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Highlights  
 A machine learning model was developed to predict the total melting time of phase change material. 

 The Multi Layer Perception model outperforms with 4.07% mean absolute percentage error, showcasing its precise predictive 
capability.  

 Multi-objective optimization was conducted to optimize both stored energy and power. 

 Non-dominated Sorting Genetic Algorithm (NSGA-II) optimization highlights trade-offs between stored energy and power, guiding 
balanced design. 

You can cite this article as: İzgi B. Machine learning predictions and optimization for thermal energy storage in cylindrical encapsulated 
phase change material. Int J Energy Studies 2024; 9(2): 199-218. 

ABSTRACT 

Accurate prediction of melting time is crucial in designing Thermal Energy Storage (TES) systems based on cylindrically 
encapsulated Phase Change Materials (PCMs). The melting time of a cylindrical encapsulated PCM directly correlates 
with the energy stored in the system. This study introduces a precise prediction model for the total melting time of 
cylindrically encapsulated PCM, utilizing a machine learning algorithm. The model, developed with the Multilayer 
Perceptron (MLP) method, demonstrated superior performance compared to the correlation equation proposed in the 
literature. The Mean Absolute Percentage Error (MAPE) value for the correlation equation was 16.68%, while the MLP 
model achieved a significantly lower MAPE of 4.07%, indicating its success in capturing the intricate relationship 
between input parameters and melting time. Furthermore, optimization results using the Non-dominated Sorting Genetic 
Algorithm II (NSGA-II) underscore the importance of striking a balance between stored energy and power during the 
design process. Maximizing stored energy (81.78 kJ) minimizes power (12.69 W), and vice versa, maximizing power 
(73.38 W) minimizes stored energy (37.10 kJ). In the case of equal weighting for stored energy and power in the design 
(56.05 kJ and 38.89 W, respectively), a 31.5% decrease in energy and a 206.5% increase in power were observed 
compared to the scenario where energy is maximized. Additionally, a 44% decrease in power and a 51.1% increase in 
energy were noted compared to the case where power is maximized. These findings collectively highlight the robustness 
and effectiveness of the developed MLP model in accurately predicting melting time and providing optimal solutions 
for energy storage parameters. 
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1. INTRODUCTION 

Thermal energy storage (TES) is crucial for managing the variability of renewable energy sources 

and improving the overall efficiency of energy systems [1]. By allowing the decoupling of energy 

generation and consumption, TES enables the storage of excess thermal energy during periods of 

surplus production for later use during high demand or low generation periods. This flexibility 

contributes to grid stability, mitigates the impact of variable energy sources like solar and wind, 

and supports the integration of renewable energy into existing infrastructures [2]. Moreover, TES 

systems empower industries to optimize energy consumption, manage peak loads, and improve 

process efficiency, resulting in reduced operational costs and environmental impact. Beyond its 

immediate applications, the importance of thermal energy storage extends to its role in promoting 

energy resilience, offering a viable solution for meeting energy demands [3] in diverse sectors, 

from residential and commercial spaces [4,5] to industrial processes and power plants [6,7]. As 

the world transitions towards sustainable and resilient energy systems, the significance of TES 

emerges as a key enabler for achieving a cleaner, more reliable, and economically viable energy 

landscape [8]. 

 

Phase change materials (PCMs) stand as integral components in thermal energy storage systems, 

offering unique advantages that enhance the efficiency and versatility of energy storage 

technologies [9]. The distinctive feature of PCMs lies in their ability to absorb or release latent 

heat during phase transitions, providing a highly efficient and compact means of storing thermal 

energy [10]. By harnessing the latent heat associated with the transition between solid and liquid 

states, PCMs enable the storage of substantial amounts of energy within a narrow temperature 

range. This characteristic makes them particularly valuable in applications where maintaining a 

stable temperature is critical, such as building climate control [11] and electronics cooling [12]. 

Additionally, the isothermal nature of phase transitions in PCMs minimizes temperature variations 

during the energy release process, contributing to enhanced system performance.  

 

Macro-encapsulation stands out as a prevalent and practical technique in the containment of PCMs. 

This method involves enclosing the PCM within a larger structure, forming a distinct and 

manageable unit. The encapsulation material, often selected for its compatibility with the PCM 

and desired thermal properties, serves as a protective barrier, preventing leakage and facilitating 

the controlled release of thermal energy during phase transitions [13]. PCMs encapsulated in 

vertical cylinders represent a specialized and efficient approach to thermal energy storage. This 
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design capitalizes on the cylindrical geometry to optimize space utilization and facilitate efficient 

heat transfer. The encapsulation of PCMs within the vertical cylinder allows for a higher surface-

to-volume ratio, promoting enhanced heat exchange between the PCM and its surroundings. This 

configuration proves advantageous in various applications, such as solar heating systems and 

waste heat recovery, where the efficient storage and release of thermal energy are paramount. The 

vertical alignment supports natural convection processes within the PCM, facilitating uniform 

phase change [14].  

 

In existing literature, numerous studies explore experimental, numerical, and analytical 

investigations into PCM melting inside a cylindrical tube. Previous studies have commonly 

focused on the melting process, fluid flow, and heat transfer characteristics of the phase change 

process [15–18]. Jones et al. [19] conducted experimental measurements while observing the 

melting process of n-eicosane, acting as a PCM with a moderate Prandtl number, within an 

invertedly heated cylinder. They visually recorded the melting front through photography and 

determined its position using digital image processing techniques. Fraiman et al. [20] performed 

experiments utilizing vertical tubes of four varying diameters, filled with PCM and immersed in a 

water bath. The study investigated three PCM heights corresponding to each tube diameter. 

Experiments were conducted at different water bath temperatures—10, 20, and 30°C above the 

PCM's melting temperature. The design of the study allowed for a systematic examination of the 

influence of tube dimensions, PCM heights, and water bath temperatures on the melting behavior 

of the paraffin within the vertical tubes. In the study conducted by Malya et al. [21], a 

comprehensive parametric scaling investigation was undertaken. The researchers explored a 

diverse range of radii and wall temperatures, systematically varying these parameters to analyze 

their impact on the thermal behavior of the cylindrical encapsulated PCM system. In addition to 

the studies on the melting of PCM, some research has suggested correlations for predicting the 

total melting time [16,20,21].  

 

Employing machine learning techniques represents a novel strategy to minimize the expenses and 

computational time associated with studies. Consequently, these methods have found widespread 

application in various industrial thermal engineering domains, including evaluating heat exchanger 

performance [22], predicting two-phase flow patterns [23], and addressing thermal energy storage 

applications [24,25]. Despite their extensive use in diverse areas, machine learning methods are 

infrequently applied to predict the melting time of PCMs [26,27]. 
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The melting time of a cylindrical encapsulated PCM is directly related to the energy stored in the 

system. Accurate prediction of the melting time is crucial in designing TES systems based on 

cylindrically encapsulated PCMs. The melting time of PCM for use in a TES system can be 

determined experimentally or using computational fluid dynamics (CFD). However, it can be 

costly and time-consuming to conduct experiments for each different geometrical parameter when 

the encapsulation dimensions vary. Similarly, as the number of geometric parameters to be tested 

increases, CFD solutions become more expensive in terms of computational time. Additionally, it 

is not feasible to test all alternative designs, either experimentally or via CFD, to achieve an 

optimal design. Therefore, an accurate and fast model is needed to immediately observe the effect 

of design changes on PCM melting time and to determine the optimum design. The originality of 

this work lies in the development and implementation of a machine learning model to predict the 

total melting time of vertically oriented, cylindrically encapsulated PCM, and in optimizing the 

geometrical and thermal parameters using the developed machine learning model along with a 

genetic optimization algorithm. 

 

This paper presents a machine learning model that accurately and quickly predicts the melting time 

of vertically oriented, cylindrically encapsulated PCM using previously published experimental 

data. Furthermore, it details the optimization results of the geometrical and thermal parameters 

using the developed machine learning model and the NSGA-II genetic algorithm optimization 

method. 

 

2. METHOD 

In this study, an accurate prediction model for the total melting time of cylindrically encapsulated 

PCM was developed using a machine learning algorithm. The data used for model training were 

extracted from the experimental study conducted by Fraiman et.al [20]. The predictions obtained 

from the machine learning model were compared with the correlation equation proposed by 

Fraiman et. al. After carefully testing the accuracy of the developed machine learning model, the 

geometric and thermal parameters were optimized using the genetic algorithm optimization 

method. Details about the problem definition, data processing, the machine learning algorithm 

used, and the optimization method are presented in the following subsections. Figure 1 presents 

the method used in this study. 
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Figure 1. An overview of the methods utilized in this study 

 
 2.1. Problem Description 

Figure 2 shows the schematic view of the melting problem of PCM in the cylinder. To investigate 

the effect of cylinder geometry and temperature difference on melting time, three different cylinder 

heights, four different cylinder diameters, and three different temperature differences were 

explored. In Fraiman's [20] experimental study, cylindrical tubes with diameters of 1, 2, 3, and 4 

cm were used, while cylinder heights were 6, 12, and 17 cm. Experiments were conducted by 

maintaining the side surfaces of the cylinder at 10, 20, and 30 °C above the melting temperature 

of PCM. RT27 was used as the PCM. The thermophysical properties of the PCM are provided in 

Table 1. 
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Figure 2. Schematic view of the PCM encapsulated in a vertical cylinder 

 

Table 1. Thermophysical properties of the PCM [20] 

Properties RT27   

𝜌 [kg/m3] 781.6 

𝐶  [kJ/kgoC] 2.5 

𝑘 [W/moC] 0.2 

𝜇 [kg/ms] 0.00392 

𝑇  [oC] 28 °C 

𝐿 [kJ/kg] 179 

β [1/K] 0.001 

 

2.2. Data Processing 

The results of the experimental study conducted by Fraiman et. al were extracted with the 

Webplotdigitizer tool. Thus, the total melting time of PCM was obtained for different diameter, 

height, and temperature difference conditions. When training the machine learning model, 

dimensionless numbers, such as Rayleigh and Stefan numbers, were utilized to establish a more 

generalized model and to compare it with experimental correlation results. Dimensionless numbers 

were calculated for each case, and the dataset used in machine learning was then created. Figure 3 

illustrates the scatter matrix of the variables within the dataset. 
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Figure 3. The scatter matrix of the variables 

 
In order to express the effect of geometric and thermal parameters on the melting process of PCM 

with a generalized correlation, Fraiman proposed the following equation [20]: 

 

𝑀𝐹 = 1 − 1 −
𝑋

1.3

/

 (1) 

 

where MF is melt fraction and X is defined as follows: 

 

𝑋 = 𝐹𝑜𝑆𝑡𝑒 / 𝑅𝑎 / (𝐷/𝐻) /  (2) 

 

where, Fo, Ste and RaD are Fourier, Stefan and Rayleigh numbers, defined as: 

 

𝐹𝑜 =
𝑘

𝜌𝑐
 

𝑡

𝐷
 (3) 

 

𝑆𝑡𝑒 =
𝑐 Δ𝑇

𝐿
  (4) 
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𝑅𝑎 =
𝑔𝜌 𝑐 𝛽Δ𝑇𝐷

𝜇𝑘
  (5) 

 

The Fourier number (Fo), Stefan number (Ste), and Rayleigh number (Ra) are dimensionless 

numbers used in heat transfer and fluid dynamics to characterize different physical phenomena. 

The Fourier number indicates the ratio of the rate of heat conduction to the rate of thermal energy 

storage. In phase change heat transfer, it helps determine how quickly heat is conducted through a 

material relative to the rate at which energy is stored in the material. The Stefan number quantifies 

the relative importance of sensible heat to latent heat during a phase change process. A higher 

Stefan number implies a greater proportion of sensible heat compared to latent heat. Lastly, the 

Rayleigh number describes the flow regime in buoyancy-driven flow. A high Rayleigh number 

indicates turbulent convection, while a low Rayleigh number indicates laminar flow. 

 

Since a melting rate of 1 (MF=1) indicates complete melting, the total melting time can be 

calculated using the correlation equation proposed by Fraiman. Total melting times were 

calculated using this correlation equation with the same data to facilitate a comparison with the 

machine learning model. 

 

2.3. Machine Learning Model 

In the present investigation, a multilayer perceptron (MLP) network model was trained with the 

objective of predicting the total melting time of the PCM within a cylindrical enclosure.  

 

The MLP, a widely utilized feed-forward backpropagation artificial neural network, comprises an 

input layer, at least one hidden layer, and an output layer. In each layer, the fundamental unit is 

referred to as a neuron, encompassing a summation unit and a non-linear activation function 

denoted as φ(x) [28,29]. The architecture of the developed model is shown in Figure 4.  
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Figure 4. The architecture of the developed MLP model 

 

Mathematical expressions (Eq. 6) can define the working principle of the neuron as a weighted 

sum of inputs, where the weights are multiplied by their corresponding input values, and the result 

is passed through a non-linear activation function [28,29]. 

 

𝑦 = 𝜙 (𝑤 𝑥 ) + 𝑏  (6) 

 

where, y is output of the neuron,  φ is the activation function, wi is the weight associated with input 

xi, b is the bias term, n is the number of inputs. 

 

Scikit-learn Python library [30] was used for model training. Scikit-learn is a widely used Python 

library for machine learning due to its comprehensive collection of algorithms and seamless 

integration with other libraries like NumPy and Pandas. It benefits from extensive documentation 

and a large, active community, making it an excellent choice for developing reliable and accurate 

machine learning models. In this study, the MLPRegressor function from the Scikit-learn library 

is utilized to train the model. The hidden layer sizes are set to (95, 36). The activation function is 

'relu' and the solver is 'lbfgs'. 

 

After preparing the dataset, RaD, Ste, and D/H were designated as input parameters, while melting 

time was assigned as the output parameter. Following the normalization of input parameters, 70% 

of the dataset was randomly allocated for training the model, and the remaining 30% was used for 

testing. For the model, two hidden layers, consisting of 90 and 36 neurons, were determined 

through a trial-and-error method. To evaluate the model's predictive accuracy, metrics such as the 
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coefficient of determination (R2), mean absolute error (MAE),  mean square error (MSE), and 

mean absolute percentage error (MAPE) were employed [30]. 

 

𝑅 (𝑦, 𝑦) = 1 −
(𝑦 − y )

(𝑦 − 𝑦)
 (7) 

 

MAE(𝑦, 𝑦) =
1

𝑛samples
|𝑦 − 𝑦 |

samples

 (8) 

MSE(𝑦, 𝑦) =
1

𝑛samples
(𝑦 − 𝑦 )

samples

 (9) 

 

MAPE(𝑦, 𝑦) =
1

𝑛samples

|𝑦 − 𝑦 |

𝑚𝑎𝑥(𝜖, |𝑦 |)

samples

 × 100 (10) 

 

where  𝑦  is predicted value, 𝑦  and 𝑦 are the corresponding true and mean values. 

 

2.4. Optimization  

In energy storage systems using PCM, the duration of energy storage (charging time) is as crucial 

as the amount of energy stored. In a cylindrically encapsulated PCM system, increasing the 

diameter or height of the cylinder can enhance the amount of stored energy. However, in this case, 

the melting time of PCM will also increase, resulting in a longer charging time for the system. 

Therefore, it is necessary to optimize the geometrical and thermal parameters to maximize energy 

storage in the shortest time. 

 

The total amount of stored energy (E) can be expressed as the sum of sensible and latent heat: 

 

𝐸 = 𝑚(𝐿 + 𝑐 (𝑇 − 𝑇 )) (11) 

 

where L is the latent heat of fusion, cp is the specific heat, Tm is the melting temperature and Tw is 

the wall temperature of the cylinder. By dividing the total amount of stored energy (E) by the total 
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melting time (t) of the PCM, the amount of energy stored per unit time (mean power, P) can be 

expressed as follows. 

 

𝑃 = 𝐸/𝑡 (12) 

 

The developed machine learning model and genetic optimization method are utilized to apply a 

multi-objective optimization, aiming to maximize both the amount of stored energy and power. 

 

The NSGA-II [31] algorithm was selected for optimization, and the study was conducted using 

pymoo, an open-source Python library  [32]. NSGA-II is designed specifically for multi-objective 

optimization problems, where the goal is to optimize multiple conflicting objectives 

simultaneously. The NSGA-II algorithm offers a powerful and versatile approach to multi-

objective optimization problems, providing efficient exploration of the solution space, fast 

convergence to Pareto-optimal solutions, and robustness to changes in problem settings. These 

characteristics make NSGA-II a suitable choice for optimizing the objectives of this study, 

allowing for the identification of trade-offs and the selection of optimal solutions tailored to the 

specific needs of the problem domain. The algorithm begins by initializing a population of 

candidate solutions and evaluates each individual based on the defined objective functions. Using 

a non-dominated sorting mechanism, NSGA-II classifies individuals into different levels or fronts 

based on their dominance relationship, identifying Pareto-optimal solutions that are not dominated 

by any other solution. Crowding distance assignment ensures diversity among individuals within 

each front, guiding the selection process to favor solutions from less crowded regions of the 

objective space. Through a combination of genetic operators like crossover and mutation, NSGA-

II generates offspring for the next generation while preserving diversity and exploring new regions 

of the search space. Elitist selection ensures that the best solutions from the previous generation 

survive, contributing to the convergence of the algorithm towards a diverse set of Pareto-optimal 

solutions. This iterative process continues until a termination condition is met, resulting in a well-

distributed set of solutions representing trade-offs between conflicting objectives. In this study, 

the population size is set to 100, the offspring size is set to 10, and the termination criterion is set 

to 250 generations. The flowchart of the NSGA-II algorithm is presented in Figure 5.  
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Figure 5. Flowchart of the NSGA-II algorithm 

 

The parameters used in the optimization and their limits are provided in Table 2. While selecting 

these parameter ranges, the experimental data used in training the machine learning model were 

taken into account. Given the high accuracy of the trained model, the lower and upper limits of the 

parameters in the experimental study were slightly extended. 

 

Table 2. Optimization parameters 

Parameter Ranges 

D [cm] 0.75 – 5  

H [cm] 5 – 20 

ΔT [°C] 8 – 35  

 

3. RESULTS 

In this section, firstly, the prediction accuracy results of the machine learning model developed 

with the MLP method are presented. These results are then compared with the accuracy values of 

the correlation equation proposed by Fraiman et.al [20]. Subsequently, the optimization results 

using the developed model are presented.  

 

3.1. Evaluation of Machine Learning Model for Melting Time Prediction 

The melting time prediction accuracy results of the developed MLP model are presented in Table 

3, compared with the correlation results proposed by Fraiman et al. [20]. The R2 values for both 

the MLP model and the correlation results are relatively high, indicating a strong correlation 

between the predicted and actual values. Notably, the MLP model shows a slightly higher R2, 
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suggesting better predictive performance. Moving on to the MAE values, which represent the 

average absolute difference between actual and predicted values, a lower MAE indicates better 

accuracy. In this case, the MLP model exhibits a significantly lower MAE, suggesting superior 

accuracy compared to the correlation results. Similarly, the MSE values, measuring the average 

squared difference between actual and predicted values, also favor the MLP model with a much 

lower MSE, indicating better overall performance compared to the correlation results. Examining 

MAPE, representing the average percentage difference between actual and predicted values, a 

lower MAPE indicates better accuracy. Here again, the MLP model demonstrates a significantly 

lower MAPE, implying better accuracy compared to the correlation results. In summary, based on 

the provided evaluation criteria, the MLP model consistently outperforms the correlation results 

from reference [20] across various metrics, demonstrating higher accuracy in predicting melting 

time. 

 

Table 3. Comparison of Predictive Accuracy - MLP Model vs. Correlation Results (ref. [20]) 

Evaluation Criteria MLP Model Correlation [20]  

R2 0.9981 0.9749 

MAE 0.370 1.957 

MSE 0.5896 7.6654 

MAPE (%) 4.07 16.68 

 

To visually express the model's accuracy, predicted vs actual and predicted vs residuals plots for 

the entire dataset are shown in Figure 6 for the developed MLP model. Predicted vs actual and 

predicted vs residuals plots for the correlation of ref. [20] are presented in Figure 7. As seen in the 

figures, the maximum residual is 2.8 minutes for the developed MLP model, while the maximum 

residual of the correlation is 8 minutes. As evident, the developed MLP model successfully 

captures the relationship between the input parameters and the melting time, demonstrating high 

predictive accuracy. 
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Figure 6. Melting time prediction performance of the developed MLP model 

 

 

Figure 7. Melting time prediction performance of the correlation from ref. [20] 

 

3.2. Optimization Results 

To determine the optimal parameter combination maximizing both the amount of stored energy 

(E) and average power (P), the developed MLP model served as input for the NSGA-II algorithm. 

The resulting Pareto optimal solution is illustrated in Figure 8a, where each point represents an 

optimum solution. The weights assigned to the objective functions can guide the selection process 

from the optimal solution set. In scenarios where prioritizing the amount of stored energy is 

paramount, parameters that maximize energy can be selected from the solution set, resulting in 

minimum power. Conversely, opting for parameters that maximize power will minimize the stored 
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energy. In applications where both stored energy and power are equally important, both objective 

functions can be given equal weight. Figure 8b depicts the comparison of design points for the 

objectives of maximum stored energy, maximum power, and both objective functions with equal 

weight. For the objective of maximizing stored energy, the system achieved an energy storage of 

E = 81.78 kJ with a corresponding power of P = 12.69 W. In this scenario, the design parameters 

were determined as a diameter (D) of 5 cm, height (H) of 20 cm, and temperature difference (ΔT) 

of 35 °C. Conversely, in the pursuit of maximizing power, the system yielded a power of P = 73.38 

W at the expense of stored energy, resulting in E = 37.10 kJ. The associated design parameters 

were determined as a diameter (D) of 3.4 cm, height (H) of 20 cm, and temperature difference 

(ΔT) of 35 °C. Lastly, under the scenario where both objectives were equally weighted, the system 

achieved a balance, with a power (P) of 38.89 W and stored energy (E) of 56.05 kJ. The 

corresponding design parameters included a diameter (D) of 4.1 cm, height (H) of 20 cm, and 

temperature difference (ΔT) of 35 °C. 

 

 

Figure 8. Pareto optimal solutions (a), comparison of the design points (b) 

 

The accuracy of the optimized design points was tested by comparing the analytically calculated 

value of the stored energy with the value predicted by the machine learning model. For this 

purpose, the amount of energy stored was calculated analytically using Equation 11 with the 

diameter, height, and temperature difference values in Design 1, 2, and 3 cases. The comparison 

results are given in  Figure 4. The largest error rate between the value predicted by the machine 

learning model and the analytically calculated value is 1.93% in Design 2. This error rate is smaller 
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than the model's MAPE value of 4.07%. It is evident that the model predicts the optimum design 

points with a minimal margin of error. 

 

Table 4. Comparison of stored energy (E) for optimized design with analytical calculation. 

Parameter MLP Model, [kJ] Analytical, [kJ] Relative error, [%] 

Design 1 81.78 81.79 0.01 

Design 2 56.05 54.99 1.93 

Design 3 37.10 37.82 1.90 

 

4. CONCLUSIONS 

In this study, a precise prediction model for the total melting time of cylindrically encapsulated 

PCM was developed employing a machine learning algorithm. The model's training data were 

sourced from an existing experimental study in the literature. A comparative analysis was 

conducted between the predictions generated by the machine learning model and the outcomes 

derived from the correlation equation. Following an assessment of the model's accuracy, the 

geometric and thermal parameters were optimized utilizing a genetic algorithm optimization 

method (NSGA-II). A summary of the conclusions is as follows: 

 

 The developed MLP model outperformed the correlation equation proposed in the literature 

for predicting the total melting time. The MAPE value for the correlation equation in the 

literature is 16.68%, whereas the MAPE value for the developed MLP model is significantly 

lower at 4.07%. This significant difference indicates the success of the MLP model in capturing 

the relationship between input parameters and melting time. 

 Optimization results indicate the need to establish a balance between the amount of stored 

energy and power during the design process. When the amount of stored energy is maximized 

(81.78 kJ), the power is minimized (12.69 W), and vice versa; when the power is maximized 

(73.38 W), the amount of stored energy is minimized (37.10 kJ). 

 In the design with equal weighting for stored energy and power, the stored energy amounted 

to 56.05 kJ, and the power was 38.89 W. In this scenario, there is a 31.5% decrease in energy 

and a 206.5% increase in power compared to the design where energy is maximized. 

Additionally, there is a 44% decrease in power and a 51.1% increase in energy compared to 

the case where power is maximized. 
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These results collectively emphasize the robustness and effectiveness of the developed MLP model 

in accurately predicting melting time and providing optimal solutions for energy storage 

parameters, showcasing its potential for practical applications. 

 

NOMENCLATURE 

TES  thermal energy storage  

PCM  phase change material 

MLP  multilayer perceptron 

MAE  mean absolute error 

RMSE  root mean square error 

MAPE  mean absolute percentage error 

NSGA  non-dominated sorting genetic algorithm 
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