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 Concrete is one of the most common construction materials used all over the word. In 
estimating the strength properties of concrete, laboratory works need to be carried out. 
However, researchers have adopted predictive models in order to minimize the rigorous 
laboratory works in estimating the compressive strength and other properties of concrete. 
Self-compacting concrete which is an advanced form of construction is adopted mainly in 
areas where vibrations may not be possible due to complexity of the form work or 
reinforcement. This work is targeted at predicting the compressive strength of self-
compacting concrete using artificial intelligence techniques. A comparative performance 
analysis of all techniques is presented. The outcomes demonstrated that training in a Deep 
Neural Network model with several hidden layers could enhance the performance of the 
suggested model. The artificial neural network (ANN) model, possesses a high degree of 
steadiness when compared to experimental results of concrete compressive strength. ANN 
was observed to be a strong predictive tool, as such is recommended for formulation of 
many civil engineering properties that requires predictions. Much time and resources are 
saved with artificial intelligence models as it eliminates the need for experimental test 
which sometimes delay construction works.  
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1. Introduction  
 
The world's most popular building material has 

historically been concrete [1]. It has become man's most 
trusted companion due to its widespread use in 
construction projects across the world. At least since the 
Roman Empire's era, concrete has been instrumental for 
the expansion and improvement of many different 
cultures. In addition to its fluid-to-solid transformation, 
the "magic" of concrete lies in its inexpensive price, vast 
availability, malleability, plasticity, adaptability, high 
compressive strength, stiffness, and durability [1-4]. 
Many researchers are still enthusiastic about learning 
more about this niche of concrete engineering. Even for 
novel substances like reactive powder concrete, the 
future seems bright. Concrete's compressive strength 
ranges from 200 to 800 MPa [2-4]. 

It is standard practice to take a sizable enough 
sample of a combination to draw conclusions about the 

entire concrete mix. According to [5-7], testing concrete 
on day 7 is used to establish the early-age strength. Since 
concrete achieves its full strength at 28 days, the 
examination of the samples would also take that long. 
The result of the 28-day test can be used as a guide to 
predict the concrete's compressive strength as it ages. 
The procedures resemble those described in design 
regulations. However, these design standards fall short of 
the mark when concrete ingredients move beyond the 
traditional cement, aggregate, and water. The calculation 
of a concrete mix's compressive strength grows more 
complicated as the sorts of components used to 
manufacture it vary. Additionally, unaccounted-for 
components like pozzollans and admixtures are utilized 
when the type of concrete varies (for example, high 
strength concrete), rendering it impossible to clearly 
define the inter-relationship of concrete ingredients at 
the molecular level [8-12]. In cases when the outcome of 
the compressive strength might be influenced by factors 
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like "effect of admixtures," "temperature," etc., the 
empirical relationship suggested by the codes falls short 
of capturing the real picture, then, a trustworthy model 
is necessary to ascertain the strength of concrete samples 
at different ages in order to complete urgent projects that 
cannot wait for the results of 28-day testing. The time 
saved waiting for test results can be converted into 
monetary gains due to the productive nature of the 
construction process. This requires looking into 
alternate approaches. There is much room for debate and 
exploration regarding the usefulness of these non-
traditional approaches. 

There has been a lot of interest in utilizing artificial 
neural networks (ANN) to calculate concrete 
compressive strength over the previous year’s [13, 14]. 
Several researches have used combinatory models, such 
as fuzzy logic (FL), genetic programming (GP), artificial 
neural networks (ANN) etc. [15] forecast how ground 
granulated blast furnace slag will affect concrete's 
strength over time. Fast learning with only moderately 
accurate performance was made possible by the cascade 
correlation type of ANN [16-18] in order to capture the 
inherently nonlinear character of patterns in the 
concrete properties. For a certain category of problems, 
specifically the measurement of compressive strength, 
this helps save time and money. The outstanding 
performance outcomes of combinatorial formations of 
artificial neural networks and meta-heuristic algorithms 
are making them increasingly popular for dealing with 
challenging structural engineering difficulties. Concrete 
compressive strength determination for deep beams 

attached to sheared walls, for instance, has been shown 
to benefit from a hybrid multilayer perceptron (HMP) 
network according to [18-22]. Artificial neural networks 
(ANNs) and evolutionary search methods like genetic 
algorithms (GAs) are combined in evolutionary artificial 
neural networks (EANNs) as described by [20, 21]. 
Kovačević [22] lays out the framework for evolutionary 
artificial neural networks (EANNs). EANNs have been 
tremendously effective for the purpose of detecting 
defects in concrete's structure and compressive strength 
[22-24]. To more precisely and affordably estimate the 
concrete compressive strength, EANN is being studied as 
a potential replacement for both costly mathematical 
models and damaging trials. 

 
2. Method 

 
The authors focused on machine learning models and 

the compressive strength of self-compacting concrete in 
order to achieve the goals of this study: A range of 
websites, including Scholarly Journals, Elsevier, 
Springers, SCOPUS, the Web of Science, Turkish Journal 
of Engineering, IEEE, and Science Direct, were consulted 
in order to acquire scholarly sources for this study. Only 
published books that the authors felt offered the most 
intelligent and pertinent answers to their research topic 
were chosen. Following an examination of these sources, 
81 sources in all were determined to be very relevant to 
the study. Figure 1 presents a flowchart that outlines the 
research approach used in this work.  

 

 
Figure 1. Flow chart of the approach used in obtaining relevant articles for the research. 

 
A total of 80 articles that were researched came from 

academic journals, which accounted for a greater 
percentage of the total number of academic sources, also 
EFNARC guidelines and specifications for self-
compacting concrete was also used in this research. 
Thus, the total number of academic sources was 81. The 
study applies the idea of modern construction 
technology to give a methodical assessment of the 
compressive strength of self-compacting concrete using 
machine learning models.  

 
2.1. Predicting concrete compressive and 

flexural strength 
 
There are numerous techniques for predicting 

compressive strength as adopted by many researchers 
across the world. 

 
2.1.1. Empirical methods 

 
In an attempt to directly represent the experimental 

procedure into a given connection, empirical 
methodologies have been developed. The strength of the 
connection indicates how important each component 
was in generating the final result. The created connection 

must be able to suit the experimental data; therefore, 
they often rely on extensive experimental analysis. Most 
empirical relationships for forecasting compressive 
strength make an effort to connect the strength to the 
water cement ratio, despite the fact that this ratio 
typically has a negative effect on the predicted strength. 
Other times, the models take into account information 
about compressive strength that is already available and 
employ experimentally estimated coefficients to 
establish a connection between the available information 
and the necessary information [10, 25]. 

 
2.1.2. Computational modelling 

 
Complex equations of thermodynamics are the 

foundation of finite element analysis. Such modelling is 
often done with the use of computers. They rely on an 
accurate depiction of the microstructure of the concrete. 
In order to simulate accurately the hydrations (and other 
processes) of the different particle sizes in the cement 
using a computer simulation (pixel based), it is necessary 
to cast the cement randomly in a unit cell space. It is also 
possible to encode the processes empirically, after 
adjusting for experimental data [10, 25, 26]. 
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2.1.3. Mechanical modeling 
 
Parameters in mechanical models are typically 

represented using a spring-and-dashpot structure. The 
cement matrix is typically viewed as the spring and the 
time element (age of testing) as the dashpot when 
applying this theory to forecast the compression strength 
of concrete. When the model is compared to a testing 
dataset, its accuracy declines. Compressive strength is 
also significantly impacted by the dashpot component, 
especially at younger ages [10, 25, 26]. 

 
2.1.4. Statistical methods 

 
In order to provide the most accurate description of 

the connections between variables, statistical techniques 
rely on experimental data and apply mathematical 
equations. In the realm of statistics, multilinear 
regression is by far the most used approach. Although 
statistical approaches are intuitive and simple to 
implement, their data-heavy nature might be a hindrance 
in some situations. Also, their effectiveness varies with 
the mathematical function used to fit the data, making 
them less reliable than alternative approaches [10, 25-
27]. 

 
2.1.5. Regression analysis 

 
It is widely agreed that regression analysis is a crucial 

part of any respectable statistical modelling strategy. The 
convenience of the statistical method in terms of 
computing coefficients, which may be interpreted in 
terms of efficiency gains, [28-30], such an approach, 
however, is typically convoluted and difficult to follow. 
This trait is ignored for the time being, in order to create 
a confidence interval for a set of predictions, statistical 
models must be mathematically rigorous. Correlation 
analysis also shows how the main constituents affect the 
final product. R2, sometimes termed the correlation 
coefficient, is a metric used to compare the effectiveness 
of different regression equations. R2 measures how well 
a model can make predictions. It's a metric for assessing 
the model's ability to account for differences in output 
that result from differences in input values. A value of 0 
indicates that no variance in Y is interpreted by the 
calculated regression model, whereas a value of 1 
indicates that all points are on the regression line. Slump 
test findings and concrete density were presented by 
[28-30] to complement mix proportions of component 
materials in estimating high performance concrete's 
compressive strength. 

This was done so that results from tests at varying 
ages would more accurately reflect the progression from 
weakness to strength. The final multi-variable power 
equation benefited from the addition of these 
independent variables, with a correlation coefficient of 
99.99% being achieved. Good connections between his 
predicted compressive strength and experimental data 
were also discovered in the work of [31]. The inputs to 
his model were standardized according to a fixed matrix 
formula in order to enhance development of concrete 
mixtures. Regression methods have long been popular 
because of their simplicity and the little amount of time 

they require for modelling. Each regression model has 
great predictive power for low levels of non-linearity 
between reactants and products (as is typically the case 
in concrete). This is evident in the work of [32, 33], in 
which he attempted to evaluate this strategy in 
comparison to the artificial neural network approach and 
concluded that the latter provided much superior 
forecasts. 

 
2.1.6. Artificial intelligence 

 
According to Webster's New World College 

Dictionary, AI is "the ability of machines or programs to 
function in ways that simulate human intelligence in 
tasks such as reasoning and learning." One can then 
wonder what kinds of issues call for a computer solution 
that "thinks like a human brain." Knowledge-based 
inference with partial or unclear data, different types of 
perception and learning, and control, prediction, 
classification, and optimization are only a few examples 
[34, 35]. They can be used to mimic a phenomenon in 
civil engineering situations where the underlying 
process is unclear. Neural networks and genetic 
algorithms are two types of AI techniques; they have 
structural and functional similarities to microscopic 
biological models (neural networks that mimic the 
brain's) and genes (computer programs that 'mutate' to 
improve their performance), respectively. Adaptive 
Network based Fuzzy Inference Systems (ANFIS) Fuzzy 
systems are two further examples of modern artificial 
intelligence. Artificial Neural Network Fuzzy Inference 
System (ANFIS) uses a hybrid of the two. Training using 
linguistic interpretation of variables with fuzzy logic and 
neural networks are both strong suits of the network 
created in this way [34, 35]. Methods based on artificial 
intelligence are potent due to their ability to learn and 
provide relevant models, even for a wide variety of data. 
A 'near to reality' conclusion, however, requires more 
data than just this. 

 
2.2. Fuzzy logic 

 
It was Lotfi Zadeh who originally proposed the use of 

fuzzy logic [33-37]. Among the various fuzzy inference 
system approaches he paved the way for include 
Mamdani, Takagi, and Sugeno. His work on fuzzy logic is 
credited with revolutionizing the way people represent 
the world. 

According to [33-37], fuzzy logic is a collection of 
mathematical principles for knowledge representation 
based on degrees of membership. This stands in stark 
contrast to the logical values in traditional Boolean logic 
of either "completely false" (=0) or "completely true" 
(=1). The Boolean logic is a representation of information 
having binary boundaries (black or white, for example). 
The truth usually differs significantly from expectations. 
Parameters within a set are not always well delineated, 
and a "grey area" often exists when there is an element 
that belongs to both sets to varying degrees. An 
individual may, for instance, have the heights of 10 
persons in a set, with the 'tall' group ranging from 1.75 m 
to 2.20 m and the ‘short' group ranging from 1.50 m to 
1.74 m. Consideration of a crisp set may seem insufficient 
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under these conditions. Some researchers [33-37] 
summed up this kind of dichotomous thinking by saying 
that it is "painfully simplified" and "in many 
circumstances, lacking rapport with reality." Fuzzy sets 
can be used to simulate the aforementioned crisp set 
more accurately and robustly. They [33-37] define a 
fuzzy set as a class of objects having a continuum of 
degrees of membership. A membership (characteristic) 
function, in this case, gives each item in the set a score 
between one and zero based on its membership degree 
in the set. 

Modelling non-linear systems and creating 
sophisticated controllers are two of the many 
applications of fuzzy logic control, a strong mathematical 
tool. In concrete, each component serves a purpose both 
alone and in concert with the others. This will cause the 
relationship between the number of ingredients and the 
resulting compressive strength to be non-linear. FLC can 
help reduce this nonlinearity since it is implemented 
when the complexity of a system prevents the use of 
other modelling approaches [33-37]. 

 
2.3. Neural network 

 
The dramatic shift in how people approach problems 

that neural networks represent is happening now. Since 
work on artificial intelligence began in the 1950s, neural 
networks have been at the forefront of efforts to expand 
robots' limited utility from muscle labor to intellect work. 
The term "artificial neural network" can refer to a 
number of different things. In that respect, they are 
analogous to biological brain networks. In this metaphor, 
the axon represents the outputs and the synapses 
represent the weights. In artificial neural networks, the 
ubiquitous neuron is also referred to as a "processing 
element." References [36-39] concisely defined artificial 
neural networks as a class of massively parallel designs 
that address complex issues by coordinating the efforts 
of several, relatively uncomplicated processors (or 
"artificial neurons"). A perceptron is a simple neural 
network with a one-to-one mapping of inputs to outputs. 
More complex neural networks may have many layers 
and use a variety of activation functions. Classification of 
artificial neural networks helps shed light on their many 
forms.  

Damage detection, identification of structural 
systems, modelling of material behavior, structural 
settlement, control and optimization, monitoring ground 
water, and determining concrete mix proportions are 
just some of the many areas where ANNs have been put 
to use [40].  Reference [41] examined the use of artificial 
neural networks in prediction models to supplement 
their work in fuzzy logic and attempt to forecast the 
compressive strength of self-compacting concrete. 500 
iterations were performed on the ANN model, which had 
a hidden layer of 6 neurons. Their successes were 
comparable, as were the degrees of inaccuracy in their 
measurements. The resultant model improved upon the 
fuzzy logic result in that it was able to estimate the 
strength with an R2 value of 0.9767. The selected ANN 
design had a single hidden layer with eleven secret 
neurons. Adding a second hidden layer improved the 
accuracy of the model [42]. Using an ANN design with 

two hidden layers and nine and eight neurons in the first 
and second hidden layers, respectively, yielded the 
lowest absolute percentage error (=0.000515). 
Sarıdemir [43] also considered the advantages of a multi-
layer architecture. The material issue was also given 
proper consideration in his model, as seen by the use of 
chemical analysis data for fly ash, gradient, and sand 
chemical compositions. R2 = 0.9557 was found for 
compressive strength, while 0.9119 was found for 
flexural tensile strength, indicating that the prediction 
model performed well. The influence of water to binder 
ratio on compressive strength was also considered in the 
compressive strength forecasting model [43, 44]. 
Compressive strength was shown to decrease with 
increasing water-to-binder ratio. Their model has an R2 
of 0.9944 for reproducing experimental outcomes and an 
R2 of 0.9767 for predicting testing samples. Concrete 
strength prediction methodologies were compared with 
an artificial neural network approach [45-47], the results 
showed that the ANN approach provided an accurate 
forecast for low and medium strength concretes. Despite 
promising findings from a multiple linear regression 
model, the ANN method performed much better. 

 
2.4. Genetic programming 

 
In order to evaluate a computer's performance on a 

given job, genetic programmers use a set of 
"instructions" and a "fitness process" known as "genes 
expression programming" (GEP). Each node is a piece of 
code running on a computer, making this a subtype of 
genetic algorithm (GA). It's a method for improving the 
performance of a computer programme by moving its 
components to the most advantageous physical location, 
as defined by the conditions the it must satisfy. Here are 
the three genetic manipulations [43-46]. 

Some of the key adjusting factors are detailed in [43-
46] article. The GP building process begins with an initial 
population size of 49 without cement/FA substitution 
and 27 with cement/FA substitution of 0.15. The curing 
time was used to further classify each dataset in the GP 
model, just as it did in the ANN model. When the desired 
result is a 28-day compressive strength, four input 
parameters were selected: water, cement, coarse 
aggregate, and fine aggregate. 

Reference [44-46] presented regression equations for 
predicting in situ concrete compressive strength based 
on data from ready-mixed concrete mixture proportions 
and on-site compressive strength testing. They employed 
1442 compressive strength test data from 68 distinct 
mixture types with specified compressive strengths 
between 18 and 27 MPa, water to cement ratios between 
0.39 and 0.62, and maximum sizes of aggregate was 
between 25 and 100 mm. They [45-47] tested a proposed 
model for predicting the compressive strength of 
concrete using in situ data.  

 
2.5. Parameters in machine learning models 

 
The hyper parameters of a machine learning 

algorithm are external guidelines that inform decision 
making and control how the algorithm learns. Machine 
learning engineers must first set these parameters before 
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training the algorithm, [48, 49, 50]. Hyper parameters 
include things like the learning rate, the number of 
clusters in a clustering algorithm, and the number of 
branches on a regression tree. In reaction to the training 
data, parameters start to form as the algorithm is trained 
and guided by the hyper parameters. The weights and 
biases that the algorithm develops during training are 
among these parameters. The model parameters are the 
final values for a machine learning model that, in an ideal 
world, fit a data set without exceeding or falling short of 
[48-50].  

 
2.6. Hyper parameters in machine learning models 

 
A hyper parameter in machine learning is a 

parameter whose value directs the process of learning. 
On the other hand, training is used to determine the 
values of other parameters, which are usually node 
weights. Hyper parameters can be divided into two 
categories: model hyper parameters, which pertain to 
the model selection task and cannot be inferred during 
machine learning, and algorithm hyper parameters, 
which impact the speed and caliber of learning but 
theoretically have no effect on the model's performance. 
The topology and size of a neural network are two 
instances of model hyper parameters [48-50].  

Hyper parameters of an algorithm include learning 
rate, batch size, and mini-batch size. A mini-batch size 
would be a smaller sample set, whereas batch size can 
refer to the entire data sample. While some 
straightforward methods (like ordinary least squares 
regression) require none, other model training 
procedures require different hyper parameters. The 
training algorithm extracts the parameters from the data 
and applies them to these hyper parameters. The 
selection of a model's hyper parameters can affect how 
long it takes to train and test. Typically, a hyper 
parameter is of an integer or continuous form, which 
results in mixed-type optimization issues. Some hyper 
parameters can only exist if other hyper parameters are 
valued, for example, in a neural network, the number of 
layers may affect the size of each hidden layer [48-50]. 

 
2.7. Untrainable parameters 

 
Because hyper parameters aggressively boost a 

model's capacity and have the potential to push the loss 
function to an undesirable minimum (overfitting to and 
picking up noise in the data), rather than accurately 
mapping the richness of the structure in the data, they 
can sometimes prevent hyper parameters from being 
learned from the training set. The degree of a polynomial 
equation that fits a regression model, for instance, would 
increase until the model perfectly suited the data if we 
treated it as a trainable parameter. This would result in 
reduced training error but poor generalization 
performance. 

 
2.8. Tuning in ML 

 
Only a few hyper parameters account for the majority 

of performance variation. How much more performance 
can be obtained by tweaking an algorithm, hyper 

parameter, or combination of hyper parameters is called 
its tuning ability. The two most important hyper 
parameters for machine learning models are learning 
rate and network size; batching and momentum have no 
discernible impact on the model's performance. 
Research has shown that mini-batch sizes between 2 and 
32 yield the best results, despite some studies advocating 
for mini-batch sizes in the thousands. 

 
2.9. Robustness of ML models 

 
Learning has an inherent stochasticity, which 

suggests that the performance measured by the 
empirical hyper parameter may not accurately reflect the 
true performance. Without considerable simplification 
and robustness, methods that are not resistant to 
straightforward modifications in hyper parameters, 
random seeds, or even various implementations of the 
same algorithm, cannot be incorporated into mission-
critical control systems. In particular, algorithms for 
reinforcement learning must have their performance 
evaluated across a large number of random seeds and 
their sensitivity to hyper parameter selection evaluated. 
Because of the high variance, their evaluation using a 
small number of random seeds is unable to fully capture 
performance. Certain reinforcement learning 
techniques—like Deep Deterministic Policy Gradient 
(DDPG) are more responsive to selections of hyper 
parameters than others.  

 
2.10. Optimization 

 
Through the use of hyper parameter optimization, a 

tuple of hyper parameters is found to produce an optimal 
model on test data that minimizes a predetermined loss 
function. The corresponding loss is returned by the 
objective function after receiving a tuple of hyper 
parameters.  

 

2.11. Reproduction in ML models 
 
In addition to fine-tuning hyper parameters, machine 

learning entails reproducibility checks, parameter and 
result organization, and storage. When there's no strong 
infrastructure in place for this kind of thing, research 
code tends to change quickly and jeopardizes important 
features like reproducibility and bookkeeping. Machine 
learning online collaboration platforms go one step 
further by enabling scientists to automatically exchange, 
arrange, and communicate about experiments, data, and 
algorithms. Deep learning models can be especially 
challenging to reproduce [51].  

 

2.12. Creating machine learning models 
 

Using either labeled, unlabeled, or a combination of 
the two, algorithms are trained to create machine 
learning models [51,52]. There are four main machine 
learning algorithms available:  

 

2.12.1. Supervised learning  
 
When an algorithm is trained on "labeled data," or 

data that has been labeled so that an algorithm can 
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successfully learn from it, supervised learning takes 
place. Training labels aid in ensuring that the final 
machine learning model is capable of classifying data in 
the way that the researcher has intended.  

 
2.12.2. Unsupervised learning 

 
To train an algorithm, unsupervised algorithms use 

unlabeled data. The algorithm generates its own data 
clusters during this process by looking for patterns in the 
data itself. Researchers who are trying to discover 
patterns in data that are currently unknown to them can 
benefit from unsupervised learning and pattern 
recognition. 

 
2.12.3. Semi-supervised learning  

 
This technique trains an algorithm by combining 

labeled and unlabeled data. This procedure involves 
training the algorithm with a small amount of labeled 
data initially, and then training it with a much larger 
amount of unlabeled data.  

 
2.12.4. Reinforcement learning 

 
This machine learning approach assigns positive and 

negative values to actions that are desired and 
undesirable. In order to maximize rewards through trial 
and error, the intention is to incentivize programs to 
steer clear of the unfavorable training examples and 
toward the positive ones. Unsupervised machine 
learning can be guided by reinforcement learning. 

 
2.13. Types of machine learning models 

 
Classification and prediction problems are the two 

main categories of machine learning problems. Models 
derived from algorithms created for either classification 
or regression (a technique used for predictive modeling) 
are used to approach these problems [53]. Depending on 
how it is trained, an algorithm may occasionally be used 
to produce regression or classification models. A list of 
well-known algorithms for building regression and 
classification models can be seen below. Models of 
classification Support vector machines, random forests, 
decision trees, logistic regression, naive Bayes, and K-
nearest neighbor (KNN) Models of regression K-nearest 
neighbor (KNN) regression, decision trees, random 
forests, neural network regression, and linear regression  

 
2.14. Overfitting in machine learning (ML) 

 
In machine learning (ML), overfitting occurs when a 

model performs poorly on new, unseen data because it is 
too closely aligned with the training data it was trained 
on. Its primary goals are to detect, enable the model to 
generalize to new data, and guarantee that machine 
learning becomes less specialized to the training set of 
data [54,55]. Overfitting is used in machine learning 
tasks such as image recognition and natural language 
processing. After overfitting is eliminated, these models 
may also be able to predict new data more precisely and 
produce reliable forecasts for practical uses. It happens 

when there is insufficient data, when there is a lot of 
unnecessary information in the data set, when training 
on a specific data set is prolonged, and when the model's 
complexity needs to be reduced. In machine learning 
(ML), the term "overfitting" refers to the situation in 
which a model becomes excessively complex and fits too 
closely to the training set of data. Helping the model 
achieve better generalization performance on new data 
is the main goal of addressing overfitting. It can be found 
by keeping an eye on all losses, analyzing the learning 
curve, incorporating regularization terms, running cross-
validation on the model, and visually examining the 
prediction to make sure it closely matches the training 
set.  

The following methods can be used to avoid 
overfitting in machine learning: dropout, feature 
selection, early stopping, cross-validation, regularization 
using L1 and L2, and data augmentation. When a machine 
learning model becomes overly specialized in the 
training data and is unable to generalize well to new, 
unseen data, this is known as overfitting. This occurs in 
neural networks when the machine learning model gives 
less significant information in the training data more 
weight. Because it is unable to distinguish between 
relevant, crucial data that form the pattern and noisy 
data, this model requires assistance in order to produce 
accurate forecasts about new data.  

 
2.15. Causes of overfitting 

 
The model's training dataset is dirty and contains a lot 

of noise; additionally, the training dataset should be 
larger, when only a portion of the available data is used 
to build the model, resulting in an inaccurate 
representation of the entire dataset. Therefore, by 
looking at validation metrics such as accuracy and loss in 
overfitting decision trees, one can identify an overfitting 
model. Due to the effect of overfitting, these metrics 
typically have a tendency to rise to a certain point before 
beginning to decline or plateau. In addition, this model 
works to achieve an ideal fit, and once it does, the trend 
of these metrics starts to flatten or decline. To solve this, 
it is crucial to strike the correct balance between the 
complexity of the model and the amount of training data 
that is available. 

 
2.16. Identifying overfitting in ML models  

 
The overfitting can be detected in a few different 

ways, including the following:  
1. All losses need to be kept an eye on, even if the 

validation loss rises while the training loss falls. 
2. It is important to keep a close eye on the machine 

learning curve because any divergence between the 
training and validation curves indicates overfitting. 
Since the regularization term avoids overfitting, it 
must be included in the loss function.  

3. Lastly, visual inspection of the model's prediction is 
necessary to determine whether the model fits the 
training data too closely. If so, this indicates 
overfitting. 
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2.17. Preventing ML from overfitting  
 
The following methods are among the many that aid 

in preventing overfitting in machine learning:  
1. The model increases the loss function by adding a 

penalty term through the joint Regularization L1 & L2 
techniques. It thus deters the model from fitting the 
training set too closely, which avoids overfitting.  

2. Cross-validation aids in its avoidance. The training 
automatically ends just before the point of overfitting 
when the early stopping technique in the model is 
applied. 

3. Using the data augmentation technique improves the 
creation of new data from previously used training 
data. This keeps the model from overfitting by 
increasing its exposure to a wider range of data 
samples.  

4. The model can be trained to prevent overfitting to 
noisy data by reducing the number of features 
through feature selection.  

5. The dropout technique forces the model to learn 
more robust and generalizable representations, 
preventing data overfitting. Consequently, by using 
these techniques, the overfitting issue may be 
lessened, leading to the creation of a machine-
learning model that is more precise and useful. 

2.18. Fuzzy logic approach 
 
The four main components of each fuzzy system are, 

Fuzzy rule base, Fuzzification, and Defuzzification and 
Inference Engine [56]. Figure 2 present a general fuzzy 
logic model architecture. 

The Fuzzification is the first step that estimates the 
fuzzy input and converts it into one or more fuzzy sets. 
Gaussian and trapezoidal fuzzifications are the two types. 
In that kind of fuzzy logic, any item can belong to any 
number of subsets of the universal set. The foundation of 
fuzzy rules is linguistic IF-THEN-constructions with the 
overall procedure "IF A THEN B," where A and B are 
schemes incorporating linguistic variables. The premise 
is designated as A, while the rule's importance is 
designated as B. In order to account for ambiguity and 
inaccuracy, linguistic variables and fuzzy IF-THEN rules 
are used. Depending on how unique the challenges are, 
there are two different types of rule techniques. In a fuzzy 
inference engine, fuzzy rule base is integrated and used 
in the analysis of fuzzy outputs [56,57]. The 
Defuzzification process transforms outputs from a fuzzy 
inference engine into precise numerical values and crisp 
output. The flow chart for the GP is shown Figure 3. 

 

 

 
Figure 2. Fuzzy Logic architecture. 

 

 
Figure 3. Genetic algorithm flow chart diagram. 
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2.19. Evaluating the performance of the GP model 
 
For a model to be deemed adequate, it is 

recommended that the dataset ratio to the total number 
of input features equal 3, and a ratio of 5 is desired. The 
GEP model can be validated using various statistical 
computations from the training, testing, and validation 
sets. In order to assess if the model was effectively 
trained and whether there is a significant association 
between the model and experimental data with little 
error, the values of the RMSE, MAE, and RSE parameters 
will be computed for the testing phase [56-58]. 

With the aid of several statistical techniques, the GEP 
model will also be examined for external validation. It is 
suggested that one of the regression lines (k or k′) 
passing through the origin's slope should be close to 1. 
The same dataset will also be used in this study's linear 
regression model, which will be used to calculate the 
SCC's fc. It is important to remember that the robustness 
and generalizability of the resulting model depend on the 
fitting parameters. The fitting parameters for the GEP 
algorithm will be determined using test runs or 
experimental results. How long the program will run 
depends on the population size (the number of 
chromosomes). Depending on the quantity and 
complexity of the prediction model, the levels will be 
taken into account as the population size. The head size 
and the number of genes were two variables that the 
algorithm that created the models in this study used to 
define the architecture of the models [59-61]. 

The head size, or "head size," of the model, which 
refers to the size of the model's "head," contributes to 
determining how complex each term is inside the model. 
On the other hand, the number of sub-ETs (basic data 
structures) that make up the model depends on the 
number of genes. Five alternative head sizes will be 
considered in this study: 8, 9, 12, 10, and 14. There will 
be either three or four genes [61, 62]. The GEP algorithm 
will be used to develop the precise parameters for each 
model. 

 
2.20. Model evaluation criteria 

 
One common performance indicator is the correlation 

coefficient (R). R is insensitive to the division and 
multiplication of output values by constants, hence it 
cannot be used as a primary indicator of how well the 
model predicts. As a result, the study will also evaluate 
the mean absolute error (MAE), relative squared error 
(RSE), and relative root mean square error (RRMSE) [63-
67]. To evaluate the model's performance in regard to 
both the RRMSE and R, Gandomi and Roke propose a 
performance index [56]. Equations 1 to 7 provide the 
mathematical formulas for these error functions. 

 
Fc= f (α +β1Y1 + β2Y2 + β3Y3+ β4Y4 …... + βnYn) + £1 (1) 

  

 

(2) 

  

 

(3) 

  

 

(4) 

  

 

(5) 

  

 

(6) 

  

 

(7) 

 
where Fc is the compressive strength, β1 to βn is the 

regression coefficients, α is the regression constant, £1 is 
the error term 

 
2.21. Artificial neural network 

 
The compressive and flexural strength of the mixed 

design specimens will be measured. Following casting for 
7, 14, 21, and 28 days, all mix design samples will be 
examined. Compressive strength will be determined 
using cube samples, and flexural strength will be 
determined using beam specimens. After 28 days of 
casting, cube samples will be weighed to determine their 
density [68-71]. The flow chart for the ANN is shown in 
Figure 4.  

 
Figure 4. ANN architecture. 

 
Reference [72-75], A evaluated the feasibility of MARS 

and GEP models in predicting the compressive strength 
of SCC at 28 days. In their research, values of compressive 
strength were estimated using multivariate adaptive 
regression spline approach [76-81]. The research 
indicated high ability of both the GEP and MARS models 
in predicting SCC strength. The parameters selected for 
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the GEP models were defined as shown in Table 1. From 
the work, predictive models were developed and the 
model tree shown in Figure 5 while Figure 6 represent 

the scatter plot for training of the GEP models and Figure 
7 shows the scatter plot for testing of the GEP models. 

 
 

Table 1.: Parameters of optimized GEP models [80]. 
Parameters Description of parameters Setting of parameters 

P1 Function set +,-, x,l,exp, power 
P2 Mutation rate 0.138 
P3 Inversion rate 0.546 
P4 One point and two point recombination rate 0.277 
P5 Gene recombination rate 0.277 
P6 Gene tramsportatiom rate 0.277 
P7 Maximum tree depth 6 
P8 Number of genes 3 
P9 Number of chromosones 30 

 
 

 
Figure 5. GEP models in concrete strength prediction [80]. 

 

 
Figure 6. Scatter plot of observed and predicted compressive strength for training of GEP model [80]. 



Turkish Journal of Engineering – 2024, 8(3), 537-550 

 

  546  

 

 
Figure 7. Scatter plot of observed and predicted compressive strength for testing of GEP model [80]. 

 
3. Conclusion  
 

From the findings of this work, it was observed that 
use of artificial intelligence techniques in predicting the 
compressive strength of self-compacting concrete give 
approximate strength values close to experimental 
investigations. The research has shown that if a model 
gives 𝑅2 > 0.8, then there is a correlation between 
predicted and experimental values for the available data 
in the dataset. The review observed that all the 
techniques studied, 𝑅2 was always greater than 0.8 for 28 
days’ compressive strength which proves both of the 
models can be used for accurate prediction. The ANN 
model was identified to possesses a high degree of 
steadiness when compared to experimental results of 
concrete compressive strength, hence, ANN is a strong 
predictive tool, for both in situ and experimental 
prediction and as such is recommended for formulation 
of many civil engineering properties that requires 
predictions. Much time and resources are saved with 
artificial intelligence models as it eliminates the need for 
experimental test which sometimes delay construction 
works. Reinforcement learning techniques like Deep 
Deterministic Policy Gradient (DDPG) are more 
responsive to selections of hyper parameters than 
others. Through the use of hyper parameter 
optimization, a tuple of hyper parameters can produce an 
optimal model on test data that minimizes a 
predetermined loss function. Overfitting occurs in 
machine learning when a model performs poorly on new 
or unseen data because it is too closely aligned with the 
training data that was used for the model but over fitting 
can be avoided through, cross validation, augmentations, 
drop out and feature selection techniques. 
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