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Abstract
In this paper, we introduce a new class of operators on a complex Hilbert space H which is
called polynomially accretive operators, and thereby extending the notion of accretive and
n–real power positive operators. We give several properties of the newly introduced class,
and generalize some results for accretive operators. We also prove that every 2–normal
and (2k+1)–real power positive operator, for some k ∈ N, must be n–normal for all n ≥ 2.
Finally, we give sufficient conditions for the normality in the preceding implication.
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1. Introduction
Let H denote the complex Hilbert space and let B(H) be the algebra of all bounded

linear operators acting on H. For T ∈ B(H), we denote by T ∗ the adjoint operator of
T and by |T | = (T ∗T )1/2 the absolute value of T . Furthermore, R(T ) and N(T ) will
represent the range and the null space of operator T , respectively. We say that operator
T is normal if TT ∗ = T ∗T , i.e., if T commutes with T ∗, and quasinormal if T commutes
with T ∗T . The set of all normal operators includes the Hermitian (T = T ∗), unitary
(TT ∗ = T ∗T = I), and positive operators (T ≥ 0). Clearly, every normal operator is
quasinormal.

In [15], the author introduced another generalization of normal operators, called n–power
normal operators. Namely, the operator T is n–power normal operator for some n ∈ N
if T n commutes with T ∗, i.e., T nT ∗ = T ∗T n. For more information on n–power normal
operators, see [1], [7], [8].

More recently, in [10], the authors further generalized the notion of n–power normal
operator to the class of polynomially normal operators. An operator T is said to be
polynomially normal if there exists a non-trivial polynomial p such that p(T ) is normal.
We also have to mention that the idea of considering this class of operators is not new,
and can be traced back to the work of Kittaneh [16].

The class of accretive operators recently followed the similar path as the class of normal
operators. First recall that for T ∈ B(H), we can write

T = Re (T ) + i Im (T ),
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where Re (T ) and Im (T ) are Hermitian. Such a decomposition is unique, and

Re (T ) = T + T ∗

2 , Im (T ) = T − T ∗

2i
.

Operators Re (T ) and Im (T ) are called the real and imaginary part of T , respectively.
The class of accretive operators is a subset of B(H) consisting of all operators which have
the positive real part. In other words, operator T is accretive if and only if Re (T ) ≥ 0.
Throughout the literature, accretive operators are also known as real positive operators
in the case of general Hilbert spaces, and Re–nnd (Re-nonnegative definite) matrices, in
a finite–dimensional case (cf. [6], [9], [26], [27], [28]).

In [13], the authors introduced and studied the operator T satisfying T 2 ≥ −T ∗2, and
in [3], the author further generalized the notion of accretive operators by introducing the
n–real power positive operator. Namely, for n ∈ N, an operator T is said to be n–real
power positive operator if

T n + T ∗n ≥ 0,

or, equivalently, Re (T n) ≥ 0. The author in [3] also gave several properties regarding
this notion. Inspired by this results, as well as the development and the path taken in
generalizing the class of normal operators, it is natural to extend the notion of n–real
power positive operators to an even wider class related to polynomials.

In the sequel, C[z] will denote the set of all non–trivial complex polynomials in one
variable. Note that if p ∈ C[z], then p ∈ C[z], as well, where p(z) = p(z), z ∈ C.

Definition 1.1. Let T ∈ B(H) and p ∈ C[z]. If T satisfies the inequality

p(T ) + p(T ∗) ≥ 0, (1.1)

then T is called p–accretive operator.
Operator T ∈ B(H) is polynomially accretive, if T is q–accretive for some polynomial

q ∈ C[z].

Remark 1.2. Note that if T ∈ B(H) and p(t) = tn, for some n ∈ N, then T is a n–real
power positive operator. Also, if T is p–accretive for p(t) = t, then T is accretive. Thus,
the set of all polynomially accretive operators contains all accretive and all n–real power
positive operator.

Remark 1.3. In the sequel, real positive and n–power real positive operators will be called
accretive and n–accretive operators, respectively. Also, n–power normal operators will be
simply called n–normal operators.

The paper is organized as follows. In Section 2, we give certain well known theoretical
results which will be used throughout the paper. In Section 3, we give some elementary
properties and characterizations of the class of polynomially accretive operators, as well as
generalizing results from [3] regarding n–accretive operators. In Section 4, we show that
under certain conditions, we are able to explicitly present the stucture of polynomially
accretive operators. As a consequence of our results, among other things, we prove that
every 2–normal and (2k + 1)–accretive operator, for some k ∈ N, must be n–normal for
all n ≥ 2. Finally, we give sufficient conditions in order to include n = 1 in the previous
implication.

2. Preliminaries
In this section, we give some well–known results which will be used (implicitly or explic-

itly) throughout the paper, and especially in Section 4. In other words, we’ll effectively
combine the theory of normal operators, theory of operator matrices and theory of gener-
alized inverses in order to obtain our main results.
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Given a closed subspace S of H, PS will denote the orthogonal projection onto S. For
any T ∈ B(H), the operator matrix decomposition of T induced by S is given by

T =
[
T11 T12
T21 T22

]
, (2.1)

where T11 = PSTPS |S , T12 = PST (I − PS)|S⊥ , T21 = (I − PS)TPS |S and T22 = (I −
PS)T (I − PS)|S⊥ .

Also, for T ∈ B(H) there exists a linear operator T ′ : D(T ′) ⊆ H 7→ H such that
R(T ) ⊆ D(T ′) and

TT ′T = T.

Operator T ′ is called the inner inverse of T . In general, note that T ′ may not be bounded,
i.e., T ′ /∈ B(H). Moreover, for T ∈ B(H) there exists an inner inverse of T , T ′, such that
T ′ ∈ B(H) if and only if T has closed range [21]. Additionaly, if T ′ also satisfies

T ′TT ′ = T ′,

then T ′ is called a reflexive inverse of T . Furthermore, there exists a unique reflexive
inverse X of operator T which satisfies the system of equations

XT = P
R(T ∗) and TX = P

R(T ) �R(T )⊕R(T )⊥ ,

Such an operator is called the Moore-Penrose (generalized) inverse of T and will be denoted
by T †. For more details, see ([18], [4], [5], [22], [23]).

We also state the celebrated Douglas’ Lemma, we can say freely, an irreplaceable tool
when dealing with operator range inclusions.

Theorem 2.1 (Douglas’ Lemma [11]). Let A and B be bounded operators on Hilbert
space H. The following statements are equivalent:

(i) R(A) ⊆ R(B);
(ii) AA∗ ≤ λ2BB∗ for some λ ≥ 0;
(iii) there exists a bounded operator C on H such that A = BC.
Moreover, if any of the previous conditions holds, then there exists a unique operator C
so that

(1) ‖C‖2 = inf{µ : AA∗ ≤ µBB∗};
(2) N(A) = N(C);
(3) R(C) ⊆ R(B∗).

As an operator T is p–accretive for some p ∈ C[z] if and only if Re (p(T )) is positive
(see Theorem 3.1 below), the following operator matrix representation will be crucial in
our work.

Theorem 2.2. [2] Let S be a closed subspace of H and T ∈ B(H) have the matrix
operator decomposition induced by S and given by (2.1). Then, T is positive if and only
if

(i) T11 ≥ 0;
(ii) T21 = T ∗

12;
(iii) R(T12) ⊆ R(T 1/2

11 );
(iv) T22 =

(
(T 1/2

11 )†T12
)∗

(T 1/2
11 )†T12 + F , where F ≥ 0.

Finally, we give several standard results concerning normal and positive operators.

Theorem 2.3 (Fuglede Theorem [12]). If M and N are commuting normal operators,
then MN is also normal.

Theorem 2.4. [25, Theorem 12.12] If n ∈ N, then the commutants of a positive operator
and its n-th root coincide.
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Theorem 2.5. [19, Corollary 5.1.36] If A, B ∈ B(H) are two commuting and positive
operators, then

n
√

AB = n
√

A
n
√

B,

for all n ∈ N.

Theorem 2.6 (Löwner-Heinz inequality [14, 17]). If A, B ∈ B(H) are positive operators
such that B ≤ A and p ∈ [0, 1], then Bp ≤ Ap.

Remark 2.7. In general, the previous theorem does not hold for p > 1 (see, for example,
[20, page 55]). However, if A and B commute, and p ∈ N, then B ≤ A implies Bp ≤ Ap.
Indeed, since A and B commute, we may write

Ap − Bp = (A − B)(Ap−1 + Ap−2B + . . . + Bp−1).
Since A and B commute and B ≤ A, we have that A − B and Ap−1 + Ap−2B + . . . + Bp−1

are two commuting positive operators, and so Ap − Bp is also positive. Thus, Bp ≤ Ap,
as desired.

3. General properties
We start this section with the following elementary observation.

Theorem 3.1. Let T ∈ B(H) and p ∈ C[z]. The following conditions are equivalent:
(i) T is p–accretive;

(ii) p(T ) is accretive.
(iii) Re 〈p(T )x, x〉 ≥ 0, for all x ∈ H;
(iv) T ∗ is p–accretive.

Proof. (i) ⇔ (ii) : Obvious.
(i) ⇔ (iii) : We have that

p(T ) + p(T ∗) ≥ 0 ⇐⇒ 〈(p(T ) + p(T ∗))x, x〉 ≥ 0, for all x ∈ H,

⇐⇒ 〈p(T )x, x〉 + 〈p(T ∗)x, x〉 ≥ 0, for all x ∈ H,

⇐⇒ 〈p(T )x, x〉 + 〈x, p(T )x〉 ≥ 0, for all x ∈ H,

⇐⇒ 〈p(T )x, x〉 + 〈p(T )x, x〉 ≥ 0, for all x ∈ H,

⇐⇒ Re 〈p(T )x, x〉 ≥ 0, for all x ∈ H.

(i) ⇔ (iv) : This follows directly from the definition.
�

Theorem 3.2. Let p ∈ C[z] and T ∈ B(H) be p–accretive.
(i) If zeroes of p do not belong to σ(T ), then p(T )−1 is accretive.

(ii) If S is unitarily equivalent to T , then S is p–accretive.
(iii) If M is a closed subspace of H which reduces T , then PMT |M is p–accretive.

Proof. (i) Assume that the zeroes of p do not belong to σ(T ). Then, by the Spectral
Mapping Theorem, we have that p(T ) is invertible. Since p(T ) is accretive, for all x ∈ H,
we have

0 ≤ Re
〈
p(T )p(T )−1x, p(T )−1x

〉
= Re

〈
x, p(T )−1x

〉
= Re

〈
p(T )−1x, x

〉
.

Thus, p(T )−1 is accretive.
(ii) By assumption, S is unitarily equivalent to T , and so there exists a unitary operator

U ∈ B(H) such that S = U∗TU . Then S∗ = U∗T ∗U , and it is easy to see that p(S) =
U∗p(T )U and p(S∗) = U∗p(T ∗)U . From (1.1) now follows that

p(S) + p(S∗) = U∗p(T )U + U∗p(T ∗)U = U∗(p(T ) + p(T ∗))U ≥ 0,

and so S is p–accretive.
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(iii) If M is a closed reducing subspace for T , then T can be represented as

T =
[
T1 0
0 T2

]
:

[
M

M⊥

]
→

[
M

M⊥

]
.

From here,

T ∗ =
[
T ∗

1 0
0 T ∗

2

]
, p(T ) =

[
p(T1) 0

0 p(T2)

]
and p(T ) =

[
p(T ∗

1 ) 0
0 p(T ∗

2 )

]
.

Using the fact that T is p–accretive, for any x ∈ M, we have

0 ≤ Re
〈[

p(T1) 0
0 p(T2)

] [
x
0

]
,

[
x
0

]〉
= Re 〈p(T1)x, x〉 .

Thus, PMT |M = T1 is p–accretive. �

Theorem 3.3. Let p ∈ C[z] and T ∈ B(H). If T = T1 ⊕ T2, then T is p–accretive if and
only if T1 and T2 are p–accretive.

Proof. The “if ” part follows from part (iii) of the previous theorem.
Now assume that T1 and T2 are p–accretive and let [x y]> ∈ H⊕H be arbitrary. Then,

Re
〈[

p(T1) 0
0 p(T2)

] [
x
y

]
,

[
x
y

]〉
= Re

〈[
p(T1)x
p(T2)y

]
,

[
x
y

]〉
= Re (〈p(T1)x, x〉 + 〈p(T2)y, y〉)
= Re 〈p(T1)x, x〉 + Re 〈p(T2)y, y〉
≥ 0.

Thus, T is p–accretive. �

Theorem 3.4. Let T ∈ B(H). If T is k–accretive for all 1 ≤ k ≤ n, then T is p–accretive
for any polynomial p of a degree n with nonnegative coefficients.

Proof. Let p(t) = a0 + a1t + · · · + antn be an n–th degree polynomial with nonnegative
coefficients. Then,

Re 〈p(T )x, x〉 = Re
〈

n∑
k=0

akT kx, x

〉

= Re
n∑

k=0
ak

〈
T kx, x

〉
=

n∑
k=0

akRe
〈
T kx, x

〉
= a0‖x‖2 +

n∑
k=1

akRe
〈
T kx, x

〉
≥ 0.

Theorem 3.1 now yields the wanted result. �

Theorem 3.5. Let T ∈ B(H) and q, r ∈ C[z]. Consider F = q(T ) + r(T ∗) and G =
q(T ) − r(T ∗) and let p(z) = q(z)r(z), z ∈ C. The following conditions are equivalent:

(i) T is p–accretive;
(ii) GG∗ ≤ FF ∗.
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Proof. By direct computation, we have
FF ∗ − GG∗ = (q(T ) + r(T ∗))(q(T ∗) + r(T ))

− (q(T ) − r(T ∗))(q(T ∗) − r(T ))
= q(T )q(T ∗) + q(T )r(T ) + r(T ∗)q(T ∗) + r(T ∗)r(T )

− (q(T )q(T ∗) − q(T )r(T ) − r(T ∗)q(T ∗) + r(T ∗)r(T ))
= 2(q(T )r(T ) + r(T ∗)q(T ∗))
= 2(p(T ) + p(T ∗)).

Therefore,
T is p–accretive ⇐⇒ p(T ) + p(T ∗) ≥ 0 ⇐⇒ FF ∗ − GG∗ ≥ 0,

from where the conclusion follows. �

4. The structure of p–accretive operators
The main goal of this section is to give some representations and the structure of

polynomially accretive operators. The starting point in our discussion will be the following
representation theorem of 2–normal operators proved by Radjavi and Rosenthal in [24].
We present it here in a slightly different form.

Theorem 4.1. [24] Let T ∈ B(H). Operator T is 2–normal if and only if

T =

A 0 0
0 B C
0 0 −B

 , (4.1)

where A, B are normal, C ≥ 0, C is one–to–one and BC = CB. Moreover, B can be
chosen so that σ(B) lies in the closed upper half–plane and the Hermitian part of B is
non-negative.

In the case when polynomial p has only even powers, the characterization of polynomi-
ally accretive operators is rather simple.

Theorem 4.2. Let T ∈ B(H) be 2–normal operator with the matrix representation given
by (4.1) and let p ∈ C[z] be a polynomial with even powers only. Then T is p–accretive if
and only if A and B are p–accretive.

Proof. First note that, since B and C commute, we have that

T 2 =

A2 0 0
0 B2 0
0 0 B2

 .

Since polynomial p has even powers only, we have that p(z) = q(z2) for some polynomial
q ∈ C[z]. Therefore,

p(T ) = q(T 2) =

q(A2) 0 0
0 q(B2) 0
0 0 q(B2)

 =

p(A) 0 0
0 p(B) 0
0 0 p(B)

 .

The conclusion now follows by combining Theorems 3.1 and 3.3. �

Lemma 4.3. Let T ∈ B(H) be 2–normal operator with the matrix representation given
by (4.1) and let p ∈ C[z] be a polynomial of a degree at least 3 and with exactly one odd
power k ≥ 3. If Re (p(B)) and Re (p(−B)) have closed ranges, then T is p–accretive if and
only if the following conditions hold:

(i) A is p–accretive;
(ii) |B| ≤ µ(Re (p(B)))

1
k−1 , for some µ > 0;
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(iii) |B|(Re (p(B)))
1

k−1 ≤ ν(Re (p(−B)))
1

k−1 for some ν > 0.

Proof. Let p(z) = a0 + a1z + · · · + anzn, n ≥ 3. Using representation (4.1), we have that

p(T ) =

p(A) 0 0
0 p(B) D
0 0 p(−B)

 ,

for some D. Since k ≥ 3 is the only odd integer such that ak 6= 0, we have that D =
akBk−1C. Therefore,

p(T ) + p(T ∗) =

p(A) + p(A∗) 0 0
0 p(B) + p(B∗) akBk−1C
0 ak(Bk−1C)∗ p(−B) + p(−B∗)

 ,

i.e.,

Re (p(T )) =

Re (p(A)) 0 0
0 Re (p(B)) ak

2 Bk−1C
0 (ak

2 Bk−1C)∗ Re (p(−B))

 .

Thus, we have that T is p–accretive if and only if the following two conditions hold:
(i′) Re (p(A)) ≥ 0;

(ii′)
[

Re (p(B)) ak
2 Bk−1C

(ak
2 Bk−1C)∗ Re (p(−B))

]
≥ 0.

Obviously, conditions (i) and (i′) are equivalent. By Theorem 2.2, condition (ii′) is equiv-
alent with the conjunction of the following three conditions:

(i′′) Re (p(B)) ≥ 0;

(ii′′) R(Bk−1C) ⊆ R((Re (p(B)))1/2);

(iii′′) Re (p(−B)) ≥ |ak|2
4 F ∗F , where F =

(
(Re (p(B)))1/2

)†
Bk−1C.

First, we focus on condition (ii′). Let us show that (ii′′) =⇒ (ii). Note that since C

is one–to–one, we have that R(C) is dense in H. Thus, Bk−1(R(C)) ⊆ R((Re (p(B)))1/2)
now implies that

R(Bk−1) ⊆ R((Re (p(B)))1/2).
By assumption, a positive operator Re (p(B)) has closed range, and thus, R(Re (p(B))) =
R((Re (p(B)))1/2). Therefore,

R(Bk−1) ⊆ R(Re (p(B))).
By Theorem 2.1, there exists µ′ > 0 such that

Bk−1(B∗)k−1 ≤ µ′ (Re (p(B)))2

Using the fact that B is normal, it follows that
|B|2(k−1) = (B∗B)k−1 ≤ µ′ (Re (p(B)))2 .

Since the function f(x) = x
1

2(k−1) is operator monotone (Theorem 2.6), we have

|B| ≤ (µ′)
1

2(k−1) (Re (p(B)))
1

k−1 .

By taking µ = (µ′)
1

2(k−1) , condition (ii) now follows. The reverse implication can be proved
in a similar manner by noting that normality of B and Theorem 2.4 imply that |B| and
(Re (p(B)))

1
k−1 commute, and thus the function g(x) = x2(k−1) preserves monotonicity, by

Remark 2.7. Thus, (ii) ⇐⇒ (ii′′).
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Let us now show that (iii) ⇐⇒ (iii′′). Assume that (iii′′) holds. Since B is nor-
mal, C is positive and BC = CB, we have that both B and C commute with a posi-
tive operator Re (p(B)). By Theorem 2.4, they also commute with Re (p(B)))1/2, which
further implies, by using the Spectral Theorem for normal operators, that they com-
mute with

(
(Re (p(B)))1/2

)†
, as well. Thus, by Theorem 2.3, we have that operator

F =
(
(Re (p(B)))1/2

)†
Bk−1C is normal. Hence, F ∗F = FF ∗, and so

Re (p(−B)) ≥ |ak|2

4 FF ∗.

By Theorem 2.1 and using the closedness of range of Re (p(−B)), we conclude that

R(F ) ⊆ R((Re (p(−B))1/2)) = R(Re (p(−B))),
i.e.,

Bk−1R

((
(Re (p(B)))1/2

)†
C

)
⊆ R(Re (p(−B))). (4.2)

Observe that

R
((

(Re (p(B)))1/2)†
C

)
=

(
(Re (p(B)))1/2)†

R (C)

= R
((

(Re (p(B)))1/2)†)
= R

((
(Re (p(B)))1/2)∗)

= R
(
(Re (p(B)))1/2)

= R (Re (p(B))) .

Combining this with (4.2), and again using the fact that Re (p(−B)) has closed range, we
have

R(Bk−1Re (p(B))) ⊆ R(Re (p(−B))).
Theorem 2.1 now implies that there exists ν > 0 such that

|B|2(k−1)Re (p(B))2 ≤ ν ′Re (p(−B))2.

Using the fact that |B| and Re (p(B)) commute and Theorem 2.5, monotonicity of f(x) =
x

1
2(k−1) now implies

|B|(Re (p(B)))
1

k−1 ≤ ν(Re (p(−B)))
1

k−1 ,

where ν = (ν ′)
1

2(k−1) . Therefore, (iii) holds.
Using the similar arguments and comments as in part (ii) =⇒ (ii′′), we can show that
(iii) =⇒ (iii′′). This completes the proof. �

Remark 4.4. If T and p ∈ C[z] are as in Lemma 4.3, we can see that p–accretivity of T
implies that the operators A, B and −B are also p–accretive.

Theorem 4.5. Let T ∈ B(H) and p ∈ C[z] be as in Lemma 4.3. If operator T is
p–accretive then A is p–accretive and there exists λ > 0 such that

1
λ

|B|2 ≤ |B|Re (p(B)))
1

k−1 ≤ λ(Re (p(−B)))
1

k−1 . (4.3)

Moreover, if B is left–invertible, then the reverse implication holds, as well.

Proof. (=⇒:) Assume that T is p–accretive. By Lemma 4.3, we have that A is p–accretive
and there exists µ, ν > 0 such that

|B| ≤ µ(Re (p(B)))
1

k−1 (4.4)
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and
|B|(Re (p(B)))

1
k−1 ≤ ν(Re (p(−B)))

1
k−1 .

Let λ = max{µ, ν}. Then the second inequality in (4.3) is obviously satisfied. Now using
the fact that B is normal, (4.4) yields

|B|Re (p(B)))
1

k−1 = |B|
1
2 Re (p(B)))

1
k−1 |B|

1
2

≥ 1
µ

|B|
1
2 |B||B|

1
2 ≥ 1

λ
|B|2.

Hence, (4.3) holds.
(⇐=:) To prove the reverse inequality, it is enough to show that condition (ii) in Lemma

4.3 is satisfied. Observe that |B| is invertible since B is left–invertible, by assumption.
Therefore, using the normality of B, the inequality 1

λ |B|2 ≤ |B|Re (p(B)))
1

k−1 implies that

|B|−
1
2 |B|2|B|−

1
2 ≤ λ|B|−

1
2

(
|B|Re (p(B)))

1
k−1

)
|B|−

1
2 ,

i.e.,
|B| ≤ λ(Re (p(B)))

1
k−1 .

Thus, T is p–accretive and the proof is completed. �

Theorem 4.6. Let T ∈ B(H) and let k ∈ N. The following conditions are equivalent:
(i) T is 2–normal and (2k + 1)–accretive;

(ii) T = T1 ⊕ T2, where T1 is normal and (2k + 1)–accretive, and T2 is nilpotent of index
2.

Proof. (i) =⇒ (ii). Assume that (i) holds. Since T is 2–normal, it is given by (4.1). By
analysing the proof of Lemma 4.3, we have that (2k + 1)–accretivity of T implies that A
is (2k + 1)–accretive, and also, the following conditions hold:

(i′′) B2k+1 + (B∗)2k+1 ≥ 0;
(ii′′) R(B2kC) ⊆ R((B2k+1 + (B∗)2k+1)1/2);

(iii′′) (−B)2k+1 + (−B∗)2k+1 ≥ 0.
Condition (iii′′) is equivalent with the fact that

−
(
B2k+1 + (B∗)2k+1

)
= (−B)2k+1 + (−B∗)2k+1 ≥ 0.

This, together with (i′′), implies that B2k+1 +(B∗)2k+1 must be equal to the zero operator.
Therefore,

R((B2k+1 + (B∗)2k+1)1/2) = {0}.

Condition (ii′′) yields that R(B2kC) ⊆ {0}, and thus CB2k = 0. But C is one–to–one,
and so B2k = 0. The only nilpotent normal operator is zero operator, and hence, B = 0.
Let

T1 = A and T2 =
[
0 C
0 0

]
.

Then, T = T1 ⊕ T2, where T1 is (2k + 1)–accretive and T2 is nilpotent of index 2, as
required.

(ii) =⇒ (i) Now assume that (ii) holds. Then T 2 = T 2
1 ⊕ 0 implies that T 2 is normal.

Similarly, T 2k+1 = T 2k+1
1 ⊕ 0 yields the (2k + 1)–accretivity of T . �

Corollary 4.7. Let T ∈ B(H). If T is 2–normal and (2k + 1)–accretive for some k ∈ N,
then T is n–normal for all n ≥ 2.

Proof. It follows immediately from the representation of T given in Theorem 4.6. �
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Remark 4.8. In general, under the conditions of Corollary 4.7, we cannot conclude that
the operator T is normal. To see this, it is enough to take any non–normal operator T
such that T 2 = 0.

In the following proposition, motivated by [1, Lemma 2.28], we give a necessary con-
dition for the normality of T . First recall that the self–commutator of an operator T ,
denoted by [T ∗, T ], is an operator given by [T ∗, T ] = T ∗T − TT ∗.

Corollary 4.9. Let T ∈ B(H) be such that T is 2–normal and (2k + 1)–accretive for
some k ∈ N. If R([T ∗, T ]) ⊆ N(T l)⊥, for some l ≥ 2, then T is normal.

Proof. Since T is 2–normal and (2k + 1)–accretive, we have that T is n–normal for all
n ≥ 2, by Corollary 4.7. Specially, T is l–normal and (l + 1)–normal. Thus,

T lTT ∗ = T l+1T ∗ = T ∗T l+1 = T ∗T lT = T lT ∗T,

i.e., T l(T ∗T − TT ∗) = 0. Thus, R([T ∗, T ]) ⊆ N(T l) ∩N(T l)⊥ = {0}, from where it follows
that TT ∗ = T ∗T , i.e., T is normal. �

Corollary 4.10. Let T ∈ B(H). If T is injective, 2–normal and (2k + 1)–accretive for
some k ∈ N, then T is normal.

The following corollaries are matrix analogues of the previous results, presented in the
language of matrix theory.

Corollary 4.11. Let A be a n×n complex matrix and let k ∈ N. The following conditions
are equivalent:

(i) A2 is normal and A2k+1 is Re–nnd.
(ii) A = A1 ⊕ A2, where A1 is normal, A2k+1

1 is Re-nnd, and A2 is nilpotent of index 2.

Corollary 4.12. Let A be a n × n complex matrix. If A2 is normal and A2k+1 is Re–nnd
for some k ∈ N, then An is normal for all n ≥ 2.

Corollary 4.13. Let A be a n × n complex non–singular matrix. If A2 is normal and
A2k+1 is Re–nnd for some k ∈ N, then A is normal.

At the end, we also consider the connection between n-accretivity and positivity.

Theorem 4.14. Let T ∈ B(H). The following conditions are equivalent:
(i) T is normal and k-accretive for each k ∈ N;

(ii) T ≥ 0.

Proof. (i) ⇒ (ii) Let T = U |T | be the polar decomposition of T . Since T is normal,
N(T ) = N(T ∗), and we may write

T =
[
T1 0
0 0

]
:

(
N(T )⊥

N(T )

)
7→

(
N(T )⊥

N(T )

)
.

Furthermore, since U is normal, i.e. U∗U = UU∗, the initial space N(T )⊥ coincides with
the final space R(T ), which directly implies that the restriction of U to the initial space
is unitary. Since N(U) = N(T ), it follows that

U =
[
U1 0
0 0

]
:

(
N(T )⊥

N(T )

)
7→

(
N(T )⊥

N(T )

)
,

for some unitary operator U1 ∈ B(N(T )⊥). Thus, without loss of generality, we may
assume that T is injective with dense range, and U is unitary.

By [19, Proposition 11.1.46], there is a uniquely determined injective and positive op-
erator Θ ∈ B(H) with σ(Θ) ⊆ [0, 2π] such that

U = eiΘ.
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Using the series expansion of the exponential function, we have
U = cos Θ + i sin Θ,

from where it follows that
Uk = cos(kΘ) + i sin(kΘ), k ∈ N.

The normality of T implies that U |T | = |T |U . Thus, the real part of T k = Uk|T |k, is
given by

Re(T k) = |T |k cos(kΘ),
for each k ∈ N.

We will show that σ(Θ) ⊆ {0, 2π}. Assume to the contrary, that there exists λ ∈ (0, 2π)
such that λ ∈ σ(Θ). Then, by the Spectral Mapping Theorem, cos(kλ) ∈ σ(cos(kΘ))
for each k ∈ N. However, since λ ∈ (0, 2π), there exists m ∈ N such that Re(λm) =
cos(mλ) < 0. Thus, cos(mΘ) is not a positive operator, and so there exists x ∈ H such
that 〈cos(mθ)x, x〉 < 0. Since R(|T |

m
2 ) = R(T ) = H, there exists x′ ∈ H such that〈

Re(T m)x′, x′〉 =
〈
|T |m cos(mΘ)x′, x′〉

=
〈
cos(mΘ)|T |

m
2 x′, |T |

m
2 x′

〉
< 0,

which is a contradiction with the fact that T is m-accretive. Thus, σ(Θ) ⊆ {0, 2π}, and by
the Spectral Mapping Theorem, σ(U) = {1}. Then, U − I is normal, and σ(U − I) = {0},
so it follows that U = I. This directly implies that T = |T | ≥ 0.

(i) ⇒ (ii) This is obvious. �
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