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Abstract: It is one of the most serious problems in advanced driver assistance systems (ADAS) field to find target val-
ues of Key Performance Indicators (KPIs) and to be able to calibrate these systems to achieve the desired comfort and
safety. In this study, a scenario related to the lane-keeping assist system (LKAS) of the emergency lane-keeping system
(ELKS) has been selected as the system to be worked on and the "Target Designation" (TD) method is proposed for the
explained problem. The obtained target matrices (TM) are used for the calibration of the ELKS controller on the deter-
mined operating points. As a first step of the TD procedure, KPIs were defined for the scenario and data were collected
from a vehicle that was determined as a benchmark vehicle. According to the KPI values obtained from this vehicle,
optimal parameter sets were obtained for each operating point by implementing genetic algorithm (GA) and non-linear
optimization (NLO) methods on the ELKS controller of a benchmark vehicle.
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Düz Yolda Şeritten Ayrılma Senaryosu İçin Hedef Tayini ve ELKS
Kalibrasyonu

Özet: Gelişmiş Sürücü Destek Sistemleri (ADAS) alanında, temel performans göstergelerinin (KPI’lar) hedef değerlerini
bulmak ve bu sistemleri istenen konfor ve güvenliği sağlamak için kalibre edebilmek, en ciddi sorunlardan biridir. Bu
çalışmada acil şerit koruma sisteminin (ELKS), şerit koruma fonkisyonuna (LKAS) ait bir senaryo, çalışılacak sistem
olarak belirlenmiş ve açıklanan problem için "Hedef Tayini" (TD) metodu önerilmiştir. Metodoloji sonucunda elde edilen
hedef matrisler (TM), belirlenen çalışma noktalarında ELKS kontrolcü kalibrasyonu için kullanılmıştır. Belirlenen senaryo
için KPI tanımları yapılmış ve denektaş araç olarak belirlenen bir araçtan veriler toplanmıştır. Bu araçtan elde edilen KPI
değerlerine göre, bir test aracının ELKS kontrolcüsü için genetik algoritma (GA) ve lineer olmayan optimizasyon (NLO)
metotları kullanılarak, belirlenmiş olan her bir çalışma noktası için optimal parametre setleri elde edilmiştir.
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1 Introduction
ADAS are systems that collect information from the environ-
ment through various sensors and imaging systems, alert-
ing the driver or intervening in driving at various levels in
risky situations during driving ([1]). Classification of ADAS,
according to the International Society of Automotive Engi-
neers (SAE), ranges from level zero to level five, consider-
ing intervention in horizontal or vertical axis and interven-
tion duration ([2]). The use of ADAS aims to prevent traffic
accidents caused by driver errors, thereby increasing driv-
ing safety, efficiency, and comfort ([3]).

Vehicles must undergo a series of tests before commer-
cial deployment, which includes the approval of driver as-
sistance control systems ([4]). Scenario-based develop-
ment and testing approaches are possible solutions for vali-
dating the safe operation of autonomous vehicles. Real-life
situations can be digitally replicated, including the vehicle
model, controller, etc., and tested in virtual environments
through simulations. In this way, all possible scenarios are
tested and approved under conditions where maximum se-
curity and performance are ensured. PEGASUS ([5]) ve
ENABLE-S3 ([6]) projects are leading works in scenario-
based validation for autonomous vehicles. According to the
approach presented in the PEGASUS Project, scenarios
are defined in 6 layers: road structure, infrastructure, tem-
porary changes on the road, objects, environment, and dig-
ital information ([5]).

One of the main causes of accidents is vehicles deviat-
ing from their lane or road. Driver assistance systems that
control the lateral plane of the vehicle help prevent acci-
dents caused by drivers unintentionally leaving their lane
([7]). This study focuses on the ELKS, mandatory in M1
(Passenger vehicles with less than 8 seat) and N1 (Vehicles
used for the carriage of goods and having a maximum mass
not exceeding 3.5 tonnes) type vehicles. The system’s op-
timal response under different operational conditions is en-
abled through calibration of controller parameters ([8]). A
study examining LKAS and Lane Departure Warning Sys-
tem (LDWS) designed a controller using vehicle direction
deviation angle, lateral deviation from the lane center, and
steering torque. Real road test data with a 500 meter curve
radius was used to compare situations with and without the
controller’s reference path creation algorithm ([9]).

Multi-objective optimization algorithms are applied when
multiple factors in a solution set have different weights. In a
study examining LDWS, optimization was performed using
PID controllers and genetic algorithms ([10]). Another study
used Particle Swarm Optimization (PSO) algorithms to cal-
ibrate the Adaptive Cruise Control (ACC) system for sce-
narios following the acceleration of the vehicle ahead, us-
ing parameters like the leading vehicle’s acceleration, ego’s
response time, and ego’s maximum acceleration ([11]). In a
study that focuses on the longitudinal assessment of ADAS
systems with KPIs as the basis, the approach to effec-

tively implementing the KPI-based development process
has been presented by selecting the ACC function, using
scenario-based simulations ([12]).

In this study, the controller of the ELKS system is op-
timized and calibrated based on the considered scenarios
and the KPIs to be used in these scenarios. Initially, scenar-
ios related to the ELKS system are identified, and then KPIs
are determined, leading to the extraction of target matrices
for relevant maneuvers. To achieve the right controller pa-
rameters that will provide the targeted KPI values, a simula-
tion platform is designed, incorporating the ELKS controller
model of the test tool. This platform enabled the acquisition
of virtual data from the benchmark vehicle, and calculation
of numerous KPI values for each operating point. Finally,
using GA and NLO algorithms with the help of the KPI val-
ues and the upper and lower limit values obtained in the ini-
tial phase of the target matrix, the controller parameters are
calibrated. In Chapter 2, while discussing the problem to
be addressed in the study, Chapter 3 introduces the ADAS
function under investigation, namely ELKS. Chapter 4 cov-
ers the study parameters, KPIs, and the target values set
for the validation of the system. Chapter 5 and Chapter 6
discuss how controller calibration and optimization are per-
formed respectively. Finally, in chapter 7, the conclusion is
presented.

2 Problem Definition

The first stage of the study is the identification of the ADAS
function in the scope, ELKS. After the system is identified,
it is determined for which scenario, operating ranges, and
KPIs the target values will be derived. Then, for the deter-
mined Design of Experiments (DoE), vehicle records col-
lected from the benchmark vehicle are fed into a Post Pro-
cessing Tool (PPT). The PPT uses the records from the
benchmark vehicle to detect relevant scenarios for the de-
termined operating areas and performs related KPI calcu-
lations. Since multiple tests are conducted in each operat-
ing area, the KPI target values for these areas are found
by fitting them into mathematical functions using machine
learning (ML) methods. The input variables in the models
are operation parameters, while the outputs are KPI values.

AVL CAMEOTM is utilized to train ML models and to ob-
tain target values for the relevant operating points. ML mod-
els are used to create the TM, which contains target values
of KPIs in the relevant operating areas and the lower and
upper limits of these target values. The second stage of the
study involves calibrating the ELKS controller of the test ve-
hicle using the target values obtained from the benchmark
vehicle. For this purpose, an AVL VSMTM block and AVL
ModelCONNECTTM ([13]) simulation platform has been de-
signed, including an AVL VSMTM block containing the vehi-
cle model of the benchmark vehicle, an Functional Mockup
Unit (FMU) block containing the ELKS controller model, and
a Virtual Test Drive (VTD) block containing the driving sim-
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ulation program. Thanks to this platform, test simulations
have been conducted for a new Design of Experiments
(DoE) that includes operating parameters and controller pa-
rameters, and data has been collected. The collected data
is processed again with PPT, and KPIs are calculated for
each detected scenario. A new data set is created from the
KPIs calculated for each test simulation and the parameter
sets used in the relevant test. Following this step, new ML
models are trained from this data set with AVL CAMEOTM

([14]). The trained ML model is optimized in AVL CAMEOTM

using GA and NLO algorithms to obtain an ELKS controller
that performs well to keep the KPI values within the lower
and upper limits of the TMs obtained from the benchmark
vehicle. Thus, different optimal parameter sets are identi-
fied for each different operating point. Finally, the obtained
parameter sets are validated using an iterative approach
which is explained in detail on Section 7. In Fig. 1the work-
flow for determining the presented targets are included in
this study.

3 System Definition of ELKS

The European Union’s (EU) General Safety Regulation
(GSR) 2019/2144 ([15]), mandates the installation of an
emergency lane keeping system in all new type M1 and
N1 vehicles and compliance with EU Regulation 2021/646
([16]). ELKS is a driving assistance system that warns the
driver and corrects the route when the driver accidentally
leaves the lane. Current ELKS technologies are based on
lane detection, and the performance of these systems is
not guaranteed in situations where such markings are not
present. This system has two main functions: LDWS and
corrective directional control function (CDCF). CDCF is a
control function within an electronic control system that can
provide wheel braking and can change the steering angle
on one or more wheels for a limited time. This prevents the
vehicle from leaving the desired lane and colliding with a
vehicle in the adjacent lane. LDWS also provides a warn-
ing to the driver before the system intervenes. Just as on
a straight road, on a curved road, when the vehicle ap-
proaches the lane markings and tends to cross them, the
system intervenes to keep the vehicle within its lane, allow-
ing the journey to continue. This system, which operates
between 65 km/h and 130 km/h, can intervene to prevent
the vehicle from leaving the lane by applying a lateral speed
of 0.1 m/s to 0.5 m/s on a straight or curved road.

Basically, ELKS controller gives a steering wheel output
as a disturbance effect, however behind this algorithm com-
plex calculations are conducting. Roughly, 3D look-up table
is using to apply optimum steering wheel angle in case of
ELKS activation. Related inputs to look-up table are lon-
gitudinal speed, lateral departure speed, and lane lateral
deviation of Ego. These 3 inputs based steering wheel an-
gle calculation provides flexibility to control the Ego for dif-
ferent Operational Design Domains (ODDs) by interpolat-

ing for given speeds and lateral deviations. For instance,
if lateral departure speed is too high during the ELKS ac-
tivation, steering wheel angle should be smaller to reduce
rolling effect towards out of the lane, in contrast controller
output should be high enough to direct Ego into the lane as
quickly as possible. When all those effects are taken into
account, precisely correlated steering wheel angle among
inputs have great importance.

The ELKS test scenarios in the Lane Keep Support Sys-
tems protocol of the European New Car Assessment Pro-
gramme (Euro NCAP), which determine the safety capacity
of cars, include scenarios where the vehicle departs from
the road boundaries and goes onto the curb, grass, soil,
or other areas; the vehicle departs from a continuous lane;
the main vehicle departs from its lane when a vehicle is ap-
proaching from the opposite lane; and scenarios where the
main vehicle, despite being in the same direction as the ad-
jacent vehicle in the next lane, crosses the lane markings
([7]). In this study, from the test scenarios of the CDCF,
which is one of the functions under ELKS, the straight road
lane departure scenario and the curved road lane depar-
ture scenarios were preferred. TM has been extracted for
both directions of separation (left-right) of these scenarios,
but only the straight road rightward lane departure scenario
was preferred for calibration. The main objectives of select-
ing only the rightward straight road lane departure scenario
are, there were no differences between leftward and right-
ward lane departures, except sign of values, moreover ex-
istence of a reasonable number of real world scenario data
on the straight road to train ML models.

4 Target Designation

In this study, the determination of Key Performance Indi-
cator (KPI) target values for specific scenarios and their
specific operation ranges with the aim of the validation of
Advanced Driver Assistance Systems (ADAS) is referred to
as TD.

4.1 Operation Parameters
For the straight road scenarios used in the study, the Ego
longitudinal start speed and Ego departure speed parame-
ters were determined. The main factor in determining these
parameters in this way is the anticipation that these param-
eters will have a high-level impact on the KPI values. For
DoE, these parameters are determined as 70, 100, 130 km/h
and ± 0.2, 0.4, 0.6 m/s points, respectively.

4.2 Key Performance Indicators
In order to realize the TD in the selected scenarios and
perform controller calibration, it was necessary to deter-
mine KPIs. Within various model types available in AVL
CAMEOTM, robust neural networks (RNN) and free polyno-
mial models (FPM) were utilized due to their good model
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Fig. 1 Workflow

Fig. 2 Curved road lane departure scenario.

Fig. 3 Straight road lane departure scenario.

qualities. The quality of fit is determined through the sta-
tistical coefficient, called R2, where R2 is above 0.7 ac-
counted as acceptable, over .0.95 is perfectly matched
([14]). The determination coefficient; signifies the extent
to which model accounts for the variance of the measured
values from a fixed mean. It demonstrates the level of pre-

cision of how the model conforms to the measured data.
The KPIs, their descriptions, the ML models used, and R2

values are presented in Table 1. The R2 value specified in
Table 1 directly provides insight into the model quality. The
proximity of the value to 1 indicates the closeness between
the data used for model training and the trained model..

Among all KPIs, R2 has the highest value in EgoYawRat-
eRate_min. This is because this KPI represents the first
intervention by the controller to keep the vehicle within its
lane, preventing it from deviating. Therefore, a correlation
close to 1 for this KPI is expected and desired. Similarly,
R2 has the lowest value in EgoYawRateRate_max. The
reason for this is that the second intervention movement is
smoother than the first, making it more difficult to observe
correlation.

The data used in TD was cleaned of outliers within the
data set before being used in modeling in AVL CAMEOTM,
thereby improving the model quality. Values outside the
specified threshold might be outliers. The tool shows the
outliers values in different colors. Selecting outliers can be
deactivated manually by user and the model can be rebuild
provides to filter automatically. Outliers, measured values,
and model predictions for the EgoP2PStrAng KPI are illus-
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trated in Fig. 4. The deactivated outliers are red in this
figure. The intersection curve depicting the variation of the
same KPI according to operating parameters is provided in
Fig. 5. Equation 1 was employed during the calculation of
the KPI to be minimized during optimization.

tstart : first intervention time [s]
tend : second intervention time [s]
StrAng : steering wheel angle [◦]

P2PStrAng = [StrAngmax −StrAngmin]
tend
tstart (1)

4.3 Dataset
The data used for the TD stage of the study was collected
under ideal (closed to traffic) test conditions from a vehi-
cle considered as a benchmark vehicle in real world. It is
accepted that the benchmark vehicle generates valid data
since the test environment is ideal and vehicle parame-
ters are calibrated. Tests were conducted multiple times at
the working points described in 4.2 and at points between
them. Thus, a data set was obtained to use benchmark
data.

Fig. 4 P2PStrAng measured/predicted and outliers.

4.4 Target Matrices
Robust Neural Networks (RNNs) and Free Polynomial Mod-
els (FPMs) were used to model the relationship between
operation parameters and KPIs through AVL CAMEOTM.
Between the two models, whichever ML model gave bet-
ter results in terms of error metrics (R2, RMSE), that model
was preferred for the respective KPI.

The error metrics (R2, RMSE) employed in this study have
been judiciously selected due to their widespread accep-
tance and recognized adequacy in the context of research.
RMSE quantifies the disparities between predicted and ac-
tual values by computing their squared differences. No-
tably, RMSE stands out as a metric of preference for assess-
ing the performance of diverse machine learning algorithms

Fig. 5 P2PStrAng operation region intersection incline.

([17]). Concurrently, R2 constitutes a pivotal statistical mea-
sure gauging the extent to which the model explains the
underlying data. It is noteworthy that within the academic
literature, the combined utilization of R2 and RMSE has be-
come customary for the comprehensive evaluation of model
performance ([18]).

After the models were trained with the data set described
in Section 4.3, target values for each KPI at all working
points and the lower and upper limits of these values were
obtained. The lower and upper limits were determined as
the lower and upper limits of the confidence interval. Ob-
tained target values for EgoP2PStrAng KPI, which is also
the target function, are given in Table 2.

5 Controller Calibration
The second phase of the study, as mentioned in Section
(4.4), is to calibrate the ELKS controller parameters of the
test vehicle using the obtained target matrices, taking the
benchmark vehicle as a reference. The intended objective
here is to align the controller performance of the test vehi-
cle as closely as possible to that of the reference vehicle’s
controller performance.

5.1 Simulation Platform
For simulations, the test vehicle model AVL VSMTM; for the
ELKS controller in the vehicle, Simulink/FMU; and for the
road and environment models, VTD are used. In VTD, the
road curve radius, speed, and the deviation of the Ego vehi-
cle from the center axis of the lane obtained from the radar
sensor are processed in the controller, thus the necessary
steering angle information is calculated. This steering an-
gle is recalculated in the vehicle model according to the
vehicle’s speed and dynamic model and then fed back to
VTD continuously.

Basically, ELKS controller gives a steering wheel output
as a disturbance effect, however behind this algorithm com-
plex calculations are conducting. Roughly, 3D look-up table
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Table 1 Straight road lane departure scenario for KPI Table

KPIs Description ML Model R2 Value

EgoAccY_AfterIntrv_max Maximum lateral acceleration after
the move that returns the ego vehicle to the lane RNN 0.76

EgoP2PStrAng
Difference of maximum steering angles in the
move that turns the ego vehicle into the lane
and the move made to put it back in the lane

RNN 0.91

EgoStrWhlAng_std Ego steering wheel angle standard deviation FreePolyModel 0.87
EgoDTLC_min Ego distance to lane center minimum RNN 0.79
EgoYawRate_max Ego yaw rate maximum RNN 0.84
EgoYawRate_min Ego yaw rate minimum FreePolyModel 0.82
EgoYawRateRate_max Ego yaw rate acceleration maximum FreePolyModel 0.72
EgoYawRateRate_min Ego yaw rate acceleration minimum RNN 0.96

Table 2 Ego P2PStrAng [�] Target Matrice

Longitudinal
velocity [km/h]

Lateral
velocity [m/s] 0.2 0.4 0.6

70 13.54 16.80 21.16
100 11.47 11.27 12.24
130 6.52 5.91 7.25

is used to apply optimum steering wheel angle in case of
ELKS activation. Related inputs to look-up table are lon-
gitudinal speed, lateral departure speed, and lane lateral
deviation of the Ego vehicle. These 3 inputs based steer-
ing wheel angle calculation provides flexibility to control the
Ego for different Operational Design Domains (ODDs) by
interpolating for given speeds and lateral deviations. For
instance, if lateral departure speed is too high during the
ELKS activation, steering wheel angle should be smaller
to reduce rolling effect towards out of the lane, in contrast
controller output should be high enough to direct the Ego
vehicle into the lane as quickly as possible. When all those
effects are taken into account, precisely correlated steer-
ing wheel angle among inputs have great importance. The
controller intervenes when the Ego vehicle starts to leave
the lane, inserting a sharp steering angle to bring the ve-
hicle back into the lane, and then the lane tracking system
ensures that the vehicle stays in the center of the lane. In
the controller, steering angles, which vary depending on the
lateral distance to the lane markings (DTLM) representing
how far the vehicle deviates from the lane centerline, have
been optimized.

5.2 Design of Experiment
The experimental design for the simulation environment
resulted from changing controller parameters (k1, k2, k3,
k4, k5) and operation parameters (Ego vertical speed and
Ego departure speed) within certain ranges. Here, while
parameters k1...k5 were used in the experimental design,

k1>k2>k3>k4>k5 limitation was considered. The reason for
this limitation is that these parameters are calibration table
parameters that vary depending on the lane lateral devia-
tion amount, and it is anticipated that a high steering angle
intervention is required for a high amount of lane deviation.

After defining the operation parameters and their ranges
for the DoE, it is clear that test cases resulting from the
combination of variation parameters (operation parameters
and controller parameters) increase abruptly. To overcome
this problem, DoE has to be optimized in a way that it still
offers a reasonable coverage over the experiment and also
is not computationally expensive.

In this study, to optimize the DoE, S-Optimal Design was
exploited. The S-optimal design plans, they are identified
as encompassing a methodology that ensures a thorough
dispersion of test points across the designated experimen-
tal field. This approach meticulously considers the spa-
tial distribution between existing design points and poten-
tial candidates, aiming to optimize a set of predefined crite-
ria. This strategic optimization facilitates a uniform distribu-
tion across the testing environment, which is instrumental
in identifying non-linear patterns through a structured mod-
eling process. At its core, the S-optimal design seeks to
extend the minimal distance among adjacent points, mirror-
ing the repulsive force seen between magnets. Moreover, it
possesses a flexible structure that allows for division into
smaller segments without compromising the space-filling
attribute of the design, underscoring its versatility and ap-
plicability to diverse experimental setups ([19]).

6 Optimization Method

To find the optimal parameter set, the KPI lower and up-
per limits 4.4 for each working point have been defined in
AVL CAMEOTM, and the solution space for optimization has
been limited. Since the identified controller parameters di-
rectly affect the steering angle command, it has not been
possible to find a single parameter set that works commonly
at different working points. Instead, a solution for a param-
eter set specific to each working point using the relevant
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lower and upper limits has been pursued. When setting the
KPI limits, the upper limits for the minimum yaw rate and
minimum yaw rate rate KPIs; and the lower limits for the
maximum yaw rate and maximum yaw rate rate KPIs are
removed. Additionally, the lower limit for the maximum lat-
eral acceleration KPI is not used. The reason for removing
these limitations is that trying to minimize these KPI values
in absolute terms would lead to an improvement in driving
experience, and two-sided limitations for these KPIs would
make the optimization process difficult. The target function
for the optimization process has been defined as minimiz-
ing the P2PStrAng KPI. Here, the function aims to keep
both the initial counter steering intervention and the final
lane centering intervention as smooth as possible, thereby
improving driving experience, comfort, and safety.

The optimization algorithm can be described as a com-
bination of GA and NLO. The GA operates as a stochastic
process, leading to varying outcomes across different iter-
ations. Its primary objective is to pinpoint the region where
the optimum solution resides. The process begins with an
initial population of solutions. Through iterative steps in-
volving selection, modification, and mutation, the algorithm
generates a new population with enhanced target values.
Termination occurs when any of the specified stopping cri-
teria are satisfied. NLO on the other hand aims to initiate
with an initial interior solution. If the current solution meets
the required quality criteria, the algorithm halts. However, if
improvements are needed, the algorithm systematically ex-
plores various directions, employing increasingly complex
operations in each iteration to identify a more favorable tra-
jectory. The algorithm selects the most promising direc-
tion, advancing towards a better interior solution until the
solution reaches the desired quality or one of the speci-
fied termination criteria is met. To summarize, with the GA
algorithm, the optimum position is first found. After the opti-
mum point is found, the algorithm is automatically switched
to NLO to complete the optimum search and overcome the
local optimum problem.

6.1 Optimization Result and Comments
When an optimization is performed in such a way that the
design space cannot be extrapolated, a solution was found
in 7 out of 9 points; whereas, when the design space is left
free, a solution was found at all 9 working points. The main
reason for this is that the limitations made in the DoE re-
garding controller parameters (k1>k2>k3>k4>k5) are not ac-
tually fully compatible with the controller of the benchmark
vehicle. In the results obtained by leaving the design space
free, it has been observed that the relationships between
these parameters can change according to working points.
This observed relationship reveals that there is not always
a directly proportional relationship between lateral deviation
amount and steering angle correction in the benchmark ve-
hicle.

Fig. 6 Optimization result of P2PStrAng KPI

Fig. 7 k1 paremeter’s changes in operation points

7 Validation
The optimized controller paramater sets proposed by AVL
CAMEOTM has to be validated because of the potential per-
formance gap between proposed KPI responses by AVL
CAMEOTM and the actual KPI values obtained from the
co-simulation platform. The main factor behind this gap
is that, AVL CAMEOTM proposes optimal controller param-
eters truly based on a data-driven approach by fitting a
model between variation parameters and response param-
eters. Thus, this data-driven model bypasses the vehi-
cle dynamics and controller dynamics represented in the
co-simulation platform. Thus, the main problem of this
methodology is to obtain a ML model that represents the
co-simulation platform precisely. To achieve a more rep-
resentative model, an iterative validation method was ex-
ploited. First, a DoE consists of the 9 operation parameters
was created in the co-simulation platform. Then, optimized
controller parameter sets obtained from AVL CAMEOTM

were plugged in to the controller for each operation point
- test case with the corresponding sets. Obtained data for
each test case were then processed with AMDF and the
reuslting KPIs were compared with the proposed KPI val-
ues from AVL CAMEOTM. This comparison is here mainly
done for the P2PStrAng KPI since it is also the target func-
tion. To enhance the model and consequently to reduce
the similarity gap, a new DoE with varying controller pa-
rameter breakpoints were created and for each test case
again the variation parameters and response parameters
were recorded. Training data set then were enriched with
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this additional data and with this new data set, model preci-
sion was aimed to be enhanced.

Table 3 EgoP2PStrAng KPI values obtained with opmtized cali-
bratable sets for first and final iteration

EgoP2PStrAng [degree]

Min Initial
Iteration Deviation Final

Iteration Deviation Max

12.42 8.46 31.88 13.03 4.91 14.64
15.94 13.51 15.24 15.7 1.50 17.65
19.66 18.33 6.76 20.71 5.34 22.00
10.61 5.61 47.12 8.19 22.80 12.19
10.8 10.07 6.75 10.3 4.62 11.78
11.15 13.94 25.02 9.73 12.73 13.5
5.85 4.81 17.77 5.3 9.40 7.2
5.33 8.44 58.34 7.55 41.65 6.66
6.01 8.44 40.43 8.23 36.93 8.5

Deviation values on Table 3 were calculated with respect
to minimum values of EgoP2PStrAng since this KPI is tar-
geted to be minimized for the given min-max interval. Each
distinct row represents a different operation point combina-
tion starting from 70 kph - 0.2 m/s. After the data collection
and model enhancement processes, deviations were de-
craesed dramatically in most operation points. For the other
KPIs, since the limitation was one sided for these KPIs, the
main goal there was to minimize the magnitude of those
KPIs since they represent the lateral movement of the Ego
vehicle and also to not overshoot the upper limit which are
both satisfied in the final iteration.

8 Conclusion
This study proposes an end-to-end methodology for obtain-
ing KPI target values for ADAS controllers and calibrating
these controllers according to obtained target values. TD
promises to fill an important gap in the ADAS field, allowing
quantitative definition and validation of the desired perfor-
mance from ADAS functions. The calibration methodology
aims to enable an ADAS controller to perform according
to desired KPI values at different operating points. For fu-
ture work, enabling the controller to update parameter sets
adaptively and specifically for each operating point and val-
idating the calibration performed can be targeted. Addi-
tionally, replacing the reference data set obtained from a
benchmark vehicle with a larger data set obtained from sub-
jective ratings by multiple participants can be considered for
the TD process.
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