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Abstract: Knowledge is acquired as a result of some activities but is forgotten over time.  Much work has been done on this 
subject in fields such as mathematics, engineering and psychology. There are many learning and forgetting models in literature. 
In this study, a learning and forgetting model considered in classical analysis is redefined with the help of proportional 
derivative on time scales. The cases where the learning and forgetting rates are constant and the Araştırma Makalesi Araştırma 
Makalesi learning function shows exponential and hyperbolic functions properties are analyzed. These models are solved with 
the help of the proportional Laplace transform. Finally, the models considered with the general solution method of first-order 
proportional dynamic equations were examined on the time scale. 
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Zaman Skalasında Oransal Öğrenme ve Unutma Modellerinin Oransal Laplace Dönüşümü ile Çözümleri  

Öz: Bilgi, bazı faaliyetler sonucunda kazanılır ancak zamanla unutulur. Matematik, mühendislik ve psikoloji gibi alanlarda bu 
konu üzerine pek çok çalışma yapılmıştır. Literatürde pek çok öğrenme ve unutma modeli bulunmaktadır. Bu çalışmada, klasik 
analizde ele alınan bir öğrenme ve unutma modeli, zaman skalasında oransal türev yardımıyla yeniden tanımlanmıştır. Öğrenme 
ve unutma oranlarının sabit olduğu ve öğrenme fonksiyonunun üstel ve hiperbolik fonksiyon özellikleri gösterdiği durumlar 
analiz edilmiştir. Bu modeller oransal Laplace dönüşümü yardımıyla çözülmektedir. Son olarak birinci mertebeden oransal 
dinamik denklemlerin genel çözüm yöntemi ile ele alınan modeler zaman skalasında incelenmiştir. 
 
Anahtar kelimeler: Oransal türev, oransal Laplace dönüşümü, zaman skalası, öğrenme  ve unutma modeli. 
 
1. Introduction 

Fractional calculus began to be studied shortly after the emergence of classical calculus. Fractional 
calculus is deeply related to the dynamics of complex problems. Many mathematical models can be expressed and 
solved by fractional order differential equations [1].  The fundamental theory of fractional calculus was developed 
by Grünwald, Letnikov, Liouville and Riemann [2]. There are many types of fractional derivatives. Riemann-
Liouville, Caputo, Liouville-Grünwald, Marchaud, Hilfer, Conformable, and Proportional are a few of them.  
Today, fractional calculus has been applied and solved in many mathematical fields such as engineering, biology, 
physics, psychology, mechanics and economics [3-8]. Time scale theory, which is one of the important fields of 
study, is preferred in many fields of study. One of these areas is fractional calculus. The idea of developing 
fractional calculus on time scales originated with Ph.D. thesis of Bastos [9-10]. Now let us give the necessary 
information about time scale calculus. 

A time scale 𝕋 is an arbitrary, non-empty, closed subset of ℝ. It was introduced by Hilger to unify 
continuous and discrete problems into a single theory [11]. In the following years, many important results have 
been obtained on this theory.  It’s basic concepts can be found in [12] and [13]. For an arbitrary time scale 𝕋, 
following information can be given [12]. 𝜎:	𝕋 → 𝕋	is forward jump operator described by 

𝜎(𝑡) = inf{𝑠 ∈ 𝕋, 𝑠 > 𝑡},  

for 𝑡 ∈ 𝕋. And, 𝜇: 𝕋 → [0,∞)	is graininess function as 

𝜇(𝑡) = 𝜎(𝑡) − 𝑡.  

We also need a set 𝕋:, which is reproduced from 𝕋 as follows:  𝕋: = 𝕋 − {𝑚},  provided that 𝕋 has a left-scattered 
maximum 𝑚. In other cases, 𝕋: = 𝕋. Suppose 𝑓:	𝕋 → ℝ and 𝑡 ∈ 𝕋:. Then, one can define 𝑓=(𝑡) to be a number 
(if it exists) with the property that given any 𝜀 > 0,	there is a neighborhood 𝑈 of 𝑡	such that  
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@A𝑓B𝜎(𝑡)C − 𝑓(𝑠)D − 𝑓=(𝑡)[𝜎(𝑡) − 𝑠]@ ≤ 𝜀|𝜎(𝑡) − 𝑠|,  

for ∀𝑠 ∈ 𝑈.  𝑓=(𝑡) is Δ- derivative of 𝑓 at 𝑡. On the other hand, there exists a function 𝐹 that is pre-differentiable 
with a region of differentiation 𝐷 and 𝑓 is regulated. Then, indefinite delta integral of 𝑓 is 

∫𝑓(𝑡)∆𝑡 = 𝐹(𝑡) + 𝐶,  

where 𝑓 and 𝐹 satisfy 𝐹∆(𝑡) = 𝑓(𝑡)	for ∀𝑡 ∈ 𝐷 and 𝐶 ∈ ℝ. By the same reasoning, Cauchy integral of 𝑓 on [𝑟, 𝑠] 
is  

∫ 𝑓(𝑡)∆𝑡Q
R = 𝐹(𝑠) − 𝐹(𝑟),  

for 𝑟, 𝑠 ∈ 𝕋. Let 𝑎, 𝑏 ∈ 𝕋 and 𝑓 ∈ 𝐶RU where 𝐶RU	is set of all rd-continuous functions on 𝕋. Moreover, 

I. If [𝑎, 𝑏] includes only isolated points, then 

∫ 𝑓(𝑡)∆𝑡 = V	
∑ 𝜇(𝑡)𝑓(𝑡),												𝑖𝑓	𝑎 < 𝑏Z∈[[,\)

	0,																																									𝑖𝑓	𝑎 = 𝑏
−∑ 𝜇(𝑡)𝑓(𝑡),							𝑖𝑓	𝑎 > 𝑏Z∈[\,[)

\
[ .  

II. If 𝕋 = ℤ, then 

∫ 𝑓(𝑡)∆𝑡 = V	
∑ 𝑓(𝑡)\^_
Z`[ ,																										𝑖𝑓	𝑎 < 𝑏
	0,																																							𝑖𝑓	𝑎 = 𝑏
−∑ 𝑓(𝑡),																							𝑖𝑓	𝑎 > 𝑏[^_

Z`\

\
[ .  

Now let us mention about proportional derivative, which is a variant of fractional derivative preferred in 
this study. The advantage of the proportional derivative over other fractional derivatives is that proportional 
fractional integrals have the semigroup property and provide a generalization to derivatives and integrals in 
classical analysis [14].  Moreover, in the proportional derivative, the fact that 𝐷a satisfies the identity operator 
(𝐷a𝑓(𝑡) 	= 	𝑓(𝑡)) and 𝐷_ satisfies delta derivative operator (𝐷_𝑓(𝑡) 	= 	𝑓∆(𝑡)) on time scale 𝕋 shows that it is 
conformable with the classical operator. Here, proportional derivative 𝐷b is order 𝛼 ∈ [0,1] [15-16]. The basic 
definitions and theorems for proportional derivative used in this study are given in the next section. 

Many dynamic processes occurring in real life can be modelled by some ordinary or partial differential 
equations. As a result of taking the orders of these models outside the natural number, the theory of fractional 
differential equations emerges [17]. Some studies on this subject are in the related references [18-25]. 

One of the methods used in the solution of mathematical models is Laplace transform. There are various 
studies on this subject. The application of Laplace transform to fractional systems is given in [14]. Akgül et al. 
solved the proportional Caputo derivative by Laplace transform [26]. Also, Anderson and Georgiev defined the 
proportional Laplace transform on 𝕋, which forms the basis of this work [16]. Detailed information about the 
proportional Laplace transform will be given in the next section. 

In this study, we reconstruct some versions of classical learning and forgetting model of Edelstein-Keshet 
[27] using proportional derivatives. Let us now explain the learning and forgetting model in classical case. One of 
the fields of study between mathematics and psychology is cognitive science and memory research. The learning 
and forgetting model on 𝕋 that we discuss in this study is an example of this research [28-29]. This model expresses 
the change in memory power as a function of time in a mathematical way. The classical case of the learning and 
forgetting model is as follows [27]: 

Ue
UZ
= 𝑆 − 𝑓𝑦(𝑡),                                                                                                                                                        (1) 

where 𝑦(𝑡) is the amount of information a person has at time 𝑡 (in years), 𝑓 ≥ 0	 is rate of forgetting and 𝑆 ≥ 0  is 
rate of learning. The degree of learning requires a subjective interpretation of the material learnt. It is therefore 
different for each individual. Knowledge with a better learning degree is more retained in the future compared to 
less learnt knowledge. The act of forgetting provides an adaptation to environmental realities [30-32]. In this paper, 
the classical model (1) is redefined with the help of the proportional derivative. We analysed the following models 
obtained by taking the learning rates as a constant, a proportional exponential function and a proportional 
hyperbolic function with the forgetting rate fixed. In this study, we choose 𝑆 in different forms as 𝑄, 𝐸k(𝑡, 0), 
𝐶𝑜𝑠ℎk(𝑡, 0)  and 𝐸k(𝑡, 0) + 𝐶𝑜𝑠ℎk(𝑡, 0), respectively where 𝑓	and 𝑄 are fixed functions and ±𝑄 ∈ ℜp. Let 𝛼 ∈
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[0,1]. Here, following different versions of the proportional learning-forgetting models  on time scales will be 
solved. 

𝐷b𝑦(𝑡) = 𝑄 − 𝑓𝑦(𝑡),	
𝐷b𝑦(𝑡) = 𝐸k(𝑡, 0) − 𝑓𝑦(𝑡),	
𝐷b𝑦(𝑡) = 𝐶𝑜𝑠ℎk(𝑡, 0) − 𝑓𝑦(𝑡),	
𝐷b𝑦(𝑡) = 𝐸k(𝑡, 0) + 𝐶𝑜𝑠ℎk(𝑡, 0) − 𝑓𝑦(𝑡). 

The most important difference of the study is the difficulties that the Laplace transform and time scale theory will 
create in the proportional derivative. 

 
2. Preliminaries 

Here, important concepts and theorems related to proportional derivative on 𝕋, which form the basis of 
the study are given.  Let 𝕋 be a time scale with forward jump operator 𝜎 and delta differentiation operator ∆. Also, 
let 𝛼 ∈ [0,1]. Throughout this study, we suppose the below property (A1) holds. 
 
(A1) 𝑘a, 𝑘_: [0,1] × 𝕋 → [0,∞) are continuous functions such that  
lim
u→av

𝑘_(𝛼, 𝑡) = 1,	 lim
u→_w

𝑘_(𝛼, 𝑡) = 0,	  
lim
u→av

𝑘a(𝛼, 𝑡) = 0, lim
u→_w

𝑘a(𝛼, 𝑡) = 1,		  
𝑘_(𝛼, 𝑡) ≠ 0, 𝑘a(𝛼, 𝑡) ≠ 0,		  
where  𝑡 ∈ 𝕋 and , 𝛼 ∈ [0,1) [16]. 
 
Definition 2.1. [16] Let 𝑓 be ∆ − differentiable at 𝑡 ∈ 𝕋:. Proportional Δ−derivative of 𝑓 at 𝑡	is 
𝐷b𝑓(𝑡) = 	𝑘_(𝛼, 𝑡)𝑓(𝑡) +	𝑘a(𝛼, 𝑡)𝑓=(𝑡), 𝛼	 ∈ 	 [0, 1].  
This equation shows the relationship between proportional derivative on 𝕋 and the delta derivative on 𝕋. 
 
Definition 2.2.  [16] 𝑓:	𝕋 → ℝ is proportional regressive if  
𝑘a(𝛼, 𝑡) − 𝜇(𝑡)𝑘_(𝛼, 𝑡) ≠ 0,  
and 
𝑘a(𝛼, 𝑡) − 𝜇(𝑡)(𝑓(𝑡) − 𝑘_(𝛼, 𝑡)) ≠ 0,  
for any 𝛼 ∈ (0,1] and 𝑡 ∈ 𝕋. The set of all proportional regressive functions on 𝕋	 is denoted by ℜp. 

Definition 2.3. [16] Suppose that	𝛼 ∈ (0, 1], 𝑝 ∈ ℜp. For 𝑡, 𝑡a ∈ 𝕋, proportional exponential function is as 
follows 
𝐸z(𝑡, 𝑡a) = 𝑒|w}~

}�
(𝑡, 𝑡a),  

where 𝑒|w}~
}�
(𝑡, 𝑡a) is exponential function on 𝕋. Proportional exponential function is calculated using exponential 

function structure on 𝕋. 

Remark 2.4. [12] If 𝑝 ∈ ℛ, where ℛ is the set of all rd-continuous, regressive functions on 𝕋, then exponential 
function on 𝕋 is defined by  

𝑒z(𝑡, 𝑠) = exp�∫ 𝜉�(�)B𝑝(𝜏)C∆𝜏
Z
Q � , 		𝑠, 𝑡 ∈ 𝕋.  

Definition 2.5. [16] Let ±𝑓 ∈ ℜp. Proportional hyperbolic functions 𝐶𝑜𝑠ℎ� and 𝑆𝑖𝑛ℎ� are defined by 

𝐶𝑜𝑠ℎ� =
����w�

�
,  

and 

𝑆𝑖𝑛ℎ� =
��^�w�

�
.  

Definition 2.6. [16] Let 𝛼 ∈ (0, 1], and fix 𝑡 ∈ 𝕋. For ℎ > 0, multi-valued proportional cylinder transformation 
𝜁�p: ℂ�p → ℂ is  
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𝜁�p(𝑧) = �
_
�
log �1 + ℎ ��^�~(b,Z)

��(b,Z)
�� 		𝑓𝑜𝑟	ℎ ≠ 0

�^�~(b,Z)
��(b,Z)

																		𝑓𝑜𝑟	ℎ = 0,
  

where ℂ�p  is given by 

ℂ�p = �𝑧 ∈ ℂ: 𝑧 ≠ 𝑘_(𝛼, 𝑡) −
��(b,Z)

�
�,  

and 𝑙𝑜𝑔 is the multi-valued complex logarithm function. 

Definition 2.7. [16] Let 𝑓 ∈ 𝒞RU(𝕋) where 𝒞RU(𝕋) is set of all rd-continuous functions on 𝕋 and 𝑘a(𝛼, 𝑡) −
𝜇(𝑡)𝑘_(𝛼, 𝑡) ≠ 0. Proportional antiderivative of 𝑓	is 
 
∫𝐷b𝑓(𝑡)∆b 𝑡 = 𝑓(𝑡) + 𝑐𝐸a(𝑡, 𝑡a),			𝑐 ∈ ℝ,					𝑡 ∈ 𝕋,  

and, proportional Δ − integral of 𝑓 on [𝑎, 𝑏] is 

∫ 𝑓(𝑠)Z
[ ∆b,Z𝑠,			𝑡 ∈ [𝑎, 𝑏],  

where ∆b,Z𝑠 =
��(Z,¡(Q))
��(b,Q)

Δ𝑠. Here, proportional integral is calculated by reducing it to delta integral on 𝕋. 

Remark 2.8. [16] Let 𝛼	 ∈ (0, 1], 𝑘a and 𝑘_ satisfy (𝐴1), 𝑘a ∈ 𝒞RU_ (𝕋) where 𝒞RU_ (𝕋) is the set of delta 
differentiable functions whose delta derivatives are rd-continuous and |𝐸a(∞, 0)| < ∞. Let ℎ ∈ 𝒞RU_ (𝕋) and 𝑔 ∈
ℜp be such that  
 
𝑧ℎ¡𝐸£¡(. ,0) = −𝑔𝐸£(. ,0),                       (2) 

𝐷bℎ − 𝑧ℎℎ¡ + (𝑧 − 𝑘_)ℎ¡ − 𝑘_ℎ = 0,   
	ℎ(0) = 1, 	
for 𝑧 ∈ ℋp(ℎ), where ℋp(ℎ) consists of all complex numbers 𝑧 ∈ ℜp for which 𝑧 − 𝑘_ ∈ ℜp and  

𝑘a + ℎ¡𝑧(𝜇 − 𝑘_) ≠ 0.  

Note that there exists a unique ℎ ∈ 𝒞RU_  that satisfies the second and third equations of the system (2).  Hence, 
there exists a unique 𝑔 ∈ ℜp that satisfies the first equation of (2). 

Definition 2.9. [16] Let 𝑓:	𝕋 → ℂ be regulated. Then, proportional Laplace transform of 𝑓 is defined by  

ℒp(𝑓)(𝑧) = ∫ 𝑓(𝑡)ℎ¡(𝑡)𝐸£¡(𝑡, 0)∆b,§𝑡
§
a ,  

for 𝑧 ∈ 𝔇p(𝑓), where 𝔇p(𝑓) consists of all complex number 𝑧 ∈ ℋp(ℎ) when the proportional improper integral 
exists. Here, ℒp^_ is called proportional inverse Laplace transform which satisfies the property ℒp^_(𝐹)(𝑧) =
𝑓(. ,0)	with ℒp(𝑓(. ,0))(𝑧) = 𝐹(𝑧). 

Remark 2.10. [12]  𝑓: 𝕋 → ℝ is regulated if its right-sided limits exist (finite) at all right-dense points in 𝕋 and its 
left-sided limits exist (finite) at all left-dense points in 𝕋. 

Theorem 2.11. [16] Let 𝑓, 𝑔:	𝕋 → ℂ be regulated functions and 𝑎, 𝑏	 ∈ ℂ. Then, 

ℒp(𝑎𝑓 + 𝑏𝑔)(𝑧) = 𝑎ℒp(𝑓)(𝑧) + 𝑏ℒp(𝑔)(𝑧),  

for 𝑧 ∈ 𝔇p(𝑓)⋂𝔇p(𝑔). 

Here, it will be explained how the Laplace transform of proportional derivative is calculated, which will form the 
basis of the study. 

Theorem 2.12. [16] Let 𝑛 ∈ ℕ, 𝑓:	𝕋 → ℂ be such that (𝐷b)�𝑓, 𝑘 ∈ {0,1, … , 𝑛}, are regulated. Then  
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ℒp((𝐷b)¬𝑓)(𝑧) = 𝑧¬ℒp(𝑓)(𝑧) − 𝐸a(∞, 0)(𝑓(0)𝑧¬^_ + 𝐷b𝑓(0)𝑧¬^� +⋯+	(𝐷b)¬^_𝑓(0))  

for any 

𝑧 ∈ 𝔇p(𝑓)⋂𝔇p (𝐷b(𝑓))⋂…⋂𝔇p B(𝐷b)¬(𝑓)C,  

where 

lim
Z→§

B(𝐷b)�𝑓(𝑡)ℎ(𝑡)𝐸£(𝑡, 0)C = 0, 	𝑘 ∈ {0,1, … , 𝑛}.  

Theorem 2.13. [16] The proportional Laplace transforms of some common functions are as follows. 

i. ℒp(1)(𝑧) =
_
�
𝐸a(∞, 0), 𝑧 ∈ 𝔇p(1). 

ii. ℒpB𝐸�(. ,0)C(𝑧) =
��(§,a)
�^�

, 𝑓 ∈ ℜp  and for those 		𝑧 ∈ 𝔇pB𝐸�(. ,0)C where 

 lim
Z→§

B𝐸�(𝑡, 0)ℎ(𝑡)𝐸£(𝑡, 0)C = 0	.    

iii. ℒpB𝐶𝑜𝑠ℎ�(. ,0)C(𝑧) =
���(§,a)
�®^�®

, 𝑓 ∈ ℜp  and for those 		𝑧 ∈ 𝔇pB𝐸�(. ,0)⋂𝐸^�(. ,0)C where 

lim
Z→§

B𝐸�(𝑡, 0)ℎ(𝑡)𝐸£(𝑡, 0)C = lim
Z→§

B𝐸^�(𝑡, 0)ℎ(𝑡)𝐸£(𝑡, 0)C = 0. 

Now let's calculate the Laplace transform of the proportional sin-function. 

Theorem 2.14.  Let  𝑓 ∈ ℜp  be a constant. Then, ℒpB𝑆𝑖𝑛ℎ�(. ,0)C(𝑧) =
���(§,a)
�®^�®

.  

Proof. By the definition of 𝑆𝑖𝑛ℎ�, we have  

ℒp �𝑆𝑖𝑛ℎ�(. ,0)� (𝑧) = ℒp �
��(.,a)^�w�(.,a)

�
� (𝑧)  

																																						= _
�
ℒp �𝐸�(. ,0)� (𝑧) −

_
�
ℒp �𝐸^�(. ,0)� (𝑧)  

																																							= ��(§,a)
�(�^�)

− ��(§,a)
�(���)

  

																																							= ���(§,a)
�®^�®

,  

for those 		𝑧 ∈ 𝔇pB𝐸�(. ,0)⋂𝐸^�(. ,0)C where lim
Z→§

B𝐸�(𝑡, 0)ℎ(𝑡)𝐸£(𝑡, 0)C = lim
Z→§

B𝐸^�(𝑡, 0)ℎ(𝑡)𝐸£(𝑡, 0)C = 0. 

Proportional Laplace transform is applied to proportional 𝐼𝑉𝑃’s as follows. 

Theorem 2.15. [16] Consider the following proportional	𝐼𝑉𝑃 

(𝐷b)¬𝑦 + 𝑎¬^_(𝐷b)¬^_𝑦 +⋯+ 𝑎_𝐷b𝑦 + 𝑎a𝑦 = 𝑓(𝑡),			𝑡 > 0,                         (3) 

(𝐷b)¬^_𝑦(0) = 𝑏¬^_,  

⋮                                       (4) 

𝐷b𝑦(0) = 𝑏_,  

𝑦(0) = 𝑏a,  

where 𝑎³, 𝑏³ 	 ∈ ℂ, 𝑖 ∈ {1,… , 𝑛 − 1}, 𝑓:	𝕋 → ℂ is regulated. Apply proportional Laplace transform to both sides of 
(3) and use initial conditions (4), we get 

ℒp(𝑓)(𝑧) 	= ℒp((𝐷b)¬𝑦 + 𝑎¬^_(𝐷b)¬^_𝑦 +⋯+ 𝑎_𝐷b𝑦 + 𝑎a𝑦)(𝑧) 	
																				= 	ℒp((𝐷b)¬𝑦)(𝑧) + 𝑎¬^_ℒp((𝐷b)¬^_𝑦)(𝑧) +⋯+ 𝑎_ℒp(𝐷b𝑦)(𝑧) + 𝑎aℒp(𝑦)(𝑧)	 	

= 𝑧¬ℒp(𝑦)(𝑧) − 𝐸a(∞, 0)B𝑦(0)𝑧¬^_ + 𝐷b𝑦(0)𝑧¬^� +⋯+ (𝐷b)¬^_𝑦(0)C
+ 𝑎¬^_ �𝑧¬^_ℒp(𝑦)(𝑧) − 𝐸a(∞, 0)B𝑦(0)𝑧¬^� + 𝐷b𝑦(0)𝑧¬^¶ +⋯+ (𝐷b)¬^�𝑦(0)C�	
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																				+𝑎_B𝑧ℒp(𝑦)(𝑧) − 𝐸a(∞, 0)𝑦(0)C + 𝑎aℒp(𝑦)(𝑧)	
							= (𝑧¬ + 𝑎¬^_𝑧¬^_ +⋯+ 𝑎_𝑧 + 𝑎a)ℒp(𝑦)(𝑧) − 𝐸a(∞, 0)(𝑏a𝑧¬^_ + (𝑏_ + 𝑏�)𝑧¬^� + (𝑏� + 𝑏_ + 𝑏a)𝑧¬^¶ 	

	
+⋯+ (𝑏¬^� + 𝑏¬^_ +⋯+ 𝑏_ + 𝑏a) + 𝑏¬^_ + 𝑏¬^� +⋯+ 𝑏_ + 𝑏a).					  

𝑙(𝑧) = 𝐸a(∞, 0)(𝑏a𝑧¬^_ + (𝑏_ + 𝑏�)𝑧¬^� + (𝑏� + 𝑏_ + 𝑏a)𝑧¬^¶ 	
																				+⋯+ (𝑏¬^� + 𝑏¬^_ +⋯+ 𝑏_ + 𝑏a) + 𝑏¬^_ + 𝑏¬^� +⋯+ 𝑏_ + 𝑏a). 

Then 

(𝑧¬ + 𝑎¬^_𝑧¬^_ +⋯+ 𝑎_𝑧 + 𝑎a)ℒp(𝑦)(𝑧) = ℒp(𝑓)(𝑧) + 𝑙(𝑧)  

or 

ℒp(𝑦)(𝑧)(𝑦)(𝑧) =
_

�·�[·w~�·w~�⋯�[~��[�
Bℒp(𝑓)(𝑧) + 𝑙(𝑧)C.  

Hence, 

𝑦(𝑡) = ℒp^_ �
_

�·�[·w~�·w~�⋯�[~��[�
Bℒp(𝑓)(𝑧) + 𝑙(𝑧)C� , 𝑡 ≥ 0.  

Theorem 2.16. [16] Let 𝑝, 𝑞 ∈ 𝒞RU(𝕋). Consider  

𝐷b𝑦 = (𝑝(𝑡) + 𝑘_(𝛼, 𝑡))𝑦 + 𝑞(𝑡),						𝑡 ∈ 𝕋:,                       (5) 

𝑦(𝑡a) = 𝑦a,                                       (6) 

where 𝑡a ∈ 𝕋, 𝑦a ∈ ℝ. Suppose that  

𝑘a(𝛼, 𝑡) + 𝜇(𝑡)𝑝(𝑡) ≠ 0,			𝛼 ∈ (0,1], 𝑡 ∈ 𝕋.  

Then the problem (5) − (6) has a unique solution represented in the form 

𝑦(𝑡) = 𝑦a𝐸z��~(𝑡, 𝑡a) + ∫ 𝑞(𝑠)𝐸£(𝜎(𝑠), 𝑡)∆b,Z𝑠,				𝑠, 𝑡 ∈ 𝕋:,
Z
Z�

  

where  

𝑔 = z(��~^��)
����z

.  

Theorem 2.17. [16] Let 𝑝 ∈ 𝒞RU(𝕋)⋂ℜp and 𝑞 ∈ 𝒞RU(𝕋). Consider 

𝐷b𝑦 = 𝑝(𝑡)𝑦 + 𝑞(𝑡),						𝑡 ∈ 𝕋:,	                       (7) 

𝑦(𝑡a) = 𝑦a,                             (8) 

where	𝑡a ∈ 𝕋, 𝑦a ∈ ℝ. We can rewrite the equation (7) in the form 

𝐷b𝑦 = B𝑝(𝑡) − 𝑘_(𝛼, 𝑡) + 𝑘_(𝛼, 𝑡)C𝑦 + 𝑞(𝑡)					𝑡 ∈ 𝕋:.  

Because 𝑝 ∈ ℜp, we have  

1 + 𝜇(𝑡)B𝑝(𝑡) − 𝑘_(𝛼, 𝑡)C ≠ 0,			𝛼 ∈ (0,1], 𝑡 ∈ 𝕋:.  

Therefore, the solution 𝑦	of (7) can be represented in the form 

𝑦(𝑡) = 𝑦a𝐸z(𝑡, 𝑡a) + ∫ 𝑞(𝑠)𝐸£(𝜎(𝑠), 𝑡)∆b,Z𝑠,				𝑡 ∈ 𝕋:,
Z
Z�

  

where  

𝑔 = (z^�~)(��~^��)
����(z^�~)

.  
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3. Main Results 

In this section, we solve proportional versions of learning and forgetting models with proportional Laplace 
transform on time scales. What these solutions mean in psychology can be examined by scientists interested in 
that subject.  Here, 𝑘a(𝛼, 𝑡) and 𝑘_(𝛼, 𝑡) satisfy condition	(𝐴1), 𝑓	and 𝑄 are constants and 𝛼 ∈ [0,1].  

Since differential equations are transformed into polynomials that are easier to solve with the Laplace 
transform, it is used in modeling time-independent linear systems and solving differential equations, in various 
problems such as the initial value theorem, final value theorem and boundary value problem, in probability theory, 
and because it clearly shows the frequency characteristic of the relevant function. It is also used in processing. 
There are various methods used when solving proportional dynamic equations on the time scale. Since the Laplace 
transform has a detailed literature on the proportional time scale and its known functionality in the classical case, 
the problem addressed in this study will be solved using proportional Laplace transform on time scale. 

The model in the classical case has not only been generalized to proportional derivative on the time scale, but 
also the functions in the classical case have been changed in various ways and solutions have been obtained with 
the following theorems. 

In the following theorems, proportional learning-forgetting models will be solved in four different situations 
on 𝕋. Here, in addition to the Laplace transform, solutions were obtained for each model with two theorems used 
for first-order proportional dynamic equations on time scales. 

Theorem 3.1.  Consider 

𝐷b𝑦(𝑡) = 𝑄 − 𝑓𝑦(𝑡),                         (9) 

𝑦(0) = 𝛽, 𝛽 ∈ ℝ.  

The solution of this proportional 𝐼𝑉𝑃 is  

𝑦(𝑡) = 𝛽𝐸^�(𝑡, 0) −
k
�
𝐸^�(𝑡, 0) +

k
�
	.  

Proof. If we apply proportional Laplace transform to both sides of (9) and consider Theorem 2.14, we get 

ℒpB𝐷b𝑦(𝑡)C(𝑧) = 𝑄ℒp(1) − 𝑓ℒpB𝑦(𝑡)C(𝑧),  

𝑧ℒpB𝑦(𝑡)C(𝑧) − 𝐸a(∞, 0)𝑦(0) = 𝑄 ��(§,a)
�

− 𝑓ℒpB𝑦(𝑡)C(𝑧),  

(𝑧 + 𝑓)ℒpB𝑦(𝑡)C(z) = 𝑄 ��(§,a)
�

+ 𝐸a(∞, 0)𝑦(0),  

ℒpB𝑦(𝑡)C(z) = 𝑄 ��(§,a)
�(���)

+ ��(§,a)
���

𝑦(0).  

By applying inverse proportional Laplace transform to last equation and set	𝑦(0) = 𝛽, we get 

𝑦(𝑡) = 𝛽𝐸^�(𝑡, 0) −
k
�
𝐸^�(𝑡, 0) +

k
�
.  

Conclusion 3.2. From Theorem 2.17., the solution to problem (9) is  

𝑦(𝑡) = 𝛽𝐸^�(𝑡, 0) + ∫ 𝑄𝐸£(𝜎(𝑠), 𝑡)∆b,Z𝑠,				𝑡 ∈ 𝕋:,
Z
a   

where  

𝑔 = (z^�~)(��~^��)
����(z^�~)

.  

Theorem 3.3.  Consider    

𝐷b𝑦(𝑡) = 𝐸k(𝑡, 0) − 𝑓𝑦(𝑡),                  (10) 

𝑦(0) = 𝛽	, 𝛽 ∈ ℝ.  
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The solution of this proportional 𝐼𝑉𝑃 is  

𝑦(𝑡) = 𝛽𝐸^�(𝑡, 0) +
_

��k
𝐸k(𝑡, 0) −

_
��k

𝐸^k(𝑡, 0).  

Proof. Considering proportional Laplace transform for equation (10) and using Theorem 2.14, we can perform 
the following operations; 

ℒpB𝐷b𝑦(𝑡)C(z) = ℒp �𝐸k(𝑡, 0)� − 𝑓ℒpB𝑦(𝑡)C(z),	  

𝑧ℒpB𝑦(𝑡)C(z) − 𝐸a(∞, 0)𝑦(0) =
��(§,a)
�^k

− 𝑓ℒpB𝑦(𝑡)C(z),  

(𝑧 + 𝑓)ℒpB𝑦(𝑡)C(z) =
��(§,a)
�^k

+ 𝐸a(∞, 0)𝑦(0), 	

ℒpB𝑦(𝑡)C(z) =
��(§,a)

(���)(�^k)
+ ��(§,a)

���
𝑦(0).  

If inverse proportional Laplace transform is applied to perform necessary calculations, we get 

𝑦(𝑡) = 𝛽𝐸^�(𝑡, 0) +
_

��k
𝐸k(𝑡, 0) −

_
��k

𝐸^�(𝑡, 0).  

Conclusion 3.4. From Theorem 2.17., the solution to problem (10) is  

𝑦(𝑡) = 𝛽𝐸^�(𝑡, 0) + ∫ 𝐸k(𝑠, 0)𝐸£(𝜎(𝑠), 𝑡)∆b,Z𝑠,				𝑡 ∈ 𝕋:,
Z
a   

where  

𝑔 = (z^�~)(��~^��)
����(z^�~)

.  

Theorem 3.5.  Consider 

𝐷b𝑦(𝑡) = 𝐶𝑜𝑠ℎk(𝑡, 0) − 𝑓𝑦(𝑡),                 (11) 

𝑦(0) = 𝛽, 𝛽 ∈ ℝ.  

The solution of this proportional 𝐼𝑉𝑃 is  

𝑦(𝑡) = 𝛽𝐸^�(𝑡, 0) +
�

k®^�®
𝐸^�(𝑡, 0) −

�
k®^�®

𝐶𝑜𝑠ℎk(𝑡, 0) +
k

k®^�®
𝑆𝑖𝑛ℎk(𝑡, 0).  

Proof.  Now let us solve equation (11) by proportional Laplace transform. By applying proportional Laplace 
transform to both sides of (11), we get 

ℒpB𝐷b𝑦(𝑡)C(z) = ℒp �𝐶𝑜𝑠ℎk(𝑡, 0)� − 𝑓ℒpB𝑦(𝑡)C(z) 	

𝑧ℒpB𝑦(𝑡)C(z) − 𝐸a(∞, 0)𝑦(0) =
���(§,a)
�®^k®

− 𝑓ℒpB𝑦(𝑡)C(z), 	

(𝑧 + 𝑓)ℒpB𝑦(𝑡)C(z) = 𝐸a(∞, 0)𝑦(0) +
���(§,a)
�®^k®

, 	

ℒpB𝑦(𝑡)C(z) =
��(§,a)
���

𝑦(0) + ���(§,a)
(���)(�®^k®)

.0 

If the necessary calculations are made and 𝑦(0) = 𝛽	is taken into consideration, we get 

𝑦(𝑡) = 𝛽𝐸^�(𝑡, 0) +
�

k®^�®
𝐸^�(𝑡, 0) −

�
k®^�®

𝐶𝑜𝑠ℎk(𝑡, 0) +
k

k®^�®
𝑆𝑖𝑛ℎk(𝑡, 0).  

Conclusion 3.6. From Theorem 2.17., the solution to problem (11) is  

𝑦(𝑡) = 𝛽𝐸^�(𝑡, 0) + ∫ 𝐶𝑜𝑠ℎk(𝑠, 0)𝐸£(𝜎(𝑠), 𝑡)∆b,Z𝑠,				𝑡 ∈ 𝕋:,
Z
a   

where  



Ayşe Çiğdem YAR, Emrah YILMAZ 
 

9 
 

𝑔 = (z^�~)(��~^��)
����(z^�~)

.  

Theorem 3.7.  Consider 

𝐷b𝑦(𝑡) = 𝐶𝑜𝑠ℎk(𝑡, 0) + 𝐸k(𝑡, 0) − 𝑓𝑦(𝑡),                   (12) 

𝑦(0) = 𝛽, 𝛽 ∈ ℝ.  

The solution of this proportional 𝐼𝑉𝑃 is  

𝑦(𝑡) = 𝛽𝐸^�(𝑡, 0) +
�

k®^�®
𝐸^�(𝑡, 0) −

�
k®^�®

𝐶𝑜𝑠ℎk(𝑡, 0) +
k

k®^�®
𝑆𝑖𝑛ℎk(𝑡, 0) +

_
��k

𝐸k(𝑡, 0) −
_

��k
𝐸^�(𝑡, 0).  

Proof. Let us take the proportional Laplace transform in equation (12). Considering 𝑦(0) = 𝛽	and Theorem 2.14, 
the following calculations can be made; 

ℒpB𝐷b𝑦(𝑡)C(z) = ℒp �𝐶𝑜𝑠ℎk(𝑡, 0)� + ℒp �𝐸k(𝑡, 0)� − 𝑓ℒpB𝑦(𝑡)C(z), 	

𝑧ℒpB𝑦(𝑡)C(z) − 𝐸a(∞, 0)𝑦(0) =
���(§,a)
�®^k®

+ ��(§,a)
�^k

− 𝑓ℒpB𝑦(𝑡)C(z), 	

(𝑧 + 𝑓)ℒpB𝑦(𝑡)C(z) = 𝐸a(∞, 0)𝑦(0) +
���(§,a)
�®^k®

+ ��(§,a)
�^k

, 	

ℒpB𝑦(𝑡)C(z) =
��(§,a)
���

𝑦(0) + ���(§,a)
(���)(�®^k®)

+ ��(§,a)
(���)(�^k)

.  

If inverse proportional Laplace transform is applied to last equation, we get 

𝑦(𝑡) = 𝛽𝐸^�(𝑡, 0) +
�

k®^�®
𝐸^�(𝑡, 0) −

�
k®^�®

𝐶𝑜𝑠ℎk(𝑡, 0) +
k

k®^�®
𝑆𝑖𝑛ℎk(𝑡, 0) +

_
��k

𝐸k(𝑡, 0) −
_

��k
𝐸^�(𝑡, 0).  

Conclusion 3.8. From Theorem 2.17., the solution to problem (12) is  

𝑦(𝑡) = 𝛽𝐸^�(𝑡, 0) + ∫ (𝐶𝑜𝑠ℎk(𝑠, 0) + 𝐸k(𝑠, 0))𝐸£(𝜎(𝑠), 𝑡)∆b,Z𝑠,				𝑡 ∈ 𝕋:,
Z
a   

where  

𝑔 = (z^�~)(��~^��)
����(z^�~)

.  

 
4. Conclusion 
 

Learning is the phenomenon obtained by the individual as a result of his/her experiences. Forgetting is 
the change that occurs in learning over time. In this study, some proportional learning and forgetting models, which 
are very important fields of study in psychology, is discussed. This model is reconstructed with the help of 
proportional derivative and handled with various learning functions. These models are solved with the help of 
proportional Laplace transform. After using the Laplace transform for each of the models considered, solutions 
are presented with the help of two theorems that give the solutions of first-order proportional dynamic equations 
on the time scale. These solutions can be evaluated especially by scientists working in the field of psychology. 
With this study, the results obtained in the classical case have been generalized. Specific choices of time scale and 
alpha value give the results obtained in the classical case. 
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