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Abstract: In this study, bioactive compounds from Coriandrum sativum seeds were extracted by microwave 
assisted extraction (MAE) using natural deep eutectic solvents (NADESs). The total antioxidant capacity (TAC) 
of extracts was determined by using cupric reducing antioxidant capacity (CUPRAC) method. 2,2-diphenyl-
1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) analyses have 
been employed to measure the free radical scavenging ability of the sample extracts. Five different deep 
eutectic solvents, using choline chloride in combination with hydrogen bond donors (three polyalcohols and 
two organic acids) were firstly scanned. Choline chloride and 1,4-butanediol at the molar ratio of 1:4 was the 
best solvent of choice to extract natural antioxidants to achieve the best level of TAC. The response surface 

methodology (RSM) was applied to achieve the most advantageous conditions. The optimal process conditions 
for the maximum TAC value were as follows: 326 watt microwave power, 88 second extraction time, and 10 
liquid/solid (L/S) ratio. In this study, we report an efficient, rapid, and green method to extract natural 
antioxidants from Turkish Coriandrum sativum seeds. 
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1. INTRODUCTION 

Coriandrum sativum (commonly known as coriander) 
is one of the oldest and widespread crop species, 
dating back to around 1550 BC (1). Coriandrum 
sativum is widely distributed in Mediterranean 

countries (2). The plant has a very distinct flavor and 
is highly aromatic (3). It is used in the manufacture 

of detergents, emulsifiers, soaps, and softeners (4). 
The leaves and seeds are used in many food 
products, such as liquors, teas, meat, pickles, fish, 
and bakery (2,3,5). The plant is known for its 
potential healing properties (3). It has been used as 
a therapeutic target for treating respiratory 
disorders, urinary disorders, and digestive ailments 

such as indigestion, nausea, dyspepsia, and 
dysentery (2-5). The seeds have been reported to 
possess pharmaceutical properties such as 
antidiabetic, antimicrobial, antibacterial, antifungal, 
analgesic, anti-inflammatory, anticancer, and 
antiseptic properties (1-3,5-7). The seeds are a 
potent source of antioxidant compounds like 

polyphenols, particularly phenolic acids and 
flavonoids, which are important nutrients in the 
human diet (8). 

Oxygen free radicals in biological cells weaken the 

immune system and cause several diseases. On the 
other hand, antioxidants deactivate free radicals 
before they attack the cell and they eventually leave 
the body. Lots of studies in epidemiology 

demonstrated that compounds having antioxidant 
properties can inhibit the emergence of numerous 

conditions such as cancer, diabetes, cardiovascular 
diseases, and Alzheimer’s disease (9). Besides, when 
antioxidants are added to food products, the 
formation of toxic oxidation products is retarded as 
well as the shelf life of food is increased (10). A high 
nutritional quality is provided with the addition of 
antioxidants to the food products. 

 
Chemical engineers make great efforts to create eco-
friendly solvent systems that have low cost and low 
toxicity. Volatile organic solvents like methanol, 
hexane, ethanol, chloroform, and acetone have been 
broadly utilized to extract bioactive components from 
plants (11). Despite their increased solvation and 

extraction capability, the toxicity of conventional 
solvents might pose an environmental and public 
health threat. Besides, using these solvents leads to 
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undesirable solvent residues in the extracts. 
Recently, natural deep eutectic solvents (NADESs) 

have taken the place of conventional solvents. 
NADESs were discovered at the beginning of the 21st 
century as new types of green solvents. NADESs 
have several benefits such as low cost, biodegra-
dability, easy preparation and pharmaceutically 

acceptable toxicity (12). NADESs are generally 
prepared by mixing hydrogen bond donors (HBDs), 
such as urea, organic acids and polyols with 
hydrogen bond acceptors (HBAs) (13). The 
components of NADES interact with each other via 
hydrogen bonds. One component acts as a hydrogen 

bond donor, while the other component acts as a 
hydrogen bond acceptor. NADES has a lower melting 
point than its individual components. This is owing to 
the intermolecular hydrogen bonding between the 
components of NADES (14,15). Choline chloride 

(ChCl) is a cost effective, biodegradable and non-
toxic quaternary ammonium salt. ChCl-based 

NADESs have been mostly studied for the separation 
of bioactive materials from plants (16-18). 
 
Extraction is the first step in separating bioactive 
compounds from plants. The extraction method is 
important since it affects the efficiency and 
operational cost. Ultrasound-assistant extraction 

(UAE), maceration extraction, soxhlet extraction, 
and microwave-assisted extraction (MAE) are 
extraction techniques that were extensively used for 
the recovery of natural products from plant matrices 
(19,20). Among them, MAE is the fastest technique 
(21). MAE provides high extraction efficiency and 

consumes less solvent. Microwave radiation affects 
the moisture of solid material. The evaporated 
moisture applies pressure to the cell wall. Eventually, 
the plant cell wall is broken down, so that target 
molecules leach out (22). 
 
In this study, natural antioxidants from Coriandrum 

sativum seed were extracted by ChCl-based NADESs. 
The most important extraction parameters 
(liquid/solid ratio (L/S), extraction time and 
microwave power) were optimized by response 

surface methodology (RSM). Ethanol (EtOH) was 
used as benchmark solvent to compare the results. 

The total antioxidant capacity (TAC) of Coriandrum 
sativum peel extracts was ascertained by using 
cupric reducing antioxidant capacity (CUPRAC) 
method. The free radical scavenging (FRS) activity 
was measured by 2,2-diphenyl-1-picrylhydrazyl 

(DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-
sulfonic acid) (ABTS) analyses. The results of this 
research will be the first to examine the antioxidant 
features of Coriandrum sativum seed extracts 
utilizing NADESs so far, thus being noteworthy in the 
field of green and sustainable chemistry. 

 
2. MATERIALS AND METHODS 
 
2.1. Plant Material 
The Turkish coriander was obtained from a local 

market (Istanbul, Turkey). The air-dried coriander 
was ground in a laboratory mill to a screen size of 

0.5 mm in order to obtain uniform particle size. The 
seeds were kept in the freezer until the experiments. 
 
2.2. Chemicals 
ChCl, 1,4-butanediol, 1,2-propanediol, ethylene 
glycol, acetic acid, lactic acid, EtOH, methanol, 
neocuproine, trolox (TR), ammonium acetate, 

copper(II) sulfate, DPPH, ABTS, and potassium 
persulfate were purchased from Sigma Aldrich, USA. 
Every chemical compound in this study was of 
analytical grade. 
 
2.3. NADES Preparation 

The NADES preparation was carried out by simply 
mixing two components according to the molar ratios 
given in Table 1. Water was added to carboxylic acid-
based NADESs to decrease the viscosity. First, ChCl 
and HBDs were weighed on an analytical balance 
(Mettler Toledo). Next, ChCl and HBDs were mixed 
at desired molar ratios. The mixture was heated at 

333.2 K with stirring until a transparent and 
homogeneous liquid NADES was formed. The 
prepared NADESs were stored in the room 
temperature environment. 

 
Table 1: The composition of ChCl-based NADESs. 

HBD HBD structure 
ChCl:HBD 

molar ratio 
Water content 

(v/v) 
Ref 

Ethylene glycol 

 

1:4 - (23) 

1,4-butanediol 

 

1:4 - (21,23) 

1,2-propanediol 

 

1:4 - (23) 

Acetic acid 

 

1:2 30% (22) 

Lactic acid 

 

1:2 30% (16) 
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2.4. The Extraction Procedure and 
Instrumentation 

The ground Coriandrum sativum seeds were put into 
a 50 mL flask, and NADESs were added into the flask. 
Except NADESs, ethanol and water were used as the 
conventional solvents. The flask was placed in the 
microwave oven (Milestone NEOS-GR). Microwave 

extractions were performed at different microwave 
power levels (250 W-350 W), microwave times (60-
90 seconds) and liquid-to-solid (L/S) ratios (10-20 
mL to 1 g). The experiments were repeated three 
times. After extractions, the mixtures were left to 
cool down at room temperature. Finally, the extracts 

were filtered through a 45 μm nylon filter before UV-
Vis analyses. UV-Vis measurements were carried out 
with a Varian CAY Bio 100 UV-Vis spectrometer 
(Agilent, USA). 
 

2.5. Statistical Analyses 
The variables were systematically investigated with 

Box-Behnken design (BBD) of RSM. Microwave 
power (A), time (B), and L/S ratio (C) were the 
independent variables, and TAC (Y) was the 
response. TAC values of Coriandrum sativum seed 
extracts were analyzed using a second order 
polynomial equation (24-26). An analysis of variance 
(ANOVA) test was applied to analyze results (27). 

 
2.6. TAC Analyses 
TAC of Coriandrum sativum seed extract was 
analyzed by CUPRAC method (27-29). CUPRAC 
method is based on the reduction of cupric 
neocuproine complex (Cu(II)- Nc) to yellow-orange 

colored cuprous chelate (Cu(I)-Nc) in the presence 
of antioxidants. First, x mL extract was added to the 
test tube, including 3 mL of reagent mixture (1 mL 
of 10 mM CuCl2, 1 mL of 7.5 mM Nc and 1 mL of 1 M 
NH4Ac buffer). Then, (1.1-x) mL H20 was added to 
the mixture, which made up to a final volume of 4.1 
mL. The mixture tube was capped. After 30 min, the 

absorbance was read at 450 nm (A450) against a 
reagent black. The absorbance is linearly correlated 
with the antioxidant capacity (30). TAC is expressed 
as TR equivalent (mmol TR/g-dried sample (DS)) as 
given in Eq. 1 below (27-29,31): 
 

TAC (mmol TR/g - DS) =  
As

εTE
  

Vm

Vs
  Df  

Vε

 m
 (1) 

 

where As refers to the recorded absorbance value, Vs 
indicates the sample volume, Ve is the extract 
volume, Vm signifies the total volume, εTE refers to 

the molar absorptivity coefficient in TR equivalent, Df 
is the dilution factor (when needed), and m refers to 
the mass of the DS. 
 

2.7. Determination of DPPH Free Radical 
Scavenging Activity  
DPPH free radical scavenging assay is one of the 
most popular antioxidant assays, which was reported 
by Sánchez Moreno et al (32). DPPH free radical 
scavenging activity of sample extract was 

ascertained based on its ability to react with stable 

DPPH free radical. Antioxidants in sample extract 
reduce the stable purple-colored radical DPPH into 
the yellow-colored DPPH-H by donating hydrogen 
atoms to the DPPH free radical, thereby neutralizing 

its toxic effect (33). DPPH method is as follows: First, 
x mL sample extract was added into a test tube, 

including (2-x) mL methanol and 2 mL 0.2 nM DPPH. 
The tube was stoppered and left to stand for 30 min 
in the dark. After 30 min, the absorbance was read 
at 515 nm against MeOH. All the assays were 
replicated three times. Findings were given in mean 

± standard deviation. Corrected absorbance values 
(ΔA) were utilized to determine DPPH free radical 
scavenging activity by using the following equation 
(29,31): 
 
ΔA = ADPPH – (AE - A0)    (2) 

 
where ADPPH is the absorbance of DPPH reagent 
without the sample, AE is the absorbance of the 
extract, and A0 is the absorbance of the extract 
without DPPH reagent. 

 
DPPH free radical scavenging activity is expressed as 

mmol TR/g-DS based on the TR standard calibration 
curve. The DPPH free radical scavenging activity was 
derived from the following equation (29): 
 
DPPH free radical scavenging activity (mmol TR/g-

DS) = 
ΔA

εTE
 

Vm

Vs
 Df  

VE

m
    (3) 

 
2.8. Determination of ABTS Free Radical 
Scavenging Activity 
The ABTS+ free radical has been widely used as a tool 
to determine the free radical scavenging activity of 

antioxidants. ABTS assay is based on the reduction 
of chromogenic reagent ABTS+ in the presence of 
antioxidants. Chromogenic ABTS+ solution is pre-
pared by the following procedure. ABTS+ (50 nM) is 
diluted with distilled water to a final concentration of 
7.0 nM. K2S2O8 is added to the solution, the final 
concentration of K2S2O8 is 2.45 nM in the solution. 

The obtained ABTS+ solution is left for 12-16 hours 
at ambient temperature. The application of ABTS 
assay is as follows: x mL sample extract is mixed 
with (4-x) mL methanol and 1 mL ABTS+ solution 
(1:10 diluted with methanol). The absorbance is read 
at 734 nm against ethanol after ABTS+ addition. The 
corrected absorbance value, ΔA, is calculated by the 

equation below 
 

ΔA = AABTS – (AE - A0)    (4) 
 
where AABTS refers to the absorbance of ABTS+ 
reagent without the sample, AE is the absorbance of 

the extract, and A0 is the absorbance of the extract 
without ABTS+ reagent. 
 
ABTS free radical scavenging activity is determined 
with the following equation (29): 
 
ABTS free radical scavenging activity (mmol TR/g-

DS) = 
ΔA

εTE
 

Vm

Vs
 Df  

VE

m
    (5) 

 
ABTS free radical scavenging activity is expressed as 
mmol TR/g-DS based on the TR standard calibration 

curve. 
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3. RESULTS AND DISCUSSION 

 
3.1. DES Selection 
Five different types of NADES were synthesized to 
determine the most potent NADES. NADES 
combinations were prepared based on the published 

data (34). Molar ratios are written in Table 1. ChCl 
salt was chosen as HBA. Several polyols and organic 
acids were selected as HBD, which are considered to 
be renewable, nontoxic, and biodegradable (35). To 
evaluate the extraction capability of NADES, pure 
ethanol and water were used as the benchmark 

solvents. 
 
ChCl:alcohol ratio (1:4) was used according to the 
literature data. Mahmood et al. studied the 
antioxidant activity of Chlorella vulgaris plant 

extracts. In that study, polyols were tested as HBDs. 
Among different ChCl to HBD ratios (1:1, 1:2, 1:3, 

1:4), the 1:4 ratio was determined as the most ideal 
ratio for all the NADES combinations (35). 
ChCl:alcohol ratio of 1:1 is not suitable to use due to 
the high viscosity and high surface tension of ChCl 
(36). Therefore, a ChCl-to-alcohol ratio of 1:4 is 
chosen to keep the interactions going well (37). 
 

NADES extraction capacity is mainly affected by the 
following factors: H-bonding interactions, polarity, 
viscosity, and pH (21,38). High viscosity is one of the 
most important disadvantages of NADES because 
high viscosity leads to the mass transfer resistance 
of molecules entering the liquid surface. Carboxylic 

acid-based NADESs possess high viscosity. The 
addition of water in carboxylic acid-based NADESs 
would reduce the viscosity (39). Cui et al. 
emphasized that 30 % water content (v/v) in 
NADESs decreases the viscosity. However, an 
excessive amount of water breaks the hydrogen bond 
network in the eutectic solution, thereby reducing 

the hydrogen bonding interactions between NADES 
and polyphenolics (40,41). 
 
From all different type of NADESs, ChCl:1,4-
butanediol (1:4) provided the best TAC value. 
Apparently, ChCl:1,4-butanediol has the most 
favorable electrostatic and hydrogen-bond 

interactions with the target molecule (35). Besides, 

alcohol-based NADESs showed better TAC values 
than carboxylic acid-based NADESs. The high 
performance of alcohol-based NADESs is associated 
with multiple hydrogen bonding networks, which 
interact with target molecules and establish strong 

connections (42). Ethanol extract showed relatively 
low antioxidant activity, which may be due to the 
non-synergistic effects with the target molecules 
(43). Similarly, flavonoid extraction from Flos 
Sophoroa imaturus plant has been conducted by 

Wang et al. and the team reported that ChCl:1,4-
butanediol (1:4) is the best solvent among all ChCl-

based NADESs (including glycerol, glycol, 1,3-
butanediol, citric acid, lactic acid, glucose and 
sucrose as the HBDs) (44). 
 
The positions of –OH groups in HBD is also a 

significant factor affecting the extraction capability of 
the solvent. For example, 1,2-propanediol and 1,4-
butanediol have the same number of –OH groups 
(see Table 1). However, -OH groups of 1,2-propane-
diol are at vicinal position, which is unfavorable for 
1,2-propanediol. Here, 1,2-propanediol produces 

steric hindrance, which results in the reduced 
possibility of interactions with the target molecules. 
On the other hand, 1,4-butanediol has –OH groups 
at terminal position, which overcome the 
intermolecular forces, and thereby mass transfer 

limitations (45). Moreover, 1,4-butanediol has a 
longer alkyl chain than ethylene glycol and 1,2-

propanediol. 1,4-butanediol here seemed to be less 
affected by intermolecular repulsions due to the alkyl 
chain length (35). To sum up, HBD structure is an 
important factor for solute-solvent interactions and 
should be considered in the solvent selection (17). 
 
Polarity is also an important factor affecting the 

efficiency. Polyphenolic compounds are highly polar 
compounds. According to the "like dissolves like" 
principle, solvents with high polarity are better for 
polyphenolic extractions (33). Although water 
molecules are highly polar and have a relatively low 
TAC value (46). 

 
3.2. TAC Optimization 
The extraction parameters, including time, 
microwave power, and L/S ratio, were optimized by 
using BBD. The levels of variables and their actual 
values were given in Table 2. The outcomes were 
fitted to a quadratic polynomial equation by using 

multiple regression analysis given below as Eq. 6. 
 
TAC = 0.036 + (7.125E-003)A + 0.016B - (8.875E-
003)C - (9.000E-003)AC                                   (6) 
 
The ANOVA test was performed to discover the 
interactions between the variables and the optimum 

process conditions (see Table 3). The model F value 

of 14.20 and p value less than 0.05 imply that the 
model is important (47). The terms having p values 
less than 0.05 are considered important. In these 
circumtances A, B, C, and AC are important model 
terms (40). The small coefficient of variation (C.V. % 

=18.42) value also proved the remarkable reliability 
of the model. The adequate precision is 12.304, 
pointing out that the model could be used to navigate 
the design space (36,43,48). 
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Table 2: The levels of variables and their actual values. 

Run Power (A) 

Watt 

Time (B) 

Second 

L/S ratio (C) 

- 

TAC (Y) 

mmol 

TR/g-DS 

1 250.00 75.00 20.00 0.036 

2 300.00 90.00 20.00 0.031 

3 300.00 75.00 15.00 0.034 

4 250.00 75.00 10.00 0.027 

5 300.00 60.00 10.00 0.034 

6 350.00 75.00 10.00 0.062 

7 300.00 75.00 15.00 0.034 

8 250.00 60.00 15.00 0.014 

9 250.00 90.00 15.00 0.042 

10 300.00 90.00 10.00 0.064 

11 350.00 60.00 15.00 0.012 

12 300.00 60.00 20.00 0.014 

13 300.00 75.00 15.00 0.034 

14 350.00 75.00 20.00 0.035 

15 300.00 75.00 15.00 0.034 

 
 

Table 3: The results of ANOVA test. 

Source 
Sum of 

df 
Mean F p-value 

Squares Square Value Prob > F 

Model 3.697E-003 6 6.162E-004 14.20 0.0002 

A-power 4.061E-004 1 4.061E-004 9.36 0.0121 

B-time 2.113E-003 1 2.113E-003 48.70 < 0.0001 

C-Liquid/Solid 6.301E-004 1 6.301E-004 14.53 0.0034 

AB 1.822E-004 1 1.822E-004 4.20 0.0675 

AC 3.240E-004 1 3.240E-004 7.47 0.0211 

BC 4.225E-005 1 4.225E-005 0.97 0.3470 

Residual 4.338E-004 10 4.338E-005   

Lack of Fit 4.338E-004 6 7.230E-005   

Pure Error 0.000 4 0.000   

Cor Total 4.131E-003 16    

Statistical parameters      

Std. Dev. 6.586E-003     

Mean 0.036     

C.V. % 18.42     

PRESS 2.166E-003     

R-Squared 0.8950     

Adj R-Squared 0.8320     

Pred R-Squared 0.4756     

Adeq Precision 12.304     

 
3-D response surface curves were plotted to visualize 
the relationship between the factors and the 

response (40,43). As seen from Figs. 1a and 1b, 
increasing microwave power enhanced the response. 
Apparently, increasing temperature reduced the 
surface tension and viscosity of the solvent, so that 
solvent could effectively penetrate into the cell 

matrix (35,39,41,48). 

 

As seen from 1b, at different microwave powers, the 
TAC value was increased as the microwave time 

increased. In the optimization study, microwave time 
was kept under 90 seconds because bioactive 
compounds decomposed after 90 seconds due to the 
prolonged irradiation (33). Keeping irradiation times 
short reduces energy consumption at the same time 

(33,43). 
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As understood from Fig. 1c, the TAC value increased 
as L/S ratio decreased at different microwave time 

levels. It is clear that an adequate solvent amount 
enhances the contact area between the cell matrix 
and the solvent, which increases the mass transfer 
rate (36). On the other hand, increasing the solvent 
amount more than it is supposed to be shall break 

the interactions between the solvent and the focused 
compounds, thereby decreasing the efficiency 
(33,49,50). 
 

The optimum conditions for the highest TAC value 
(TAC: 0.070 mmol TR/g - DS) were determined as 

follows: 326.10 Watt microwave power, 88.40 
second extraction time, and 10.03 L/S ratio. For 
practical convenience, the verification experiment 
was performed under the conditions of 326 Watt 
microwave power, 88 second microwave time, and 

10 L/S ratio. The verification experiment confirmed 
the accuracy of the predicted model with less than 
0.02 % error (39). 

 
 

 
 

Figure 1: The plots of a) L/S ratio versus power, b) time versus power, c) L/S ratio versus time. 
 
3.3. Comparisons of TAC measurements with 
DPPH and ABTS Free Radicals Scavenging 
Assays 
DPPH and ABTS free radical scavenging activities of 

the seed extract were determined at the optimum 
extraction conditions and compared with EtOH 

extract. Antioxidant capacity findings are written in 
Table 4 and shown in the graph Fig. 2. As seen, TAC 
values were higher than DPPH and ABTS free radical 
scavenging values, which can be explained by the 
fact that lipophilic antioxidants were not able to 

donate a hydrogen atom or an electron to stabilize 
DPPH and ABTS free radicals by converting them to 

the non-radical species (30). The TAC value and 
radical scavenging activity values of ethanol extract 
were less than those obtained by ChCl:1,4-
butanediol extract. Obviously, ChCl:1,4-butanediol 

extract is a better free radical scavenger than ethanol 
extract in the ranges of studied MAE conditions (30). 

This might be owing to strong hydrogen bonding 
interactions between the NADES and the extract 
(14). More specifically, the interactions between –OH 
group of phenolic compounds and the anion of 
choline chloride salt might be the main motivation 

behind DES-based separation (29,42). 

 
Table 4: TAC, ABTS and DPPH values of Coriandrum sativum seed extracts. 

Solvent Extraction conditions 
TAC 

mmol TR/g-DS 
DPPH 

mmol TR/g-DS 
ABTS 

mmol TR/g-DS 

DES MAE (326 W, 88 second, 10 L/S) 0.070 0.013 0.045 

EtOH MAE (326 W, 88 second, 10 L/S) 0.024 0.009 0.006 
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Figure 2: Graphical representation of antioxidant assay results. 

 
4. CONCLUSION 

 
In this study, ChCl:1,4-butanediol (1:4) was selected 
as the most efficacious solvent system to extract 
antioxidant compounds from Coriandrum sativum 
seed using MAE. Under the optimum conditions of 
326 Watt microwave power, 88 second extraction 
time and 10 L/S ratio, TAC value was obtained as 

0.070 mmol TR/g – DS. ChCl:1,4-butanediol (1:4) 

has yielded better results than conventional solvent 
ethanol at the optimum conditions in terms of 
CUPRAC, ABTS and DPPH assays. In the present 
work, we show a rapid, green, efficient and cost-
effective method for the extraction of natural 
antioxidants from Turkish Coriandrum sativum 

seeds. This study is significant as being the first time 
to introduce the extraction of natural antioxidants 
from Turkish Coriandrum sativum seeds by using the 
green solvents of 21st century called NADESs. 
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