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Öz 

Bu çalışmada milimetrik dalga bandını kullanan darbant haberleşme sisteminde tek bir kullanıcıya ait kanalın 

kovaryans kestirimi incelenmektedir. Haberleşme sistemi zaman bölüşümlü çalışmaktadır ve kullanıcıdan baz 

istasyonu yönündeki kanal için kovaryans kestirimi yapılmaktadır. Baz istasyonu çok antenli ve radyo frekans 

(RF) zinciri hem analog hem sayısal birleştiricilerden oluşan çok-girişli çok-çıkışlı karma mimariye sahipken, 

kullanıcının tek anteni vardır. Ele alınan sistem modelinde ortak birleştirici matris yönteminin, milimetrik dalga 

kanalı uyum süresi boyunca gönderilen pilot bloklar için aynı birleştirici matrisinin uygulanması, kullanıldığı 

varsayılmaktadır. Seyrek sinyal geriçatım yöntemlerinden eşzamanlı normal uyum kovalama, çok ölçümlü seyrek 

Bayes öğrenme ve korelasyonlu seyrek Bayes öğrenmenin sistem modeline uygulanışı gösterilmektedir. İncelenen 

yöntemlerin sayısal sonuçları hesaplanarak normalleştirilmiş en küçük ortalama karesel hata başarımları değişen 

RF zincir sayısı ve milimetrik kanal seyreklik oranları için referans en küçük ortalama kare (EKOK) kestiricisiyle 

karşılaştırılmaktadır. Sayısal sonuçlar tüm deneylerde referans EKOK kestiricisine en yakın başarımların, 

korelasyonlu seyrek Bayes öğrenmeye ait olduğunu göstermektedir.  
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Abstract 
In this paper, the channel covariance estimation of a single mobile station (MS) in a narrowband millimeter wave 

(mmWave) communication system was addressed. The communication system worked in time division duplex 

(TDD) mode and the channel covariance was estimated in the uplink communication. The base station (BS) had 

multiple antennas with a hybrid architecture of radio frequency (RF) chains made up of analog and digital 

combiners, while the MS had a single antenna. The investigated system model assumed the shared combining 

matrix scheme where the same combining matrix was used across multiple coherence blocks of the mmWave 

channel. The application of the sparse signal recovery algorithms including the simultaneous orthogonal matching 

pursuit (SOMP), the multiple response sparse Bayesian learning (MSBL), and the correlated sparse Bayesian 

learning (CSBL) to the system model were shown. The algorithms were evaluated numerically, and their 

normalized mean square error (NMSE) performances were compared against the benchmark oracle minimum 

mean square error (MMSE) estimator in multiple scenarios of varying number of RF chains at the BS and sparsity 

ratios for modeling the mmWave channel. The numerical results indicated that the CSBL algorithm provided the 

NMSE results closest to that of the oracle MMSE estimator in all the scenarios.  
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1. Introduction  
 

Millimeter wave (mmWave) communication is one of the technologies considered for next-generation 

wireless systems [1-2]. The high data rate requirements of the next-generation wireless systems can be 

satisfied with the mmWave communication where the frequencies from 30 GHz up to 300 GHz with 

bandwidths as large as 2 GHz can be assigned to systems [1-2]. The signal processing at the mmWave 

frequencies is much more challenging than at lower frequencies due to new hardware constraints, different 

channel models, and the usage of large arrays. The power consumption and the high costs of circuits are 

important hardware constraints and to deal with them, the signal processing operations can be separated into 

analog and digital domains so that the number of analog-to-digital converters (ADC) can be reduced, or low-

resolution ADCs may be used [3-5]. These hardware constraints have renewed the interest in the research of 

hybrid beamforming [6-7] and low-rate ADC methods [3-5]. The mmWave channel models must consider 

the drastic path loss due to attenuation at these frequencies. This makes estimation of the channel state 

information (CSI) of the mmWave systems very difficult since the signal-to-noise ratio (SNR) is poor without 

any application of beamforming. To mitigate the high propagation losses and improve the SNR, the mmWave 

systems need high beamforming gains which can only be achieved via large antenna arrays. These systems 

must employ hybrid analog-digital precoding techniques [6-7] to decrease the number of radio frequency 

(RF) chains needed at each antenna of the array so that the hardware costs can be maintained. The accurate 

full CSI is critical for the performance of these hybrid precoding techniques. Since the number of RF chains 

is less than the number of antennas in these hybrid systems, the received signal is lower dimensional which 

makes obtaining the full CSI even more challenging. There exist other hybrid precoding techniques which 

use spatial channel covariance instead of the full CSI. Thus, the channel covariance estimation is crucial in 

reaping the benefits of the hybrid mmWave systems. 

 

A mmWave channel can be modeled as a sparse signal in the angular domain since the signals arrive in a 

small number of path clusters due to limited scatterers around the receiver. There is also spatial correlation 

since the antennas in the array are close to each other. Each signal with an angle of arrival correspond to a 

spatial frequency and the continuous domain of the spatial frequencies can be discretized into a finite set of 

grid points. If the true spatial frequencies are close to some of the grid points, the received signal at the 𝑡-th 

snapshot, �̃�𝑡 ∈ ℂ𝑀×1, can be given as a linear system of equation, 

 
�̃�𝑡 = 𝚽𝑡𝐠𝑡 + 𝐳𝑡 , 𝑡 = 1, … , 𝑇. (1) 

 

In Equation (1), 𝚽𝑡 ∈ ℂ𝑀×𝐷 is the known dictionary matrix, 𝐠𝑡 ∈ ℂ𝐷×1 is the unknown mmWave channel 

vector, and the noise is shown as 𝐳𝑡 ∈ ℂ𝑀×1. This system of equations is underdetermined due to the 

reducing the number of RF chains via the hybrid precoding, i.e. 𝑀 ≤ 𝐷, and the unknown parameter vector 

𝐠𝑡 is sparse with only 𝐿 ≪ 𝐷 nonzero entries. The covariance matrix, that determines the spatial correlation 

between the components of the channel vector, is assumed to remain constant during 𝑡 = 1, … , 𝑇 snapshots. 

Finding a single solution amongst infinitely many requires imposing additional constraints in these 

underdetermined systems. Since the unknown mmWave channel vector is sparse, its nonzero entries can be 

estimated by applying the sparse signal recovery algorithms to Equation (1).  

 

The point estimates of the correlated sparse mmWave channel of a single user can be obtained via the 

orthogonal matching pursuit (OMP) based algorithm proposed in [8]. However, the selection of the 

dictionary matrix, which must be done according to the restricted isometry property, determines the accuracy 

of the solutions provided by the OMP based algorithms. [9] proposes covariance estimation methods based 

on the simultaneous OMP (SOMP) algorithm for both fixed and varying dictionary matrices at each snapshot. 

The grid mismatch issue associated with the generation of the dictionary matrix for the greedy OMP and 

SOMP algorithms are addressed in the works [10-12]. While [10] proposes grid-less refinement steps for the 

OMP algorithm and a perturbation framework is given by [11] for the SOMP algorithm, [12] shows the 

implementation of a multigrid dictionary refinement scheme to be used with the SOMP algorithm. The out-

of-band covariance information translated from a parallel sub-6 GHz system is used in the sparse recovery 

of the covariance of the wideband mmWave multiple-input multiple-output (MIMO) channel [13]. Multiple 

sparse Bayesian learning (MSBL) framework [14] utilizes expectation-maximization (EM) to find 
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probabilistic estimates of the unknown channel vector in Equation (1). Although the MSBL algorithm is 

more resilient to the selection of the dictionary matrix compared to the OMP based solutions, it uses a 

diagonal prior covariance matrix and so does not take the spatial correlation of the channel vector into 

account. The temporal correlation between the entries of the unknown channel vectors at different snapshots 

is considered in [15] where the measurement matrix made up from 𝑇 measurements in Equation (1) is 

vectorized and a block MSBL algorithm is proposed. The correlated SBL (CSBL) algorithm [16] improves 

upon the MSBL algorithm by using a prior covariance matrix which is not diagonal and a much better model 

for the spatial correlation between the entries of the unknown channel vector. The CSBL algorithm has a 

computational disadvantage over the MSBL algorithm that it requires explicit calculation of the inverse of a 

precision matrix. A faster version of the CSBL algorithm with reduced complexity is proposed in [17]. The 

impact of the residual transceiver impairments in the components of the RF chain is examined for a 

narrowband mmWave hybrid MIMO system in [18]. A zero-attracting least mean square (ZALMS) adaptive 

filtering algorithm is proposed for the estimation of the downlink channel [18]. 

 

The covariance estimation of the mmWave channels in a narrowband hybrid MIMO communication system 

is investigated in this paper. In our system model a single mobile station (MS) with a single antenna is 

communicating to a base station (BS) with a mixture of analog and digital combiners in its RF chains and 

the estimation takes place during the uplink communication. Since the communication system works in time-

division duplex (TDD) mode, the channel reciprocity allows the downlink communication to be precoded 

with the estimated uplink channel. The combining matrix is assumed to be shared across multiple pilot blocks 

transmitted by the MS within the coherence of the mmWave channel. We focus on covariance estimation 

methods using sparse signal reconstruction and show how the SOMP, the MSBL, and the CSBL algorithms 

can be applied to estimate the mmWave channel of a single MS communicating to a hybrid MIMO BS using 

the shared combining matrix scheme. The performances of the algorithms are compared in multiple scenarios 

with varying number of RF chains and mmWave channels with varying sparsity levels. 

 

The remainder of this paper is arranged as: the models of the hybrid MIMO system and the mmWave channel 

are explained in Section 2. Then, the mmWave channel covariance estimation methods based on sparse signal 

recovery are presented in Section 3. The numerical evaluations of the methods are given in Section 4. Finally, 

Section 5 is the conclusions. 

 

2. System Model 
 

We consider a narrowband communication system operating in half-duplex TDD mode where either the BS 

or the MS is transmitting at one time. The total number of samples available within the coherence interval of 

the channel are divided into three subintervals: uplink data, uplink pilot, and downlink data [19]. The BS 

learns the CSI of the uplink channel via the symbols transmitted by the MS in the uplink pilot’s subinterval 

of the coherence interval. Once the BS has the acquired the uplink channel, it also has an estimate of the 

downlink channel due to the channel reciprocity that is the impulse response of the channel between any two 

antennas is the same [19]. In both uplink and downlink data transmissions, all complexity resides in the BS. 

In the uplink data transmission, the MS sets its power level and then transmits the data symbols, and the BS 

decodes the received symbols via either zero-forcing or maximum-ratio combining using the uplink channel 

estimate. Similarly in the downlink data transmission, the BS applies a linear precoding operation using either 

zero-forcing or maximum-ratio combining on the information bearing symbols before transmission [19]. The 

BS has a uniform linear array (ULA) of 𝑁 antennas placed at equal distance from each other and 𝑀 hybrid 

RF chains. An RF chain consists of components such as low-noise amplifiers, filters, mixers, converters, 

oscillators, ADCs, and automatic gain control [1,13,18]. The analog combiner connecting the antennas of the 

BS to its RF chains in Figure 1 is the RF combiner and it can be implemented using phase shifters which 

imposes unit norm entries in the analog combining matrix [1,18]. To convert the output of the RF chains to 

baseband, the BS must apply a second baseband combiner before the covariance of the channel can be 

estimated. The BS is communicating with a single MS which has a single antenna (Figure 1). 
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Figure 1. BS has 𝑁 antennas and 𝑀 RF chains while there is only a single antenna at the MS. The mmWave channel 

is represented with a narrowband geometric channel with 𝐿 paths and the estimation of the channel covariance occurs 

in baseband [9] 

 

The uplink mmWave channel from the MS and the BS is modeled according to the geometric channel model 

with 𝐿 number of channel paths (Figure 1) as 

 

𝐡𝑡 = ∑ �̅�𝑡,𝑙𝐛(𝜙𝑙)

𝐿

𝑙=1

= 𝐁�̅�𝑡 (2) 

 

where �̅�𝑡 = [�̅�𝑡,1 ⋯ �̅�𝑡,𝐿]T ∈ ℂ𝐿×1, �̅�𝑡,𝑙 shows the gain of the 𝑙-th channel path at the 𝑡-th snapshot, and 

𝐁 = [𝐛(𝜙1) ⋯ 𝐛(𝜙𝐿)] ∈ ℂ𝑁×𝐿. A column of 𝐁, i.e. 𝐛(𝜙𝑙), is the array steering vector associated with 

the angle-of-arrival (AoA) of the 𝑙-th channel path, i.e. 𝜙𝑙, is 

 
𝐛(𝜙𝑙) = [1 𝑒−𝑖𝜋 cos 𝜙𝑙 ⋯ 𝑒−𝑖𝜋(𝑁−1) cos 𝜙𝑙]T (3) 

 

In Equation (3) the spacing between the elements of the ULA at the BS is assumed to be equal to half of the 

wavelength and it is also assumed that the AoAs do not change for 𝑇 snapshots. 

 

A dictionary matrix, 𝐀 = [𝐚(𝜙1) ⋯ 𝐚(𝜙𝐷)] ∈ ℂ𝑁×𝐷 can be built by creating a grid of 𝐷 ≫ 𝐿 points on 

the range of the spatial frequencies, i.e. 𝜇𝑙 = cos 𝜙𝑙, from -1 to +1 and Equation (2) can be rewritten using 

this dictionary matrix as 

 
𝐡𝑡 = 𝐀𝐠𝑡 (4) 

 

The path gain vector, 𝐠𝑡 ∈ ℂ𝐷×1, in Equation (4) has a support, the set of indices indicating to the nonzero 

entries, 𝒮 = {𝑗: 𝑔𝑡𝑗
≠ 0}, with 𝐿 elements |𝒮| = 𝐿 and they correspond to the AoAs, {𝜙1, … , 𝜙𝐷}. The 

covariance matrix of the channel, 𝐑𝐡 ∈ ℂ𝑁×𝑁, can be written as 

 
𝐑𝐡 = 𝔼{𝐡𝑡𝐡𝑡

∗} = 𝐀𝐑𝐠𝐀∗ (5) 

 

in terms of 𝐑𝐠 = 𝔼{𝐠𝑡𝐠𝑡
∗} ∈ ℂ𝐷×𝐷, the covariance matrix of the path gains. (∙)∗ shows the Hermitian 

transpose. We assume that the components of the path gain vector, 𝐠𝑡, are correlated with each other and so 

the entries of the covariance matrix are given as [𝐑𝐠]
(𝑗,𝑘)

= 𝜌𝑗,𝑘√𝛾𝑗√𝛾𝑘 where 𝜌𝑗,𝑘 is correlation coefficient 

between the entries and 𝛾𝑗 is the variance of the 𝑗-th entry. The covariance matrix of the path gains can be 

written in matrix form as 

 

𝐑𝐠 = 𝚪1/2𝐔𝚪1/2 (6) 

 

where 𝚪1/2 = diag{√𝛾1, … , √𝛾𝐷} and the entries of 𝐔 are  [𝐔](𝑗,𝑘) = 𝜌𝑗,𝑘. 

 

The MS transmits a unit modulus pilot symbol, i.e. |𝑥𝑡| = 1, and the received signal at the BS is 

 
𝐲𝑡 = 𝐀𝐠𝑡𝑥𝑡 + 𝐧𝑡 (7) 
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where 𝐧𝑡 ∈ ℂ𝑁×1 is the additive complex circularly symmetric Gaussian noise vector with the single-sided 

spectral density of each of its component being 𝑁0, i.e. 𝐧𝑡~𝒞𝒩(𝟎, 𝑁0𝐈). The received signal is multiplied 

with a hybrid combining matrix, 𝐖𝑡 = 𝐖BB𝐖RF ∈ ℂ𝑀×𝑁, which is a cascade of the analog, 𝐖RF ∈ ℂ𝑀×𝑁, 

and digital, 𝐖BB ∈ ℂ𝑀×𝑀, combining matrices (Figure 1) and the conjugate of the pilot symbol, 𝑥𝑡
∗, so that 

the result of this operation is the signal at baseband given as 

 
�̃�𝑡 = 𝐖𝑡𝐀𝐠𝑡𝑥𝑡𝑥𝑡

∗ + 𝐖𝑡𝐧𝑡𝑥𝑡
∗ = 𝚽𝑡𝐠𝑡 + 𝐳𝑡 (8) 

 

where the overall sensing matrix is shown as  𝚽𝑡 = 𝐖𝑡𝐀 ∈ ℂ𝑀×𝐷 and the new noise vector, 𝐳𝑡 = 𝑥𝑡
∗𝐖𝑡𝐧𝑡 ∈

ℂ𝑀×1, is distributed as 𝐳𝑡~𝒞𝒩(𝟎, |𝑥𝑡|2𝑁0𝐖𝑡𝐖𝑡
∗). The conjugate transpose of a matrix is shown by 

superscript (∙)∗. Assuming that there are 𝑇 snapshots in total and the hybrid combining matrix is fixed for 

each snapshot that is 𝐖1 = ⋯ = 𝐖𝑇 = 𝐖, then the received signal vectors for 𝑡 = 1, … , 𝑇 in Equation (8) 

can be rewritten as 

 

𝐘 = 𝚽𝐆 + 𝐙 (9) 

 

where the measurements are shown as 𝐘 = [�̃�1 … �̃�𝑇] ∈ ℂ𝑀×𝑇, the dictionary matrix is 𝚽 = 𝐖𝐀 ∈ ℂ𝑀×𝐷, 

𝐆 = [𝐠1 … 𝐠𝑇] ∈ ℂ𝐷×𝑇, and 𝐙 = [𝐳1 … 𝐳𝑇] ∈ ℂ𝑀×𝑇. The channel covariance estimation problem is to 

estimate 𝐑𝐡 given 𝐘. 

3. Covariance Estimation Using Sparse Signal Reconstruction 
 

Equation (9) is a multiple measurement vector problem, and the optimum solution can be found from 

 

min
𝐆

‖𝐘 − 𝚽𝐆‖
𝐹

    subject to ‖𝐆‖
row−0

≤ 𝐿 (10) 

 

where the Frobenius norm of a matrix, 𝐘,  is shown as ‖𝐘‖
𝐹

= (∑ ∑ |�̃�𝑚,𝑡|
2𝑇

𝑡
𝑀
𝑚 )

1/2
 and the row-ℓ0 quasi-

norm of a matrix is defined as  ‖𝐆‖
row−0

= |rowsupp(𝐆)| [7,16]. The row support of a matrix, 𝐆, is the 

set of indices for its nonzero rows that is 

 

rowsupp(𝐆) = {𝑗: [𝐆]
(𝑗,𝑘)

≠ 0 for some 𝑘} (11) 

 

3.1. SOMP algorithm 
 

The SOMP algorithm shown solves Equation (10). In each iteration the SOMP algorithm first finds the 

column of the dictionary matrix, 𝚽, that is best aligned with the current residual matrix 𝐕 [9,20-21] that is 

 
𝑗 = argmax

𝑑
‖𝜙𝑑

∗ 𝐕‖2 ,     𝑑 = 1, … , 𝐷. (12) 

 

The index set, Λ, is updated with the index of the best aligned column from Equation (12). Then a new 

residual is calculated by removing the projection of the measurement matrix along the direction of the chosen 

columns 

 

𝐕 = (𝐈 − 𝚽Λ𝚽Λ
∗ )𝐘 (13) 

 

where 𝚽Λ is the submatrix constructed from the columns of 𝚽 that correspond to the indices in the set, Λ 

[9,20-21].  

 

The steps of the SOMP algorithm are shown in Figure 2. The SOMP algorithm iterates between steps 5-7. 

The computational complexity is dominated by the orthogonalization during the update of the residual matrix 
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in step 7. To reduce the computational complexity, the matrix decompositions such as Cholesky or QR can 

be applied. The SOMP algorithm implementing the QR matrix decomposition can terminate with a solution 

in 𝑂(𝐷𝑀𝐿) operations [21]. 

 

1. begin 

2. input: 𝚽 = 𝐖𝐀, 𝐘, 𝐿 

3. initialize: 𝐕 = 𝐘, Λ = ∅, 𝐆SOMP = 𝟎 

4. for 𝑙 = 1: 𝐿 do 

5.        𝑗 = argmax
𝑑

‖𝜙𝑑
∗ 𝐕‖2 

6.        Λ = Λ ∪ {𝑗} 

7.        𝐕 = (𝐈 − 𝚽Λ𝚽Λ
∗ )𝐘 

8. end for 

9. [𝐆SOMP]
(Λ,:)

= 𝚽Λ
∗ 𝐘 

10. output: 𝐆SOMP, �̂�SOMP = 𝐀Λ𝐆SOMP  

 
Figure 2. The pseudocode of the SOMP algorithm 

 

Once the path gains, 𝐠𝑡’ s are estimated via 𝐆SOMP, then the covariance channel matrix can be found using 

�̂�𝐠 = (1/𝑇)𝐆SOMP�̂�SOMP
∗  as in 

 

�̂�𝐡 = 𝐀�̂�𝐠𝐀∗ (14) 

 

3.2. MSBL algorithm 
 

The MSBL algorithm calculates the maximum a posteriori (MAP) estimates of the channel path gains using 

the expectation-maximization (EM) method [14-15]. Given �̃�𝑡, the posterior conditional density of the path 

gain vector, 𝐠𝑡, is circularly symmetric complex Gaussian with 𝐠𝑡~𝒞𝒩(𝛍MSBL𝑡
, 𝚺MSBL) [14]. The 

expectation step (E-step) of the MSBL algorithm calculates the mean and the covariance of the Gaussian 

distribution according to 

 
𝛍MSBL𝑡

= 𝚪MSBL𝚽∗𝛀MSBL
−1 �̃�𝑡 (15) 

 
𝚺MSBL = 𝚪MSBL − 𝚪MSBL𝚽∗𝛀MSBL

−1 𝚽𝚪MSBL (16) 

 

respectively. In Equations (15) and (16), 𝚪MSBL = diag{�̂�MSBL} ∈ ℂ𝐷×𝐷 and 𝛀MSBL = 𝑁0𝐈 +
𝚽𝚪MSBL𝚽∗ ∈ ℂ𝑀×𝑀 [14]. The maximization step (M-step) of the algorithm updates �̂�MSBL = [𝛾1, … , 𝛾𝐷] 
according to 

 

𝛾𝑑 =
1

𝑇
‖[𝚳MSBL](𝑑,:)‖

2

2
+ [𝚺MSBL](𝑑,𝑑), 𝑑 = 1, … 𝐷 (17) 

 

The posterior mean matrix shown as 𝚳MSBL in Equation (17) is the concatenation of the mean vectors that 

is 𝚳MSBL = [𝛍MSBL1
, … , 𝛍MSBL𝑇

] ∈ ℂ𝐷×𝑇 and the 𝑑-th row of 𝚳MSBL is shown as [𝚳MSBL](𝑑,:) [14]. 

 

The pseudocode of the MSBL algorithm shown in Figure 3. The MSBL algorithm requires the variance of 

the noise, 𝑁0, to be supplied as an input. The first step of the MSBL is the initialization of the variance 

parameter vector 

 
�̂�MSBL = [𝛾1, … , 𝛾𝐷] = [1, … ,1] = 𝟏𝐷 (18) 

where 𝟏𝐷 is a column vector of size 𝐷 × 1 with all its elements equal to 1. Then the MSBL iterates between 

the E- and M-steps, lines 6-9 (Figure 3), until convergence is achieved, or a fixed number of loops have been 

run. There is no need to explicitly invert the matrix, 𝛀MSBL, in steps 7 and 8. Instead the Moore-Penrose 

pseudo-inverse which is way more efficient than explicit matrix inversion can be calculated. The 

computational complexity of the MSBL algorithm is 𝑂(𝐷𝑀(𝑀 + 𝑇)) [16]. 
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1. begin 

2. input: 𝚽 = 𝐖𝐀, 𝐘, 𝑁0 

3. initialize: �̂�MSBL = [1, … ,1] = 𝟏 

4. for 𝑖 = 1: maxIter do 

5.        𝚪MSBL = diag{�̂�MSBL} 

6.        𝛀MSBL = 𝑁0𝐈 + 𝚽𝚪MSBL𝚽∗ 

7.        𝚺MSBL = 𝚪MSBL − 𝚪MSBL𝚽∗𝛀MSBL
−1 𝚽𝚪MSBL 

8.        𝐌MSBL = 𝚪MSBL𝚽∗𝛀MSBL
−1 𝐘 

9.        𝛾𝑑 = (1/𝑇)‖[𝐌MSBL](𝑑,:)‖
2

2
+ [𝚺MSBL](𝑑,𝑑), ∀𝑑 

10. end for 

11. output: 𝐆MSBL = 𝐌MSBL, �̂�MSBL = 𝐀𝐆MSBL, �̂�MSBL 

 
Figure 3. The pseudocode of the MSBL algorithm 

 

3.3. CSBL algorithm 
 

The CSBL algorithm uses a nondiagonal prior covariance matrix to model the correlations between the 

entries of the path gain vector. The posterior conditional probability density function of 𝐠𝑡 given �̃�𝑡 is 

circularly symmetric complex Gaussian with 𝐠𝑡~𝒞𝒩(𝛍CSBL𝑡
, 𝚺CSBL

−1 ) where the mean vector, 𝛍CSBL𝑡
, and 

the posterior precision matrix, 𝚺CSBL, are given [16-17] 

 
𝛍CSBL𝑡

= (1/𝑁0)𝚺CSBL
−1 𝚽∗�̃�𝑡 (19) 

 
𝚺CSBL = (1/𝑁0)(𝚽∗𝚽) + 𝛀CSBL (20) 

 

respectively. The precision matrix, 𝛀CSBL, in Equation (20) is given as 

 
𝛀CSBL = diag{𝐜}𝐔−1diag{𝐜} (21) 

 

where 𝑖-th entry of the parameter vector 𝐜 ∈ ℂ𝐷×1 is 𝑐𝑖 = 1/√𝛾𝑖 and 𝐔−1 is the inverse of the correlation 

coefficient matrix, 𝐔 [16-17]. The M-step of the EM algorithm calculates the new parameter vector, 𝐜new, 

using the old parameter vector, 𝐜old, as in 

 

𝐜new = [ℜ{𝐔−1⨀�̂�𝐠
T}]

−1
𝐜old (22) 

 

where ⨀ is the elementwise Hadamard product between two matrices of same dimensions and ℜ{∙} 

takes the real part of its argument. The estimate of the covariance matrix of the path gain vector in 

Equation (22) is [16-17] 

 

�̂�𝐠 = 𝚺CSBL
−1 +

1

𝑇
∑ 𝛍CSBL𝑡

𝛍CSBL𝑡

∗

𝑇

𝑡=1

 (23) 

 

The pseudocode of the CSBL algorithm is given in Figure 4. The CSBL algorithm requires the 

coefficient matrix, 𝐔, in addition to the noise variance when compared to the pseudocode of the MSBL 

algorithm in Figure 3. As it can be observed from the pseudocode of the CSBL algorithm (Figure 4), 

there are two explicit matrix inversion operations in step 8, i.e. the inversion of the post precision matrix 

𝚺CSBL
−1 , and in step 9, i.e. the inversion of the coefficient matrix 𝐔−1. Instead of inverting the whole 

coefficient matrix which is of size 𝐷 × 𝐷, only the submatrix of size 𝐿 × 𝐿 residing within the rows and 

columns of 𝐔 corresponding to the indices of the nonzero entries of 𝐜 should be inverted since the rest 

of nondiagonal elements of the matrix is zero [17]. The computational complexity of the CSBL 

algorithm is 𝑂(𝐷𝑀(𝑀 + 𝑇) + 𝐷3) [16]. 
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1. begin 

2. input: 𝚽 = 𝐖𝐀, 𝐘, 𝐔, 𝑁0 

3. initialize: 𝐜0 = [1, … ,1] = 𝟏𝐷 

4. for 𝑖 = 1: maxIter do 

5.        𝛀CSBL = diag{𝐜𝑖}𝐔−1diag{𝐜𝑖} 

6.        𝚺CSBL = (1/𝑁0)(𝚽∗𝚽) + 𝛀CSBL 

7.        𝚳CSBL = [𝛍CSBL1
, … , 𝛍CSBL𝑇

] = (1/𝑁0)𝚺CSBL
−1 𝚽∗𝐘 

8.        �̂�𝐠 = 𝚺CSBL
−1 − (1/𝑇)(𝐌CSBL𝐌CSBL

∗ ) 

9.        𝐜𝑖 = [ℜ{𝐔−1⨀�̂�𝐠
T}]

−1
𝐜𝑖−1

−1  

10. end for 

11. output: 𝐆CSBL = 𝚳CSBL, �̂�CSBL = 𝐀𝐆CSBL, �̂�CSBL = 𝐜𝑖
−1 

 
Figure 4. The pseudocode of the CSBL algorithm 

 

4. Numerical Results 
 

We now compare the normalized mean squared error (NMSE) results of the algorithms. The NMSE obtained 

via one of the algorithms is calculated as 

 

NMSE𝑜 = 10 log10 (
1

𝑅
∑

‖�̂�𝑜,𝑟 − 𝐇𝑟‖
𝐹

2

‖𝐇𝑟‖𝐹
2

𝑅

𝑟=1

) (24) 

 

where the total number of Monte Carlo iterations is fixed as 𝑅 = 1000 for each numerical result. �̂�𝑜,𝑟 in 

Equation (24) denotes the estimate of the channel matrix at the 𝑟-th Monte Carlo iteration, 𝐇𝑟 =
[𝐡1 … 𝐡𝑇] ∈ ℂ𝑁×𝑇, provided by the algorithms, 𝑜 ∈ {SOMP,MSBL,CSBL}. The NMSE results are shown 

versus the pilot-to-noise-ratio (PNR) which is defined as 

 
PNR = 10 log10(1/𝑁0). (25) 

 

For all the presented numerical results, the NMSE curves from Equation (24) is plotted against the PNR 

(Equation (25)) range between 0 dB to 20 dB. For the dictionary matrix, 𝚽, to be an equal-norm equiangular 

tight frame, the analog combining matrix is generated according to [9] 

 

𝐖 = 𝐖BB𝐖RF = (𝐖RF𝐖RF
∗ )−1/2𝐖RF (26) 

 

where (𝐖RF𝐖RF
∗ )1/2 is the principal square root of the matrix 𝐖RF𝐖RF

∗  and each element of 𝐖RF has a 

constant amplitude, 1/√𝑁, and a random phase independent and identically uniformly distributed in [0,2𝜋] 
[9,16]. The conventional least squares (LS) and minimum mean-squared-error (MMSE) estimators are used 

as benchmark against the algorithms. The LS and MMSE estimators are given as 

 

�̂�LS = (𝚽𝒮
∗𝚽𝒮)−1𝚽𝒮

∗𝐘 (27) 

 

�̂�MMSE = 𝐑𝐠𝚽𝒮
∗ (𝚽𝒮𝐑𝐠𝚽𝒮

∗ +
1

𝑁0

𝐈𝑀)
−1

𝐘 (28) 

 

where 𝚽𝒮 = 𝐖𝐀𝒮 and 𝐀𝒮 is the submatrix constructed by extracting the columns from 𝐀 corresponding to 

the support of the path gain vector, 𝒮. Since these estimators require the support of the path gain vector, 𝒮, 

to be known prior, they are called oracle LS and oracle MMSE respectively. For all the numerical results, the 

numbers of antennas at the BS and snapshots are fixed at 𝑁 = 64 and 𝑇 = 10 respectively. The column size 

of the dictionary matrix is set to 𝐷 = 128 and the support of the path gain vector, 𝒮, randomly sampled from 
{1, … , 𝐷} at each Monte Carlo iteration. The entries of the correlation coefficient matrix, 𝐔, is generated 

according to 𝜌𝑗,𝑘 = 𝜌|𝑗−𝑘| where 𝜌 = 0.95.  
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The NMSE curves plotted in Figure 5 are obtained when the number of nonzero entries of the channel path 

gain vector is fixed at 𝐿 = 4 and the number of RF chains at the BS is taking values from  𝑀 ∈ {32,48}. 

The effect of 𝑀 on the estimation performance is critical since hybrid precoding requires 𝑀 < 𝑁 to be power 

efficient. For both 𝑀 values, the lowest NMSE results are obtained via the two benchmark methods: the LS 

and the MMSE estimators. Also due to the small 𝐿, the performances of the MMSE and the LS are almost 

equal for high PNR of 20 dB. There is about 2 dB gap between the MMSE for 𝑀 = 32 and the MMSE for 

𝑀 = 48. This means that decreasing 𝑀 from 48 to 32 incur 2 dB penalty on the best attainable estimation 

performance. Decreasing the number of RF chains result in extra additional noise on the measurements which 

causes all the NMSE results to increase. The overall best performing algorithm is the CSBL algorithm, while 

the MSBL algorithm takes the second place. For 𝑀 = 48, the NMSE of the SOMP is the closest to the 

benchmark methods up to 10 dB. The SOMP results become saturated as the PNR increases beyond 10 dB. 

This advantage of the SOMP algorithm disappears when the number of RF chains is decreased to 𝑀 = 32. 

The SOMP algorithm is more sensitive to 𝑀 compared to the rest of the algorithms. 

 

 
 

Figure 5. NMSE versus PNR for 𝑁 = 64, 𝑇 = 10, 𝑀 ∈ {32,48} and 𝐿 = 4 

 

Figure 6 shows the NMSE results when the number of RF chains is fixed at 𝑀 = 48 and the number of 

nonzero taps of the channel path gain vector is taking values from 𝐿 ∈ {4,16}. When 𝐿 is increased from 4 

to 16, the NMSE results of all the algorithms degrades. Also, the correlations between the nonzero entries of 

the channel vector become more critical on the estimation performance. Since the CSBL algorithm exploits 

the correlations of the channel vector, its performance remains close to the MMSE estimator. The MSBL 

algorithm can perform as good as the oracle LS estimator and unlike the oracle LS estimator, the MSBL 

algorithm does not need the prior knowledge of the path gain vector support. Since the channel is less sparse 

due to the increased sparsity ratio, the greedy SOMP algorithm gives the highest NMSE curve. For 𝐿 = 16, 

the CSBL algorithm can follow the lowest NMSE curve obtained via the oracle MMSE estimator with a less 

than 2 dB PNR gap. The MSBL algorithm is as good as the oracle LS estimator and even better for the PNR 

range less than 5 dB. 
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Figure 6. NMSE versus PNR for 𝑁 = 64, 𝑇 = 10, 𝑀 = 48 and 𝐿 ∈ {4,16} 
 

The convergence of the NMSE results versus the number of iterations is shown in Figure 7. The number of 

the mm Wave channel taps and the PNR are fixed at 𝐿 = 4 and 15 dB respectively. The number of the RF 

chains is 𝑀 ∈ {32.48} and the number of iterations is varying as maxIter∈[10.100]. The SOMP algorithm 

always run for fixed number of iterations which is the number of the mmWave channel taps and so its NMSE 

performance remains constant across varying iterations. The performances of the EM based MSBL and 

CSBL algorithms depend on the number of iterations. For 𝑀 = 32 at 10 iterations, the gap between the 

CSBL and the MSBL is almost 10 dB. As the number of iterations increase, the gap diminishes to less than 

1 dB. The CSBL algorithm can converge at 60th iteration, while the MSBL algorithm requires 100 iterations 

for both 𝑀 values. The CSBL algorithm converges faster and to a lower NMSE level than the MSBL 

algorithm. 

 

 
 

Figure 7. NMSE versus number of iterations for 𝑁 = 64, 𝑇 = 10, 𝑀 ∈ {32,48} and 𝐿 = 4 
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5. Conclusion 
 

This paper investigates sparse signal recovery based covariance estimation of the uplink channel of a single 

MS in a MIMO mmWave communication system. The BS has a hybrid RF chain and applies the same 

combining matrix for multiple coherence blocks of the channel estimation phase. We present how the sparse 

signal recovery algorithms including the SOMP, the MSBL, and the CSBL algorithms can be applied to 

estimate the covariance of the mmWave channel using the shared combining matrix scheme. The 

performances of the algorithms are compared in terms of their NMSE against the benchmark oracle MMSE 

and LS estimators under multiple scenarios with varying number of RF chains and sparsity levels for the 

mmWave channel. The numerical results show that the performance of the CSBL is superior to the MSBL 

and the SOMP algorithms for all the considered scenarios. Although the CSBL has superior performance, its 

computational complexity is the highest due to explicit matrix inversions. The CSBL can exploit the 

correlations between the nonzero entries of the mmWave channel vector, but the coefficient matrix must be 

supplied as an input. The coefficient matrix holding the correlations of the mmWave channel vector must be 

learned before the CSBL can be applied. The MSBL algorithm can be implemented without matrix 

inversions and so its complexity is much lower compared to the CSBL. However, the MSBL cannot estimate 

as well as the CSBL and requires the noise variance as an input. The SOMP algorithm, on the other hand, 

requires the least input and has the lowest computational complexity. Decreasing the number of the RF chains 

or increasing the number of nonzero entries of the mmWave channel is detrimental to its performance.  
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