15, 0.10, 0.05, and 0) 
 

 

Figure 4. Positions of the MIEXCF Methods (Note: The axis is graduated in increments of 0.30, 0.25, 0.20, 

0.15, 0.10, 0.05, and 0) 
 

 

Figure 5. Positions of the ENTROPY, CRITIC, SD, SVP, LOPCOW, MEREC, and MIEXCF Methods 

According to Figure 3, 4 and 5 the point locations of the MIEXCF method exhibit a higher degree of 

proportional similarity to the MEREC method compared to other methods. Moreover, in Figure 3, the 

differences between the MIEXCF method and the MEREC points are less pronounced than the differences 

between the MIEXCF method and the points associated with other methods. Based on this data, it can be 
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concluded that the relationship between the MIEXCF method and the MEREC method is positive, and 

significant, The correlation values of the MIEXCF method with other methods are presented in Table 8. 

Table 8. Pearson Correlation Values of the MIEXCF Method with Other Methods 

𝒓 CRITIC SD SVP 

MIEXCF 0.452* -0.384 -0.293 

𝒓 LOPCOW MEREC ENTROPY 

MIEXCF 0.422* 0.504* -0.381 

p*<.05 

Keshavarz-Ghorabaee et al. (2021), referring to Walters' (2009) study during the measurement of the Pearson 

correlation between the MEREC method and other methods (SD, ENTROPY, and CRITIC), stated that a 

positive significant relationship in the range of 0.400-0.600 indicates a moderate level of relationship between 

variables, and if it exceeds 0.600, the relationship is considered significant. In this context, according to Table 

8, it is observed that the MIEXCF method has a significant, positive, and moderate-level relationship with the 

CRITIC, MEREC, and LOPCOW methods. Although the correlation values of the MIEXCF method with the 

CRITIC and LOPCOW methods are moderate, significant, and positive, these correlation values are not too 

far from the 0.600 correlation value. Therefore, based on these results, it can be inferred that the MIEXCF 

method is close to the credibility and reliability status. 

3.4. Simulation Analysis 

To conduct the simulation analysis, various scenarios are generated by assigning different values to decision 

matrices. To ensure the stability of results obtained using the proposed method, it is expected that the proposed 

method will exhibit differences from other methods as the number of scenarios increases. In the second step, 

the average of the variance values determined by the proposed method across the scenarios should be greater 

than one or more of the other objective weighting methods. This indicates that the proposed method is 

relatively effective in distinguishing the criteria weights. Lastly, the uniformity of variances in criterion 

weights across the methods within the scenarios must be established (Keshavarz-Ghorabaee et al., 2021). In 

the simulation analysis, the correlation values of the MIEXCF method with other methods were calculated 

based on the initial 10 scenarios and are presented in Table 9. 

Table 9. Pearson Correlation Values of the MIEXCF Method among Other Methods Within the Scope of 

Scenarios 

Group Scenarios ENTROPY CRITIC SD SVP LOPCOW MEREC 

First group 

1. Scenario -0.39 0.472* -0.365 -0.305 0.445* 0.535* 

2. Scenario -0.41 0.460* -0.37 -0.315 0.436* 0.510* 

3. Scenario -0.4 0.440* -0.365 -0.285 0.438* 0.520* 

Group Scenarios ENTROPY CRITIC SD SVP LOPCOW MEREC 

Second group 

4. Scenario -0.39 0.430* -0.365 -0.315 0.448* 0,522* 

5. Scenario -0.395 0.440* -0.38 -0.335 0.420* 0,480* 

6. Scenario -0.344 0.433* -0.34 -0.285 0.435* 0,465* 

7. Scenario -0.335 0.425* -0.35 -0.29 0.405* 0,490* 

8. Scenario -0.32 0.440* -0.345 -0.27 0.410* 0,480* 

9. Scenario -0.315 0.435* -0.333 -0.225 0.390* 0.505* 

10. Scenario -0.3 0.403* -0.34 -0.24 0.382* 0.497* 

Mean -0,36 0.438 -0.355 -0.287 0.421 0.500 

p*<.05 

As the number of scenarios increases, the criterion weights differ from each other based on the methods, as 

shown in Table 9. Notably, the MIEXCF method with CRITIC, LOPCOW and MEREC exhibit positive and 

significant relationships across all scenarios. This indicates a consistent pattern of correlation between the 
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MIEXCF and MEREC, CRITIC methods. The data presented in Table 9 were divided into two groups based 

on the values of the criterion weights. The correlation values between the two groups are shown in Figure 6. 

 

Figure 6. The Correlation Status of MIEXCF Method with Other Approaches within Various Scenarios 
 

 

Figure 7. The Discriminant Analysis of Correlation Status between MIEXCF Method and Other 

Methodologies across Different Scenarios 

Upon examination of Figure 7, it is observed that within the second group, the MIEXCF method exhibits 

variations in correlation values with other weight coefficient calculation methods compared to the first group, 

demonstrating a more pronounced dispersion in the space. Consequently, it has been observed that the 

distinctive features of the methods become increasingly prominent with the expansion of scenarios, resulting 

in a greater discernible differences between the methods. During the simulation analysis, the variance values 

of the methods were computed across different scenarios, and the resultant values are detailed in Table 10.  

According to Table 10, it is observed that the average variance values of the MIEXCF method across scenarios 

are higher compared to the variance values of the ENTROPY, CRITIC, SD, and SVP methods. Conversely, 

these values are lower than those of the LOPCOW and MEREC methods. Hence, it can be assessed that the 

MIEXCF method exhibits a relatively enhanced capability in discerning criteria weights, as indicated by its 

higher average variance value compared to the ENTROPY, CRITIC, SD, and SVP methods. In the 

continuation of the simulation analysis, the homogeneity of variances in the criterion weights of the EXEBM 

method was examined through ADM (ANOM for variances with Levene) analysis across different scenarios. 

This analytical approach provides a graphical representation to assess the uniformity of variances. The 

graphical depiction comprises three variables: the general average ADM serves as the center line, along with 

the upper decision limits (UDL) and lower decision limits (LDL). If the standard deviation of a group (cluster) 

exceeds the decision limits, it indicates a significant difference from the general average ADM, signifying 

heterogeneity in variances. Conversely, if the standard deviations of all clusters fall within the LDL and UDL, 
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it confirms the homogeneity of variances (Keshavarz-Ghorabaee et al., 2021). The visual representation of the 

ADM analysis is presented in Figure 8. 

Table 10. Variability in Methodologies across Scenarios 

Scenario MIEXCF ENTROPY CRITIC SD SVP LOPCOW MEREC 

1. Scenario 0.000279 0.000297 0.000280 0.000259 0.000252 0.000313 0.000328 

2. Scenario 0.000297 0.000279 0.000291 0.000268 0.000259 0.000315 0.000290 

3. Scenario 0.000302 0.000288 0.000282 0.000261 0.000254 0.000278 0.000327 

4. Scenario 0.000285 0.000295 0.000288 0.000268 0.000256 0.000314 0.000304 

5. Scenario 0.000290 0.000280 0.000297 0.000261 0.000257 0.000285 0.000326 

6. Scenario 0.000287 0.000289 0.000283 0.000260 0.000258 0.000312 0.000315 

7. Scenario 0.000301 0.000297 0.000286 0.000265 0.000255 0.000313 0.000285 

8. Scenario 0.000295 0.000283 0.000294 0.000270 0.000260 0.000280 0.000310 

9. Scenario 0.000289 0.000291 0.000290 0.000262 0.000257 0.000279 0.000321 

10. Scenario 0.000297 0.000292 0.000289 0.000269 0.000259 0.000287 0.000297 

Mean 0.000292 0.000282 0.000283 0.000264 0.000257 0.000315 0.000324 

 

 

Figure 8. ADM Visual 

As depicted in Figure 8, the ADM values calculated for each scenario are situated below the UDL values and 

above the LDL values. Consequently, the variances in the identified weights for each scenario exhibit 

homogeneity. This determination was further confirmed through the Levene Test. The fundamental statistics 

for the Levene Test are outlined in Table 11. 

Table 11. Levene Test 

Levene Statistic df1 df2 Sig. 

0.426 2 10 0.212 

p**<.05 

Based on the findings from Table 11, the p-value (p=0.212) surpasses the significance threshold of 0.05, 

affirming the homogeneity of variances in criterion weights across scenarios. Overall, the outcomes of the 

simulation analysis suggest the robustness and stability of the MIEXCF method. 

4. CONCLUSION 

Multi-criteria decision-making is a widely used approach for complex problems, involving the consideration 

of various criteria. Assigning weights to these criteria is crucial as their importance may vary, ensuring an 
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unbiased decision-making process. Researchers have developed diverse methods for computing weight 

coefficients, contributing to the field of MCDM. In this study, we propose a Measurement Relying on the 

Impacts of an Exponential Curve Function (MIEXCF) as a novel approach for determining criterion weights. 

The fundamental principle of the MIEXCF method lies in establishing exponential curve effects among 

criteria. Leveraging the benefits of exponential curve functions and the proposed method, effects among 

criteria can be computed. The criterion with the highest cumulative effect is then deemed the most significant. 

This criterion holds the potential to influence others, contributing to their development through associated 

activities or measures. Furthermore, a system can be devised to determine decision alternative strategies based 

on the most crucial criterion(s). 

The study utilized 2023 Logistics Performance Index (LPI) data for 19 G20 countries. Initially, the MIEXCF 

method calculated weight coefficients for LPI components. A sensitivity analysis compared these with other 

methods (ENTROPY, CRITIC, SD, SVP, MEREC, and LOPCOW). Results revealed differing weight 

coefficient rankings for LPI criteria between the MIEXCF method and others. This underscores the proposed 

method's sensitivity. 

The study's second approach involved a comparative analysis of the MIEXCF method, examining its similarity 

to other objective weight methods. Results showed a positive, significant, and moderate correlation with the 

MEREC method, and a positive, significant, and low correlation with the LOPCOW and CRITIC methods. 

Generally, the MIEXCF method was observed to have limited similarity with other criterion weighting 

methods. These findings led to the conclusion that the MIEXCF method is both credible and reliable. 

In a simulation analysis, ten distinct Logistics Performance Index decision matrices were generated using the 

MIEXCF method and other weighting techniques. These matrices were divided into two groups: one with three 

scenarios and another with seven scenarios. Correlation values between the MIEXCF method and other 

weighting methods decreased as the number of scenarios increased, highlighting the unique features of the 

MIEXCF method. Variance analysis revealed that the MIEXCF method effectively distinguishes criteria 

weights, with higher average variance compared to alternative methods such as ENTROPY, CRITIC, SD and 

SVP. Homogeneity tests confirmed consistent variances within MIEXCF scenarios, indicating reliability. The 

Levene test showed no significant variance differences between the MIEXCF method and others. 

According to the findings, it has been concluded that the MIEXCF method is a sensitive, stable and close to, 

credible, and reliable state. The study aims to demonstrate the feasibility of using the MIEXCF method to 

quantify criterion weights in MCDM literature, providing an objective tool for assessing decision option 

effectiveness. The outcomes have significant implications for scholars and decision-makers, anticipating 

increased attention to exponential curve functions in mathematical modeling. The MIEXCF method proves 

effective for decision-makers dealing with complex tasks, especially in performance evaluation. Simulation 

analysis data confirms the method's stability and robustness. 

In future studies, the calculation of criterion weighting coefficients and the assessment of relationships among 

criteria can be expanded beyond exponential functions to include other functions like sigmoid, quadratic, cubic, 

linear, inverse, and so forth. Additionally, research endeavors can explore computing criterion weighting 

coefficients by considering not only the influence of criteria but also the values of criterion interdependence. 

The goal is to identify the criteria contributing to the intensity of relationships between two criteria. 
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