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A B S T R AC T A R T I C L E I N F O

Discrete-time systems are sometimes used to explain natural phenomena that happen
in non-linear sciences. We study the periodicity, boundedness, oscillation, stability,
and certain exact solutions of nonlinear difference equations of generalized order
in this paper. Using the standard iteration method, exact solutions are obtained.
Some well-known theorems are used to test the stability of the equilibrium points.
Some numerical examples are also provided to confirm the theoretical work’s
validity. The numerical component is implemented with Wolfram Mathematica.
The method presented may be simply applied to other rational recursive issues.
In this research, we examine the qualitative behavior of rational recursive sequences
provided that the initial conditions are arbitrary real numbers. We examine the
behavior of solutions on graphs according to the state of their initial value

𝑥𝑛+1 =
𝑥𝑛𝑥𝑛−8

±𝑥𝑛−7 ± 𝑥𝑛𝑥𝑛−7𝑥𝑛−8
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1. Introduction

Differential equations are often used to describe some
natural phenomena when the time is continuous. However,
some real life problems can be simply investigated using
discrete-time equations. Differential equations occur nat-
urally in many nonlinear sciences, including ecology and
economics. In such cases, the state of a phenomenon at a
specific point in time completely predicts its state after a
year. Dynamical systems theory is useful in discussing
the behavior of some models without solving them. Most
natural phenomena are studied using difference equations.
For instance, recursive equations have been well used in
modeling some natural phenomena such as the size of a
population, the Fibonacci sequence, the drug in the blood
system, the transmission of information, the pricing of a
certain commodity, the propagation of annual plants, and
others [12]. In addition, some scholars have used differ-

ence equations to find the numerical solutions of some
differential equations. More specifically, discretizing a
given differential equation gives a difference equation.
For example, Runge-Kutta scheme is obtained from dis-
cretizing a first order differential equation. This raises the
question of the convergence of the difference scheme to
the solution of a differential equation. Or, in a broader
sense, the question of the correspondence between the
properties of solutions of differential equations and their
difference approximations. The work [17] is devoted to
questions of conservation of a solution bounded on the
entire axis in the transition from differential to differ-
ence equations and vice versa. In [18], similar questions
were considered to preserve the oscillatory property of
solutions to second-order equations. The development
of technology has motivated the use of recurrence equa-
tions as approximations to partial differential equations.
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It is worth mentioning that fractional order difference
equations are often utilized to investigate some real life
phenomena emerging in nonlinear sciences.
Alayachi et al. [5] analyzed the local and global attractiv-
ity, periodicity and the solutions of a sixth order difference
equation. Some numerical examples have been also pre-
sented in [5]. In [28], Sanbo and Elsayed presented the
periodicity, stability and some solutions of a fifth order
recursive equation. Almatrafi and Alzubaidi [8] discussed
the dynamical behaviors of an eighth order difference rela-
tion and showed some 2D figures for the obtained results.
Moreover, Ahmed et al. [2], found new solutions and
investigated the dynamical analysis for some nonlinear
difference relations of fifteenth order. More discussions
about nonlinear recursive problems can be seen in refs.
[1–30].
Let 𝐼 be some interval of real numbers and let

𝑓 : 𝐼𝑘+1 → 𝐼,

be a continuously differentiable function. Then for every
set of initial conditions

𝑥−𝑘 ,𝑈−𝑘+1, ..., 𝑥0 ∈ 𝐼

the difference equation

𝑥𝑛+1 = 𝑓 (𝑥𝑛, 𝑥𝑛−1, ..., 𝑥𝑛−𝑘), (1)

has a unique solution {𝑥𝑛}∞𝑛=−𝑘 [23]. A point 𝑥 ∈ 𝐼 is
called an equilibrium point of equation (1) if

𝑥 = 𝑓 ( 𝑥, 𝑥, ..., 𝑥) .

That is, 𝑥𝑛 = 𝑥 for 𝑛 ≥ 0 is a solution of equation (1), or
equivalently, 𝑥 is a fixed point of 𝑓 .

Definition 1.1. (Stability).

(i) The equilibrium point 𝑥 of equation (1) is called locally
stable if for every 𝜖 > 0, there exists 𝛿 > 0 such that for
all

𝑥−𝑘 , 𝑥−𝑘+1, ..., 𝑥−1, 𝑥0 ∈ 𝐼,

with

|𝑥−𝑘 − 𝑥 | + |𝑥−𝑘+1 − 𝑥 | + ... + |𝑥0 − 𝑥 | < 𝛿,

we have
|𝑥𝑛 − 𝑥 | < 𝜖 for all 𝑛 ≥ 𝑘.

(ii) The equilibrium point 𝑥 of equation (1) is called locally
asymptotically stable if 𝑥 is a locally stable solution of
equation (1) and there exists 𝛾 > 0, such that for all

𝑥−𝑘 , 𝑥−𝑘+1, ..., 𝑥−1, 𝑥0 ∈ 𝐼,

with

|𝑥−𝑘 − 𝑥 | + |𝑥−𝑘+1 − 𝑥 | + ... + |𝑥0 − 𝑥 | < 𝛾,

we have
lim
𝑛→∞

𝑥𝑛 = 𝑥.

(iii) The equilibrium point 𝑥 of equation (1) is called a global
attractor if for all

𝑥−𝑘 , 𝑥−𝑘+1, ..., 𝑥−1, 𝑥0 ∈ 𝐼,

we have

lim
𝑛→∞

𝑥𝑛 = 𝑥.

(iv) The equilibrium point 𝑥 of equation (1) is called a global
asymptotically stable if 𝑥 is locally stable and 𝑥 is also a
global attractor of equation (1).

(v) The equilibrium point 𝑥 of equation (1) is called unstable
if 𝑥 is not locally stable. The linearized equation of equa-
tion (1) about the equilibrium 𝑥 is the linear difference
equation

𝑦𝑛+1 =

𝑘∑︁
𝑖=0

𝜕 𝑓 (𝑥,𝑈, ..., 𝑥)
𝜕𝑥𝑛−𝑖

𝑦𝑛−𝑖 .

Theorem 1. (see[21]). Assume that 𝑝, 𝑞 ∈ R and 𝑘 ∈ N0.
Then

|𝑝 | + |𝑞 | < 1

is a sufficient condition for the asymptotic stability of the
difference equation

𝑥𝑛+1 + 𝑝𝑥𝑛 + 𝑞𝑥𝑛−𝑘 = 0, 𝑛 ∈ N0.

Remark 2. Theorem 1 can be easily extended to general
linear equations of the form

𝑥𝑛+𝑘 + 𝑝1𝑥𝑛+𝑘−1 + ... + 𝑝𝑘𝑥𝑛 = 0, 𝑛 ∈ N0, (2)

where, 𝑝1, 𝑝2, ..., 𝑝𝑘 ∈ R and 𝑘 ∈ N. Then (2) is asymp-
totically stable provided that

𝑘∑︁
𝑖=1

|𝑝𝑖 | < 1.

Definition 1.2. (Periodicity). A sequence {𝑥𝑛}∞𝑛=−𝑘 is
said to be periodic with period 𝑝 if 𝑥𝑛+𝑝 = 𝑈𝑛 for all
𝑛 ≥ −𝑘 .

Definition 1.3. The equilibrium point 𝑥 is said to be hy-
perbolic if | 𝑓 (𝑥) | ≠ 1. If | 𝑓 (𝑥) | = 1, 𝑥 is non hyperbolic.
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2. The Difference Equation 𝑥𝑛+1 =
𝑥𝑛𝑥𝑛−8

𝑥𝑛−7+𝑥𝑛𝑥𝑛−7𝑥𝑛−8

In this part we give the solutions of

𝑥𝑛+1 =
𝑥𝑛𝑥𝑛−8

𝑥𝑛−7 + 𝑥𝑛𝑥𝑛−7𝑥𝑛−8
, 𝑛 ∈ N0, (3)

where the initials are arbitrary real numbers.

Theorem 3. Let {𝑥𝑛}∞𝑛=−8 be a solution of Eq. 3. Then
for 𝑛 ∈ N0

𝑥16𝑛+1 =
𝑎 𝑗

∏𝑛−1
𝑖=0 (1 + (16𝑖 + 9)𝑎 𝑗)

ℎ
∏𝑛

𝑖=0 (1 + (16𝑖 + 1)𝑎 𝑗) ,

𝑥16𝑛+2 =
𝑎 𝑗

∏𝑛−1
𝑖=0 (1 + (16𝑖 + 10)𝑎 𝑗)

𝑔
∏𝑛

𝑖=0 (1 + (16𝑖 + 2)𝑎 𝑗) ,

𝑥16𝑛+3 =
𝑎 𝑗

∏𝑛−1
𝑖=0 (1 + (16𝑖 + 11)𝑎 𝑗)

𝑓
∏𝑛

𝑖=0 (1 + (16𝑖 + 3)𝑎 𝑗) ,

𝑥16𝑛+4 =
𝑎 𝑗

∏𝑛−1
𝑖=0 (1 + (16𝑖 + 12)𝑎 𝑗)

𝑒
∏𝑛

𝑖=0 (1 + (16𝑖 + 4)𝑎 𝑗) ,

𝑥16𝑛+5 =
𝑎 𝑗

∏𝑛−1
𝑖=0 (1 + (16𝑖 + 13)𝑎 𝑗)

𝑑
∏𝑛

𝑖=0 (1 + (16𝑖 + 5)𝑎 𝑗) ,

𝑥16𝑛+6 =
𝑎 𝑗

∏𝑛−1
𝑖=0 (1 + (16𝑖 + 14)𝑎 𝑗)

𝑐
∏𝑛

𝑖=0 (1 + (16𝑖 + 6)𝑎 𝑗) ,

𝑥16𝑛+7 =
𝑎 𝑗

∏𝑛−1
𝑖=0 (1 + (16𝑖 + 15)𝑎 𝑗)

𝑏
∏𝑛

𝑖=0 (1 + (16𝑖 + 7)𝑎 𝑗) ,

𝑥16𝑛+8 =
𝑗
∏𝑛−1

𝑖=0 (1 + (16𝑖 + 16)𝑎 𝑗)∏𝑛
𝑖=0 (1 + (16𝑖 + 8)𝑎 𝑗) ,

𝑥16𝑛+9 =
ℎ
∏𝑛

𝑖=0 (1 + (16𝑖 + 1)𝑎 𝑗)∏𝑛
𝑖=0 (1 + (16𝑖 + 9)𝑎 𝑗) ,

𝑥16𝑛+10 =
𝑔
∏𝑛

𝑖=0 (1 + (16𝑖 + 2)𝑎 𝑗)∏𝑛
𝑖=0 (1 + (16𝑖 + 10)𝑎 𝑗) ,

𝑥16𝑛+11 =
𝑓
∏𝑛

𝑖=0 (1 + (16𝑖 + 3)𝑎 𝑗)∏𝑛
𝑖=0 (1 + (16𝑖 + 11)𝑎 𝑗) ,

𝑥16𝑛+12 =
𝑒
∏𝑛

𝑖=0 (1 + (16𝑖 + 4)𝑎 𝑗)∏𝑛
𝑖=0 (1 + (16𝑖 + 12)𝑎 𝑗) ,

𝑥16𝑛+13 =
𝑑
∏𝑛

𝑖=0 (1 + (16𝑖 + 5)𝑎 𝑗)∏𝑛
𝑖=0 (1 + (16𝑖 + 13)𝑎 𝑗) ,

𝑥16𝑛+14 =
𝑐
∏𝑛

𝑖=0 (1 + (16𝑖 + 6)𝑎 𝑗)∏𝑛
𝑖=0 (1 + (16𝑖 + 14)𝑎 𝑗) ,

𝑥16𝑛+15 =
𝑏
∏𝑛

𝑖=0 (1 + (16𝑖 + 7)𝑎 𝑗)∏𝑛
𝑖=0 (1 + (16𝑖 + 15)𝑎 𝑗) ,

𝑥16𝑛+16 =
𝑎
∏𝑛

𝑖=0 (1 + (16𝑖 + 8)𝑎 𝑗)∏𝑛
𝑖=0 (1 + (16𝑖 + 16)𝑎 𝑗) .

where,

𝑥−8 = 𝑗 , 𝑥−7 = ℎ, 𝑥−6 = 𝑔, 𝑥−5 = 𝑓 ,

𝑥−4 = 𝑒, 𝑥−3 = 𝑑, 𝑥−2 = 𝑐, 𝑥−1 = 𝑏, (4)
𝑥0 = 𝑎.

Proof Suppose that 𝑛 > 0 and that our assumption holds
for 𝑛 − 1. That is,

𝑥16𝑛−15 =
𝑎 𝑗

∏𝑛−2
𝑖=0 (1 + (16𝑖 + 9)𝑎 𝑗)

ℎ
∏𝑛−1

𝑖=0 (1 + (16𝑖 + 1)𝑎 𝑗)
,

𝑥16𝑛−14 =
𝑎 𝑗

∏𝑛−2
𝑖=0 (1 + (16𝑖 + 10)𝑎 𝑗)

𝑔
∏𝑛−1

𝑖=0 (1 + (16𝑖 + 2)𝑎 𝑗)
,

𝑥16𝑛−13 =
𝑎 𝑗

∏𝑛−2
𝑖=0 (1 + (16𝑖 + 11)𝑎 𝑗)

𝑓
∏𝑛−1

𝑖=0 (1 + (16𝑖 + 3)𝑎 𝑗)
,

𝑥16𝑛−12 =
𝑎 𝑗

∏𝑛−2
𝑖=0 (1 + (16𝑖 + 12)𝑎 𝑗)

𝑒
∏𝑛−1

𝑖=0 (1 + (16𝑖 + 4)𝑎 𝑗)
,

𝑥16𝑛−11 =
𝑎 𝑗

∏𝑛−2
𝑖=0 (1 + (16𝑖 + 13)𝑎 𝑗)

𝑑
∏𝑛−1

𝑖=0 (1 + (16𝑖 + 5)𝑎 𝑗)
,

𝑥16𝑛−10 =
𝑎 𝑗

∏𝑛−2
𝑖=0 (1 + (16𝑖 + 14)𝑎 𝑗)

𝑐
∏𝑛−1

𝑖=0 (1 + (16𝑖 + 6)𝑎 𝑗)
,

𝑥16𝑛−9 =
𝑎 𝑗

∏𝑛−2
𝑖=0 (1 + (16𝑖 + 15)𝑎 𝑗)

𝑏
∏𝑛−1

𝑖=0 (1 + (16𝑖 + 7)𝑎 𝑗)
,

𝑥16𝑛−8 =
𝑗
∏𝑛−2

𝑖=0 (1 + (16𝑖 + 16)𝑎 𝑗)∏𝑛−1
𝑖=0 (1 + (16𝑖 + 8)𝑎 𝑗)

,

𝑥16𝑛−7 =
ℎ
∏𝑛−1

𝑖=0 (1 + (16𝑖 + 1)𝑎 𝑗)∏𝑛−1
𝑖=0 (1 + (16𝑖 + 9)𝑎 𝑗)

,

𝑥16𝑛−6 =
𝑔
∏𝑛−1

𝑖=0 (1 + (16𝑖 + 2)𝑎 𝑗)∏𝑛−1
𝑖=0 (1 + (16𝑖 + 10)𝑎 𝑗)

,

𝑥16𝑛−5 =
𝑓
∏𝑛−1

𝑖=0 (1 + (16𝑖 + 3)𝑎 𝑗)∏𝑛−1
𝑖=0 (1 + (16𝑖 + 11)𝑎 𝑗)

,

𝑥16𝑛−4 =
𝑒
∏𝑛−1

𝑖=0 (1 + (16𝑖 + 4)𝑎 𝑗)∏𝑛−1
𝑖=0 (1 + (16𝑖 + 12)𝑎 𝑗)

,

𝑥16𝑛−3 =
𝑑
∏𝑛−1

𝑖=0 (1 + (16𝑖 + 5)𝑎 𝑗)∏𝑛−1
𝑖=0 (1 + (16𝑖 + 13)𝑎 𝑗)

,

𝑥16𝑛−2 =
𝑐
∏𝑛−1

𝑖=0 (1 + (16𝑖 + 6)𝑎 𝑗)∏𝑛−1
𝑖=0 (1 + (16𝑖 + 14)𝑎 𝑗)

,

𝑥16𝑛−1 =
𝑏
∏𝑛−1

𝑖=0 (1 + (16𝑖 + 7)𝑎 𝑗)∏𝑛−1
𝑖=0 (1 + (16𝑖 + 15)𝑎 𝑗)

,

𝑥16𝑛 =
𝑎
∏𝑛−1

𝑖=0 (1 + (16𝑖 + 8)𝑎 𝑗)∏𝑛−1
𝑖=0 (1 + (16𝑖 + 16)𝑎 𝑗)

.

where, 𝑥−8, . . . , 𝑥0 defines as in 4 Now, it follows from
Equation 3 that
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𝑥16𝑛+1 =
𝑥16𝑛𝑥16𝑛−8

𝑥16𝑛−7 + 𝑥16𝑛𝑥16𝑛−7𝑥16𝑛−8
. (5)

If the found values are substituted in the equation5, we
have

𝑥16𝑛+1 =
𝑎 𝑗

∏𝑛−1
𝑖=0 (1 + (16𝑖 + 9)𝑎 𝑗)

ℎ
∏𝑛

𝑖=0 (1 + (16𝑖 + 1)𝑎 𝑗) .

Other relations can also be obtained in a similar way, and
thus the proof is complete.

Theorem 4. Equation 3 has a unique equilibrium 𝑥 = 0
and it is not locally asymptotically stable.

Proof
We have

𝑥 =
𝑥2

𝑥(1 + 𝑥2)
.

Then
1 + 𝑥2 = 1, 𝑥2 = 0.

Thus the equilibrium of Equation 3 is 𝑥 = 0.
Define the function 𝐹 by

𝐹 (𝛼, 𝛽, 𝛾) = 𝛼𝛾

𝛽(1 + 𝛼𝛾) .

Then it follows that,

𝐹𝛼 (𝛼, 𝛽, 𝛾) =
𝛾

𝛽(1 + 𝛼𝛾)2 ; 𝐹𝛽 (𝛼, 𝛽, 𝛾) = − 𝛼𝛾

𝛽2 (1 + 𝛼𝛾)
;

𝐹𝛾 (𝛼, 𝛽, 𝛾) =
𝛼

𝛽(1 + 𝛼𝛾)2 ;

we see that,

𝐹𝛼 (𝑥, 𝑥, 𝑥) = 1; 𝐹𝛽 (𝑥, 𝑥, 𝑥) = −1; 𝐹𝛾 (𝑥, 𝑥, 𝑥) = 1

By using Theorem 1 , the proof is completed.

Example 1. Assume that

𝑥−8 = 6.5, 𝑥−7 = 5.5, 𝑥−6 = 24, 𝑥−5 = 23, 𝑥−4 = 22,
𝑥−3 = 21, 𝑥−2 = 5, 𝑥−1 = 4, 𝑥0 = 3.

See figure 1.
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Figure 1

Example 2. Assume that,

𝑥−8 = 7.5, 𝑥−7 = 3.5, 𝑥−6 = 20, 𝑥−5 = 21, 𝑥−4 = 19,
𝑥−3 = 18, 𝑥−2 = 6, 𝑥−1 = 5, 𝑥0 = 2.5

See figure 2.
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3. The Equation 𝑥𝑛+1 =
𝑥𝑛𝑥𝑛−8

𝑥𝑛−7−𝑥𝑛𝑥𝑛−7𝑥𝑛−8

We deal with the difference equation

𝑥𝑛+1 =
𝑥𝑛𝑥𝑛−8

𝑥𝑛−7 − 𝑥𝑛𝑥𝑛−7𝑥𝑛−8
, 𝑛 ∈ N0. (6)

where the initials are arbitrary real numbers.

Theorem 5. Let {𝑥𝑛}∞𝑛=−8 be a solution of Equation 6
Then for 𝑛 ∈ N0

𝑥16𝑛+1 =
𝑎 𝑗

∏𝑛−1
𝑖=0 (1 − (16𝑖 + 9)𝑎 𝑗)

ℎ
∏𝑛

𝑖=0 (1 − (16𝑖 + 1)𝑎 𝑗) ,

𝑥16𝑛+2 =
𝑎 𝑗

∏𝑛−1
𝑖=0 (1 − (16𝑖 + 10)𝑎 𝑗)

𝑔
∏𝑛

𝑖=0 (1 − (16𝑖 + 2)𝑎 𝑗) ,

𝑥16𝑛+3 =
𝑎 𝑗

∏𝑛−1
𝑖=0 (1 − (16𝑖 + 11)𝑎 𝑗)

𝑓
∏𝑛

𝑖=0 (1 − (16𝑖 + 3)𝑎 𝑗) ,

𝑥16𝑛+4 =
𝑎 𝑗

∏𝑛−1
𝑖=0 (1 − (16𝑖 + 12)𝑎 𝑗)

𝑒
∏𝑛

𝑖=0 (1 − (16𝑖 + 4)𝑎 𝑗) ,

𝑥16𝑛+5 =
𝑎 𝑗

∏𝑛−1
𝑖=0 (1 − (16𝑖 + 13)𝑎 𝑗)

𝑑
∏𝑛

𝑖=0 (1 − (16𝑖 + 5)𝑎 𝑗) ,

𝑥16𝑛+6 =
𝑎 𝑗

∏𝑛−1
𝑖=0 (1 − (16𝑖 + 14)𝑎 𝑗)

𝑐
∏𝑛

𝑖=0 (1 − (16𝑖 + 6)𝑎 𝑗) ,

𝑥16𝑛+7 =
𝑎 𝑗

∏𝑛−1
𝑖=0 (1 − (16𝑖 + 15)𝑎 𝑗)

𝑏
∏𝑛

𝑖=0 (1 − (16𝑖 + 7)𝑎 𝑗) ,

𝑥16𝑛+8 =
𝑗
∏𝑛−1

𝑖=0 (1 − (16𝑖 + 16)𝑎 𝑗)∏𝑛
𝑖=0 (1 − (16𝑖 + 8)𝑎 𝑗) ,
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𝑥16𝑛+9 =
ℎ
∏𝑛

𝑖=0 (1 − (16𝑖 + 1)𝑎 𝑗)∏𝑛
𝑖=0 (1 − (16𝑖 + 9)𝑎 𝑗) ,

𝑥16𝑛+10 =
𝑔
∏𝑛

𝑖=0 (1 − (16𝑖 + 2)𝑎 𝑗)∏𝑛
𝑖=0 (1 − (16𝑖 + 10)𝑎 𝑗) ,

𝑥16𝑛+11 =
𝑓
∏𝑛

𝑖=0 (1 − (16𝑖 + 3)𝑎 𝑗)∏𝑛
𝑖=0 (1 − (16𝑖 + 11)𝑎 𝑗) ,

𝑥16𝑛+12 =
𝑒
∏𝑛

𝑖=0 (1 − (16𝑖 + 4)𝑎 𝑗)∏𝑛
𝑖=0 (1 − (16𝑖 + 12)𝑎 𝑗) ,

𝑥16𝑛+13 =
𝑑
∏𝑛

𝑖=0 (1 − (16𝑖 + 5)𝑎 𝑗)∏𝑛
𝑖=0 (1 − (16𝑖 + 13)𝑎 𝑗) ,

𝑥16𝑛+14 =
𝑐
∏𝑛

𝑖=0 (1 − (16𝑖 + 6)𝑎 𝑗)∏𝑛
𝑖=0 (1 − (16𝑖 + 14)𝑎 𝑗) ,

𝑥16𝑛+15 =
𝑏
∏𝑛

𝑖=0 (1 − (16𝑖 + 7)𝑎 𝑗)∏𝑛
𝑖=0 (1 − (16𝑖 + 15)𝑎 𝑗) ,

𝑥16𝑛+16 =
𝑎
∏𝑛

𝑖=0 (1 − (16𝑖 + 8)𝑎 𝑗)∏𝑛
𝑖=0 (1 − (16𝑖 + 16)𝑎 𝑗) .

holds.

Proof The proof is similar to the proof of Theorem 3
and therefore it will be omitted.

Theorem 6. Equation 6 has a unique equilibrium 𝑥 = 0,
and it is not locally asymptotically stable.

Proof The proof is similar to the proof Theorem 4 and
there it will be omitted.
For confirming the outcomes of this section, we take
into consideration mathematical instances which stand for
various kind of solutions to (3).

Example 3. The solution in given by Figure 3 when,

𝑥−8 = 6, 𝑥−7 = 6.5, 𝑥−6 = 11, 𝑥−5 = 19, 𝑥−4 = 13,
𝑥−3 = 10, 𝑥−2 = 11, 𝑥−1 = 8, 𝑥0 = 9.5
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n
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5

x(n)

x
-
=0

Figure 3

Example 4. The solution is given by Figure 4 when,

𝑥−8 = 6.8, 𝑥−7 = 6, 𝑥−6 = 13, 𝑥−5 = 17, 𝑥−4 = 16,
𝑥−3 = 21, 𝑥−2 = 19, 𝑥−1 = 17, 𝑥0 = 10.5

20 40 60 80 100 120
n
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8

x(n)

x
-
=0

Figure 4

4. The Equation 𝑥𝑛+1 =
𝑥𝑛𝑥𝑛−8

−𝑥𝑛−7+𝑥𝑛𝑥𝑛−7𝑥𝑛−8

We deal with the difference equation

𝑥𝑛+1 =
𝑥𝑛𝑥𝑛−8

−𝑥𝑛−7 + 𝑥𝑛𝑥𝑛−7𝑥𝑛−8
, 𝑛 ∈ N0. (7)

where the initials are arbitrary real numbers.

Theorem 7. Let {𝑥𝑛}∞𝑛=−8 be a solution of difference
equation 7. Then solutions are 16 period.{
𝑥16𝑛+1 =

𝑎 𝑗

ℎ(−1 + 𝑎 𝑗) , 𝑥16𝑛+2 =
𝑎 𝑗

𝑔
, 𝑥16𝑛+3 =

𝑎 𝑗

𝑓 (−1 + 𝑎 𝑗) ,

𝑥16𝑛+4 =
𝑎 𝑗

𝑒
, 𝑥16𝑛+5 =

𝑎 𝑗

𝑑 (−1 + 𝑎 𝑗) , 𝑥16𝑛+6 =
𝑎 𝑗

𝑐
,

𝑥16𝑛+7 =
𝑎 𝑗

𝑏(−1 + 𝑎 𝑗) , 𝑥16𝑛+8 = 𝑗 , 𝑥16𝑛+9 = ℎ, 𝑥16𝑛+10 = 𝑔,

𝑥16𝑛+11 = 𝑓 , 𝑥16𝑛+12 = 𝑒, 𝑥16𝑛+13 = 𝑑, 𝑥16𝑛+14 = 𝑐,

𝑥16𝑛+15 = 𝑏, 𝑥16𝑛+16 = 𝑎

}
.

Proof Suppose that 𝑛 > 0 and that our assumption holds
for 𝑛 − 1. Then

𝑥16𝑛−15 =
𝑎 𝑗

ℎ(−1 + 𝑎 𝑗) , 𝑥16𝑛−14 =
𝑎 𝑗

𝑔
, 𝑥16𝑛−13 =

𝑎 𝑗

𝑓 (−1 + 𝑎 𝑗) ,

𝑥16𝑛−12 =
𝑎 𝑗

𝑒
, 𝑥16𝑛−11 =

𝑎 𝑗

𝑑 (−1 + 𝑎 𝑗) , 𝑥16𝑛−10 =
𝑎 𝑗

𝑐
,

𝑥16𝑛−9 =
𝑎 𝑗

𝑏(−1 + 𝑎 𝑗) , 𝑥16𝑛−8 = 𝑗 , 𝑥16𝑛−7 = ℎ, 𝑥16𝑛−6 = 𝑔,

𝑥16𝑛−5 = 𝑓 , 𝑥16𝑛−4 = 𝑒, 𝑥16𝑛−3 = 𝑑, 𝑥16𝑛−2 = 𝑐,

𝑥16𝑛−1 = 𝑏, 𝑥16𝑛 = 𝑎.

Now, it follows from 7 that

𝑥16𝑛+1 =
𝑥16𝑛𝑥16𝑛−8

−𝑥16𝑛−7 + 𝑥16𝑛𝑥16𝑛−7𝑥16𝑛−8
(8)

If the found values are substituted in the Eq. 8, we have

𝑥16𝑛+1 =
𝑎 𝑗

ℎ(−1 + 𝑎 𝑗) .

We can prove other relations similarly.
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Theorem 8. Equation 7 has a unique equilibrium points
which are 0,±

√
2, and these equilibrium points are not

locally asymptotically stable.

Proof The proof is similar to the proof Theorem 4 and
there it will be omitted.
Example 5. The solution in given by Figure 5 when,

𝑥−8 = 7.5, 𝑥−7 = 9, 𝑥−6 = 13, 𝑥−5 = 11, 𝑥−4 = 15,
𝑥−3 = 13.5, 𝑥−2 = 19, 𝑥−1 = 12, 𝑥0 = 14.

20 40 60 80 100 120
n

5

10

15

20
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x
-
=0

Figure 5

Example 6. The solution in given by Figure 6 when,

𝑥−8 = 1.2, 𝑥−7 = 1.5, 𝑥−6 = 1.3, 𝑥−5 = 1.6, 𝑥−4 = 1.35,
𝑥−3 = 1.25, 𝑥−2 = 1.45, 𝑥−1 = 1.465, 𝑥0 = 1.245
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5. The Equation 𝑥𝑛+1 =
𝑥𝑛𝑥𝑛−8

−𝑥𝑛−7−𝑥𝑛𝑥𝑛−7𝑥𝑛−8

𝑥𝑛+1 =
𝑥𝑛𝑥𝑛−8

−𝑥𝑛−7 − 𝑥𝑛𝑥𝑛−7𝑥𝑛−8
, 𝑛 ∈ N0, (9)

where the initials are arbitrary real numbers. 𝑥0.𝑥−8 ≠ −1.
Theorem 9. Let {𝑥𝑛}∞𝑛=−8 be a solution of difference
equation 9 .{

−𝑎 𝑗
ℎ(1 + 𝑎 𝑗) ,

𝑎 𝑗

𝑔
,

𝑎 𝑗

− 𝑓 (1 + 𝑎 𝑗) ,
𝑎 𝑗

𝑒
,

−𝑎 𝑗
𝑑 (1 + 𝑎 𝑗) ,

𝑎 𝑗

𝑐
,

−𝑎 𝑗
𝑏(1 + 𝑎 𝑗) , 𝑗 , ℎ, 𝑔, 𝑓 , 𝑒, 𝑑, 𝑐, 𝑏, 𝑎

}
.

where equilibriums 𝑥0.𝑥−8 ≠ −1. The solutions are ob-
tained with 16 periods.

Proof The proof is the same as the proof of Theorem 7
and hence is omitted.

Theorem 10. Equation 6 has a unique equilibrium points
which are 0,±

√
−2, and these equilibrium points are not

locally asymptotically stable.

Proof The proof is similar to the proof Theorem 4 and
there it will be omitted.

Example 7. See Fig. 7 for the initials

𝑥−8 = 6.1, 𝑥−7 = 9.3, 𝑥−6 = 13, 𝑥−5 = 11, 𝑥−4 = 15,
𝑥−3 = 13.5, 𝑥−2 = 19, 𝑥−1 = 12, 𝑥0 = 14.

20 40 60 80 100 120
n

5

10

15

20

x(n)

x
-
=0

Figure 7

Example 8. We consider

𝑥−8 = 6.1, 𝑥−7 = 9.3, 𝑥−6 = 13, 𝑥−5 = 11,
𝑥−4 = 15.2, 𝑥−3 = 13.5, 𝑥−2 = 19.2, 𝑥−1 = 12.2,
𝑥0 = 16.

See figure 8
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Figure 8
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6. Conclusion
We investigate the dynamics of the difference equation
expressed as

𝑥𝑛+1 =
𝑥𝑛𝑥𝑛−8

±𝑥𝑛−7 ± 𝑥𝑛𝑥𝑛−7𝑥𝑛−8

where the initial values are positive real numbers. Our
analysis includes a discussion on local stability. Addition-
ally, we obtain solutions for specific cases and provide
numerical examples to further illustrate our findings.
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[29] Simsek, D., Oğul, B., Abdullayev, F., Dynamical behavior
of solution of fifteenth-order rational difference equation,
Filomat, 24(3), 997-1008 (2024)
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