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Abstract: This paper defines a new generalized (s,m)-σ convex function using the σ convex functions 

and provides some applications and exact results for this kind of functions. The new definition of the 

(s,m)-σ convex function class is used to obtain the Hermite Hadamard type integral inequalities 

existing in the literature, and new integral inequalities are obtained with the help of the σ-Riemann-

Liouville fractional integral. Additionally, a new Hermite-Hadamard type fractional integral inequality 

is constructed using the σ-Riemann-Liouville fractional integral. 

 

 

Genelleştirilmiş (s,m) Fonksiyonların Yeni Bir Sınıfı İçin Kesirli İntegral Yoluyla Hermite-

Hadamard Eşitsizlikler 
 

 

Anahtar 

Kelimeler 

Hermite–

Hadamard 

eşitsizliği, 

kesirli 
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operatör, 

konveks 

fonksiyon, 

σ-konveks 
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konveks 

fonksiyon. 

Öz: Bu makale, σ konveks fonksiyon sınıfını kullanarak yeni bir genelleştirilmiş (s,m)-σ konveks 

fonksiyonu tanımlamakta ve bu tür fonksiyonlar için bazı uygulamalar ve kesin sonuçlar sunmaktadır. 

Literatürde var olan Hermite Hadamard tipi integral eşitsizliklerini elde etmek için (s,m)-σ konveks 

fonksiyon sınıfının yeni tanımından yararlanılmış ve σ-Riemann-Liouville kesirli integrali yardımıyla 

yeni integral eşitsizlikleri elde edilmiştir. Ek olarak, σ-Riemann-Liouville kesirli integrali kullanılarak 

yeni bir Hermite-Hadamard tipi kesirli integral eşitsizliği oluşturuldu.  

 

1. INTRODUCTION 

 

Mathematics is a tool that serves both pure and applied 

sciences. Its history is as old as human history and it sheds 

light on how to express and solve problems. Mathematics 

employs various concepts and their relations for solving 

the problems. It defines spaces and algebraic structures 

built on spaces, creating structures that contribute to 

human life and nature. The concept of function is 
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fundamental in mathematics, and researchers have 

focused on developing new function classes and 

classifying the space of functions. One of this classes of 

functions is the convex function, which has applications 

in statistics, inequality theory, convex programming, and 

numerical analysis. A convex function is defined as a 

function where the line segment between any two points 

on the graph of the function lies above or on the graph. 

This definition ensures that the function is always 'curving 

upwards' and has no local maxima. The use of convex 

functions in various fields is due to their unique 

properties, such as their ability to model optimization 

problems and their connection to the theory of convex 

sets. 

 

2. MATERIAL AND METHOD 

 

Definition 2.1: [14,15] Let ℋ  be an interval in ℝ. Then, 

Ω: ℋ →  ℝ, ∅ ≠  ℋ ⊆  ℝ is said to be convex if 

 

Ω(𝜉𝑢 + (1 − 𝜉)𝑣) ≤ 𝜉Ω(𝑢) + (1 − 𝜉)Ω(𝑣) 

for all 𝑢, 𝑣 ∈ ℋ and 𝜉 ∈  [0, 1] . 
 

Definition 2.2: [6] For some fixed 𝑠 ∈  (0, 1] and 𝑚 ∈
 [0, 1]  a mapping Ω ∶ ℋ ⊂  [0, ∞)  →  ℝ  is said to be 

(𝑠, 𝑚)− convex in the second sense on ℋ if 

 

Ω(𝜉𝑢 + 𝑚(1 − 𝜉)𝑣) ≤ 𝜉𝑠Ω(𝑢) + 𝑚(1 − 𝜉)𝑠Ω(𝑣) 

holds for all 𝑢, 𝑣 ∈ ℋand 𝜉 ∈  [0, 1]. 
 

Definition 2.3: [13] Let ℋ be an interval in ℝ. Then, 

Ω: ℋ →  ℝ, ∅ ≠  ℋ ⊆  ℝ is said to be quasi convex if 

 

Ω(𝜉𝑢 + (1 − 𝜉)𝑣) ≤ 𝑠𝑢𝑝{Ω(𝑢), Ω(𝑣)} 

holds for all 𝑢, 𝑣 ∈  ℋ and 𝜉 ∈  [0, 1]. 
 

The theory of convexity is important in various fields of 

pure and applied sciences. Therefore, the classical 

concepts of convex sets and convex functions have been 

extended in different directions. For further information, 

we refer [1,2,14]. The theory of convexity has also 

attracted many researchers due to its close relation with 

the theory of inequalities. The concept of convex 

functions can be used to derive many well-known 

inequalities. For further details, please refer to [3,15]. One 

of the most studied results among these inequalities is the 

Hermite-Hadamard inequality, which provides a 

necessary and sufficient condition for a function to be 

convex. The inequality reads as follows: 

 

Definition 2.4: Let Ω: ℋ ⊆  ℝ →  ℝ  be a convex 

mapping defined on the interval ℋ of real numbers and 

𝑢, 𝑣 ∈  ℋ, with 𝑢 < 𝑣. Then, one has 

 

Ω (
𝑢 + 𝑣

2
) ≤

1

𝑣 − 𝑢
∫ Ω(𝑥)

𝑣

𝑢

𝑑𝑥

≤
Ω(𝑢) + Ω(𝑣)

2
. 

 

 

 

(1) 

This double inequality is called the Hermite-Hadamard 

inequality. 

This fragment of text discusses the Hermite-Hadamard 

inequality for convex functions and introduces a new class 

of convex sets and functions called 𝜎 -convex sets and 

𝜎 − convex functions, respectively. The new class of 

convex sets and functions was introduced by Wu et al. in 

[4]. The definitions of 𝜎 -convex sets and 𝜎 -convex 

functions are explained as the followings: 

 

Definition 2.5: A function Ω: ℋ →  ℝ is said to be 𝜎  -

convex function with respect to strictly monotonic 

continuous function 𝜎 if 

 

Ω (Ψ[𝜎](𝑢, 𝑣)) = 𝜉Ω(𝑣) + (1 − 𝜉)Ω(𝑢)  ∀𝑢, 𝑣 ∈  ℋ,

𝜉 ∈ [0,1]. 
 

Definition 2.6: A set ℋ⊆ ℝ is said to be 𝜎 –convex set 

with respect to strictly monotonic continuous function 𝜎 

if 

 

Ψ[𝜎](𝑢, 𝑣) = 𝜎−1(𝜉𝜎(𝑣) + (1 − 𝜉)𝜎(𝑢)) ∈ ℋ  ∀𝑢, 𝑣 

∈  ℋ, 𝜉 ∈ [0,1]. 
 

Note that the function Ψ is called strictly 𝜎 -convex on ℋ 

if the above inequality is true as a strict inequality for each 

distinct 𝑢 and 𝑣 ∈  ℋ and for each 𝜉 ∈  (0, 1). 

Fractional analysis has been known since ancient times. 

However, it has recently become a more popular subject 

in mathematical analysis and applied mathematics. The 

question of whether a solution exists when the order is 

fractional in a differential equation has led to the 

development of many derivative and integral operators. 

By defining the derivative and integral operators in 

fractional order, researchers have proposed more effective 

solutions for physical phenomena using new operators 

with general and strong kernels. This has provided 

mathematics and applied sciences with several operators 

that differ in terms of locality and singularity, as well as 

generalized operators with memory effect properties. The 

initial inquiry into the impact of a fractional order in a 

differential equation has now developed into the 

challenge of elucidating physical phenomena and 

identifying the most efficient fractional operators to offer 

practical solutions to real-world issues. Introducing 

fractional derivative and integral operators have made 

significant contributions to fractional analysis and these 

new operators have been effectively used in various fields 

by numerous researchers (see [17-18]). 

The definition of the Riemann-Liouville fractional 

integral, as given in the literature, is: 

 

Definition 2.7: Let Ω ∈ ℒ1(𝑢, 𝑣). The Riemann Liouville 

integrals 𝐼𝑢+
𝛼 Ω and 𝐼𝑣−

𝛼 Ω of order 𝛼 >  0 with 𝑎 ≥  0 are 

defined by 

 

𝐼𝑢+
𝛼 Ω(𝑥) =

1

Γ(𝛼)
∫ Ω(𝜉)(𝑥 − 𝜉)𝛼−1𝑑𝑡,    𝑥 > 𝑢

𝑥

𝑢

 

and 

𝐼𝑣−
𝛼 Ω(𝑥) =

1

Γ(𝛼)
∫ Ω(𝜉)(𝜉 − 𝑥)𝛼−1𝑑𝑡,    𝑣 >  𝑥.

𝑣

𝑥
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Definition 2.8: Let (𝑢, 𝑣)  ⊆ ℝ , 𝜎(𝑥)  be an increasing 

and positive function on (𝑢, 𝑣] and 𝜎′(𝑥)  be continuous 

on (𝑢, 𝑣) . Then, the left-sided and right-sided 𝜎  –

Riemann-Liouville fractional integrals of a function Ω 

with respect to the function 𝜎(𝑥)  on [𝑢, 𝑣]  are 

respectively defined by [7,8]: 

 

𝐼
𝑢+
𝛼:φ

Ω(𝑥)

=
1

Γ(𝛼)
∫ Ω(𝜉)φ′(𝜉) (φ(𝑥) − φ(𝜉))

𝛼−1
𝑑𝑡                      

  

𝑥

𝑢

 

 

𝐼𝑣−
𝛼:φ

Ω(𝑥)

=
1

Γ(𝛼)
∫ Ω(𝜉)φ′(𝜉) (φ(𝜉) − φ(𝑥))

𝛼−1
𝑑𝑡, 𝛼 >  0.

  

𝑣

𝑥

 

 

It can be observed that if 𝜑 is specialised by 𝜑(𝑥) = 𝑥, 

then the 𝜎  –Riemann-Liouville fractional integral 

operators are reduced to the classical Riemann-Liouville 

fractional integral operators. 

The fractional Hermite-Hadamard integral inequalities 

[4,9] are given by: 

 

Ω (
𝑢 + 𝑣

2
) ≤

 Γ(𝛼 + 1)

2(𝑣 − 𝑢)𝛼
[𝐼𝑢+

𝛼 Ω(𝑣) + 𝐼𝑣−
𝛼 Ω(𝑢)]

≤
Ω(𝑢) + Ω(𝑣)

2
. 

 

In their recent work, Mohammed et al. [5] utilised this 

novel convex function for a fractional operator to present 

the new findings: 

 

Theorem 2.1: Let Ω ∶ [𝑢, 𝑣]  ⊆  ℝ → ℝ  be an 

integrable  𝜎  -convex function and Ω ∈ ℒ1(𝑢, 𝑣)  with 

0 ≤  𝑢 <  𝑣. If the function 𝜎 is increasing and positive 

on [𝑢, 𝑣] and 𝜎′(𝑥) is continuous on (𝑢, 𝑣), then for 𝛼 >
0 

 

Ω (𝜎−1 (
𝜎(𝑢) + 𝜎(𝑣)

2
) 1)

≤
 Γ(𝛼 + 1)

2(𝜎(𝑣) − 𝜎(𝑢))
𝛼 [𝐼

𝑢+
𝛼:φ

Ω(𝑣)

+ 𝐼𝑣−
𝛼:φ

Ω(𝑢)] ≤
Ω(𝑢) + Ω(𝑣)

2
. 

 

Theorem 2.2: Let Ω ∶ [𝑢, 𝑣]  ⊆  ℝ → ℝ  be an 

integrable  𝜎  -convex function and Ω ∈ ℒ1(𝑢, 𝑣)  with 

0 ≤  𝑢 <  𝑣. If the function 𝜎 is increasing and positive 

on [𝑢, 𝑣] and 𝜎′(𝑥) is continuous on (𝑢, 𝑣), then for 𝛼 >
 0, we have 

 

Ω (𝜎−1 (
𝜑(𝑢) + 𝜑(𝑣)

2
))

≤
 2𝛼−1Γ(𝛼 + 1)

(𝜎(𝑣) − 𝜎(𝑢))
𝛼 [𝐼

𝜎−1(
𝜑(𝑢)+𝜑(𝑣)

2
)

+
𝛼:φ

Ω(𝑣)

+ 𝐼
𝜎−1(

𝜑(𝑢)+𝜑(𝑣)

2
)

−
𝛼:φ

Ω(𝑢)] ≤
Ω(𝑢) + Ω(𝑣)

2
. 

 

 

3. RESULTS  

 

Definition 3.1: For some fixed 𝑠 ∈  (0, 1]  and  𝑚 ∈
 [0, 1]  a mapping Ω ∶ ℋ ⊂ [0, 𝑏]  →  ℝ∝  with 𝑏 > 0  is 

said to be generalized 𝜎 − (𝑠, 𝑚)− convex if 

 

Ψ[𝜎](𝑥, 𝑦) − (𝑠, 𝑚)

= Ω (𝜎−1(𝜉𝜎(𝑥)

+ 𝑚(1 − 𝜉)𝜎(𝑦)))

≤  𝜉∝𝑠Ω(𝑥)
+ 𝑚∝(1 − 𝜉)∝𝑠Ω(𝑦) 

 

 

 

(2) 

holds for all 𝑥, 𝑦 ∈  ℋ and 𝜉 ∈  [0, 1]. 
 

Remark 3.1: If we take ∝= 1 and 𝜎−1(𝑥) = 𝑥  then, we 

get Definition 2.2 in [6]. 

 

Remark 3.2: If we take ∝= 1, 𝑠 = 1 and 𝑚 = 1 then, we 

get Definition 2.5 in [4]. 

 

Remark 3.3: If we take ∝= 𝑠 = 𝑚 = 1  and 𝜎(𝑥) = 𝑥  

then, we get the concept of classical convex functions.  

 

Moreover, if we take 𝜉 =
1

2
 in (2), then the generalized 

Ψ[𝜎](𝑥, 𝑦) − (𝑠, 𝑚)  convex functions become Jensen-

type generalized 𝜎 − (𝑠, 𝑚)  convex functions as follows: 

 

Ω (𝜎−1 (
𝜑(𝑥) + 𝑚𝜑(𝑦)

2
)) ≤

Ω(𝑥) + 𝑚∝Ω(𝑦)

2𝑠∝
. 

 

For all 𝑥, 𝑦 ∈  ℋ and 𝜉 ∈  [0, 1] and for some fixed 𝑠 ∈
 (0, 1] and 𝑚 ∈  [0, 1]. 
 

Some special cases are obtained as follows. 

 

Case-1  

If we take  𝜎−1(𝑥) = 𝑙𝑛𝑥,   then we get geometrically 

(𝑠, 𝑚)-convex function as in [10] 

 

Ω(𝑥𝑡𝑦1−𝑡) ≤ 𝜉𝑠Ω(𝑥) + 𝑚(1 − 𝜉)𝑠Ω(𝑦) 

holds for all 𝑥, 𝑦 ∈  ℋ and 𝑡 ∈  [0, 1]. 
 

Cese-2  

If we take  𝜎−1(𝑥) =
1

𝑥
, then we get harmonically (𝑠, 𝑚)-

convex function as in [11] 

 

Ω (
𝑚𝑥𝑦

𝑚𝑡𝑥 + (1 − 𝜉)𝑦
) ≤ 𝜉𝑠Ω(𝑥) + 𝑚(1 − 𝜉)𝑠Ω(𝑦) 

 

holds for all 𝑥, 𝑦 ∈  ℋ and 𝜉 ∈  [0, 1]. 
 

Proposition 3.1: For 𝑠 ∈  (0, 1]  and  𝑚 ∈  [0, 1]  if 

Ω, ℒ: ℋ →  ℝ∝   are generalized 𝜎 − (𝑠, 𝑚) − convex 

functions, then we have the following statements: 

 

Ω + ℒ is a generalized 𝜎 − (𝑠, 𝑚)− convex functions. 

𝜁∝ Ω is a generalized 𝜎 − (𝑠, 𝑚)− convex functions. 
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Proof: Since Ω and ℒ  are generalized −(𝑠, 𝑚)− convex 

functions on ℋ and 𝜉 ∈ [0,1], we have 

 

(Ω + ℒ) (𝜎−1(𝜉𝜎(𝑥) + 𝑚(1 − 𝜉)𝜎(𝑦)))

= Ω (𝜎−1(𝜉𝜎(𝑥) + 𝑚(1 − 𝜉)𝜎(𝑦)))

+ ℒ (𝜎−1(𝜉𝜎(𝑥) + 𝑚(1 − 𝜉)𝜎(𝑦)))

≤  𝜉∝𝑠Ω(𝑥) + 𝑚∝(1 − 𝜉)∝𝑠Ω(𝑦)
+  𝜉∝𝑠ℒ(𝑥) + 𝑚∝(1 − 𝜉)∝𝑠ℒ(𝑦)
=  𝜉∝𝑠(Ω + ℒ)(𝑥)
+ 𝑚∝(1 − 𝜉)∝𝑠(Ω + ℒ)(𝑦) 

 

Hence, Ω + ℒ  is a generalized −(𝑠, 𝑚) − convex 

functions on ℋ. 

Since, Ω  and ℒ  are generalized −(𝑠, 𝑚) − convex 

functions on ℋ and 𝜉 ∈ [0,1], 𝜁 ∈ ℝ+,  we have 

 

𝜁∝Ω (𝜎−1(𝜉𝜎(𝑥) + 𝑚(1 − 𝜉)𝜎(𝑦)))

≤ 𝜁∝[ 𝜉∝𝑠𝑓(𝑥) + 𝑚∝(1 − 𝜉)∝𝑠𝑓(𝑦)]
=  𝜉∝𝑠(𝜁∝Ω)(𝑥) + (𝜁∝Ω)(𝑦) 

 

and, so 𝜁∝Ω is a generalized −(𝑠, 𝑚)− convex functions 

on ℋ. 

 

3.1 New Results on Generalized 𝝈 − (𝒔, 𝒎)-

Convexity 

This section is devoted to establish some generalized 

Hermite– Hadamard type fractional integral inequalities  

via generalized  𝜎 − (𝑠, 𝑚) –convex. 

 

Theorem 3.1: Let Ω ∶  [𝑢, 𝑣]  ⊆  ℝ → ℝ  be an 

integrable 𝜎 − (𝑠, 𝑚)-convex function and Ω ∈ ℒ1(𝑢, 𝑣) 

with 0 ≤  𝑢 <  𝑣 , 𝑚 ∈ (0, 1].  If the function 𝜎  is 

increasing and positive on [𝑢, 𝑣] and 𝜑′(𝑥) is continuous 

on (𝑢, 𝑣), then for 𝛼 >  0, we have 

 

Ω (𝜎−1 (
𝜎(𝑢) + 𝑚𝜎(𝑣)

2
))

≤
1

2∝𝑠(𝜎(𝑢) − 𝑚𝜎(𝑣))
[∫ Ω(𝑥)

𝑢

𝑚𝑣

𝜎′(𝑥)𝑑𝑥

+ 𝑚∝ ∫ Ω(𝑥)
𝑚𝑢

𝑣

𝜎′(𝑥)𝑑𝑥]

≤
[Ω(𝑢) + Ω(𝑣) + 𝑚∝(Ω(𝑢/𝑚) + Ω(𝑣/𝑚))]

2∝𝑠(∝ 𝑠 + 1)
 

 

 

 

 

 

 

 

 

 

 

(3) 

 

Proof: To prove the first inequality of (3), assume that Ω 

is a 𝜎 − (𝑠, 𝑚) convex function 

Ω (𝜎−1(𝜉𝜎(𝑥) + 𝑚(1 − 𝜉)𝜎(𝑦)))

≤  𝜉∝𝑠Ω(𝑥) + 𝑚∝(1 − 𝜉)∝𝑠Ω(𝑦). 

If we take 𝜉 =
1

2
, we obtain 

 

Ω (𝜎−1 (
𝜎(𝑥) + 𝑚𝜎(𝑦)

2
))

≤
Ω(𝑥) + 𝑚∝Ω(𝑦)

2𝑠∝
. 

 

 

 

 

 

(4) 

 

Let us set 𝑥 = 𝜎−1(𝜉𝜎(𝑢) + 𝑚(1 − 𝜉)𝜎(𝑣))  and 𝑦 =

𝜎−1(𝜉𝜎(𝑣) + 𝑚(1 − 𝜉)𝜎(𝑢)) in (4), one has 

 

2∝𝑠Ω (𝜎−1 (
𝜎(𝑢) + 𝑚𝜎(𝑣)

2
))

≤ Ω (𝜎−1(𝜉𝜎(𝑢) + 𝑚(1 − 𝜉)𝜎(𝑣)))

+ 𝑚∝Ω (𝜎−1(𝜉𝜎(𝑣)

+ 𝑚(1 − 𝜉)𝜎(𝑢))). 

 

Integrating this inequality with respect to 𝜉  over [0, 1], 
we have 

 

Ω (𝜎−1 (
𝜎(𝑢) + 𝑚𝜎(𝑣)

2
))

≤ ∫ Ω (𝜎−1(𝜉𝜎(𝑢) + 𝑚(1 − 𝜉)𝜎(𝑣)))
1

0

𝑑𝜉

+ 𝑚∝ ∫ Ω (𝜎−1(𝜉𝜎(𝑣)
1

0

+ 𝑚(1 − 𝜉)𝜎(𝑢))) 𝑑𝜉

=
1

2∝𝑠
[

1

𝜎(𝑢) − 𝑚𝜎(𝑣)
∫ Ω(𝑥)

𝑢

𝑚𝑣

𝜎′(𝑥)𝑑𝑥

+
𝑚∝

𝑚𝜎(𝑢) − 𝜎(𝑣)
∫ Ω(𝑥)

𝑚𝑢

𝑣

𝜎′(𝑥)𝑑𝑥]. 

 

 

 

 

 

 

 

 

 

 

 

 

(5) 

 

The first inequality has been proved. To prove the second 

inequality, we will use the definition of the 𝜎 − (𝑠, 𝑚) 

convex function as follow: 

 

Ω (𝜎−1(𝜉𝜎(𝑢) + 𝑚(1 − 𝜉)𝜎(𝑣)))

≤  𝜉∝𝑠Ω(𝑢) + 𝑚∝(1 − 𝜉)∝𝑠Ω(𝑣/𝑚) 

and  

Ω (𝜎−1(𝜉𝜎(𝑣) + 𝑚(1 − 𝜉)𝜎(𝑢)))

≤  𝜉∝𝑠Ω(𝑣) + 𝑚∝(1 − 𝜉)∝𝑠Ω (
𝑢

𝑚
). 

 

By addition, we have 

 

Ω (𝜎−1(𝜉𝜎(𝑢) + 𝑚(1 − 𝜉)𝜎(𝑣)))

+ Ω (𝜎−1(𝜉𝜎(𝑣) + 𝑚(1 − 𝜉)𝜎(𝑢)))

≤ [Ω(𝑢) + Ω(𝑣)] 𝜉∝𝑠

+ [Ω (
𝑢

𝑚
) + Ω (

𝑣

𝑚
)] 𝑚∝(1 − 𝜉)∝𝑠. 

 

Integrating this inequality with respect to 𝜉  over [0, 1], 
we have 

[
1

𝜎(𝑢) − 𝑚𝜎(𝑣)
∫ Ω(𝑥)

𝑢

𝑚𝑣

𝜎′(𝑥)𝑑𝑥

+
𝑚∝

𝑚𝜎(𝑢) − 𝜎(𝑣)
∫ Ω(𝑥)

𝑚𝑢

𝑣

𝜎′(𝑥)𝑑𝑥]

≤ [Ω(𝑢) + Ω(𝑣)]
1

∝ 𝑠 + 1

+ [Ω (
𝑢

𝑚
) + Ω (

𝑣

𝑚
)]

𝑚∝

∝ 𝑠 + 1
. 

 

 

 

 

 

(6) 
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By combining the last two inequalities (5) and (6), the 

desired result is obtained as: 

 

Ω (𝜎−1 (
𝜎(𝑢) + 𝑚𝜎(𝑣)

2
))

≤
1

2∝𝑠
[

1

𝜎(𝑢) − 𝑚𝜎(𝑣)
∫ Ω(𝑥)

𝑢

𝑚𝑣

𝜎′(𝑥)𝑑𝑥

+
𝑚∝

𝑚𝜎(𝑢) − 𝜎(𝑣)
∫ Ω(𝑥)

𝑚𝑢

𝑣

𝜎′(𝑥)𝑑𝑥]

≤ [Ω(𝑢) + Ω(𝑣)]
1

∝ 𝑠 + 1
+ [Ω (

𝑢

𝑚
) + Ω (

𝑣

𝑚
)]

𝑚∝

∝ 𝑠 + 1
. 

 

This completes the proof. 

 

Corollary 3.1: If we take 𝑚 =  1 and ∝ =  1, then we 

obtain Theorem 5 in [12]. 

 

Corollary 3.2: If we take 𝜎(𝑥) = 𝑥 , 𝑠 = 𝑚 =∝ =  1 , 

then inequality (3) reduces to inequality (1). 
 

Theorem 3.2:  Let Ω ∶ [𝑢, 𝑣]  ⊆  ℝ → ℝ  be an 

integrable 𝜎 − (𝑠, 𝑚)-convex function and Ω ∈ ℒ1(𝑢, 𝑣) 

with 0 ≤  𝑢 < 𝑣, 𝑚 ∈ (0, 1] . If the function 𝜎  is 

increasing and positive on [𝑢, 𝑣] and 𝜎′(𝑥) is continuous 

on (𝑢, 𝑣), then for 𝛼 >  0, we have 

 

Ω (𝜎−1 (
𝜎(𝑢) + 𝑚𝜎(𝑣)

2
))

≤
Γ(𝛼 + 1)

2∝𝑠
[

1

(𝑚𝜎(𝑣) − 𝜎(𝑢))
𝛼 𝐼(𝑢)+

𝛼:𝜑
Ω(𝑚𝑣)

+
1

(𝜎(𝑣) − 𝑚𝜎(𝑢))
𝛼 𝐼(𝑣)−

𝛼:𝜑
Ω( 𝑚𝑢)]

≤
[Ω(𝑢) + Ω(𝑣)]

2∝𝑠(∝ 𝑠 + 𝛼)

+
[Ω (

𝑢

𝑚
) + Ω (

𝑣

𝑚
)] 𝑚∝

2∝𝑠

Γ(𝛼 + 1)Γ(∝ 𝑠 + 1)

Γ(𝛼+∝ 𝑠 + 1)
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7) 

 

Proof:  To prove the first inequality of (7), assume that Ω 

is 𝜎 − (𝑠, 𝑚) convex function, then we can write 

 

Ω (𝜎−1(𝜉𝜎(𝑥) + 𝑚(1 − 𝜉)𝜎(𝑦)))

≤  𝜉∝𝑠Ω(𝑥) + 𝑚∝(1 − 𝜉)∝𝑠Ω(𝑦). 

 If we take 𝜉 =
1

2
, we obtain 

 

Ω (𝜎−1 (
𝜎(𝑥) + 𝑚𝜎(𝑦)

2
))

≤
Ω(𝑥) + 𝑚∝Ω(𝑦)

2𝑠∝
. 

 

 

(8) 

 

Substituting 𝑥 = 𝜎−1(𝜉𝜎(𝑢) + 𝑚(1 − 𝜉)𝜎(𝑣))  and 𝑦 =

𝜎−1(𝜉𝜎(𝑣) + 𝑚(1 − 𝜉)𝜎(𝑢)) into (8), we get  

 

2∝𝑠Ω (𝜎−1 (
𝜎(𝑢) + 𝑚𝜎(𝑣)

2
))

≤ Ω (𝜎−1(𝜉𝜎(𝑢)

+ 𝑚(1 − 𝜉)𝜎(𝑣)))

+ 𝑚∝Ω (𝜎−1(𝜉𝜎(𝑣)

+ 𝑚(1 − 𝜉)𝜎(𝑢))). 

 

 

 

 

 

 

 

 

 

(9) 

 

Multiplying both sides of (9) by  𝜉𝛼−1, then integrating 

the resulting inequality with respect to 𝑡 over [0,1], we 

get 

 

2∝𝑠

𝛼
Ω (𝜎−1 (

𝜎(𝑢) + 𝑚𝜎(𝑣)

2
))

≤ ∫  𝜉𝛼−1Ω (𝜎−1(𝜉𝜎(𝑢)
1

0

+ 𝑚(1 − 𝜉)𝜎(𝑣))) 𝑑𝜉

+ ∫ Ω (𝜎−1(𝜉𝜎(𝑣)
1

0

+ 𝑚(1 − 𝜉)𝜎(𝑢)))  𝜉𝛼−1𝑑𝜉. 

By changing the variables, 𝜆 = 𝜎−1(𝜉𝜎(𝑢) + 𝑚(1 −

𝜉)𝜎(𝑣)) and 𝜂 = 𝜎−1(𝜉𝜎(𝑣) + 𝑚(1 − 𝜉)𝜎(𝑢)), then the 

last inequality becomes 

 

Ω (𝜎−1 (
𝜎(𝑢) + 𝑚𝜎(𝑣)

2
))

≤
1

(𝑚𝜎(𝑣) − 𝜎(𝑢))
𝛼 ∫ Ω( 𝜆)φ′( 𝜆) (mφ(𝑣)

𝑚𝑣

𝑢

− φ(𝜆))
𝛼−1

𝑑𝜆

+
1

(𝜎(𝑣) − 𝑚𝜎(𝑢))
𝛼 ∫ Ω( 𝜂)φ′(𝜂) (φ( 𝜂)

𝑣

𝑚𝑢

− 𝑚φ(𝑢))
𝛼−1

𝑑𝜂

=
Γ(𝛼 + 1)

2∝𝑠
[

1

(𝑚𝜎(𝑣) − 𝜎(𝑢))
𝛼 𝐼

(𝑢)+
𝛼:𝜑

Ω( 𝑚𝑣)

+
1

(𝜎(𝑣) − 𝑚𝜎(𝑢))
𝛼 𝐼(𝑣)−

𝛼:𝜑
Ω( 𝑚𝑢)]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(10) 

 

In this way, the first inequality is proved. 

To prove the second inequality, we use the definition of 

the 𝜎 − (𝑠, 𝑚) convex function as: 

 

Ω (𝜎−1(𝜉𝜎(𝑢) + 𝑚(1 − 𝜉)𝜎(𝑣)))

≤  𝜉∝𝑠Ω(𝑢) + 𝑚∝(1 − 𝜉)∝𝑠Ω(𝑣/𝑚) 

and  

Ω (𝜎−1(𝜉𝜎(𝑣) + 𝑚(1 − 𝜉)𝜎(𝑢)))

≤  𝜉∝𝑠Ω(𝑣) + 𝑚∝(1 − 𝜉)∝𝑠Ω (
𝑢

𝑚
). 

 

By addition, we have  
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Ω (𝜎−1(𝜉𝜎(𝑢) + 𝑚(1 − 𝜉)𝜎(𝑣)))

+ Ω (𝜎−1(𝜉𝜎(𝑣)

+ 𝑚(1 − 𝜉)𝜎(𝑢)))

≤ [Ω(𝑢) + Ω(𝑣)] 𝜉∝𝑠

+ [Ω (
𝑢

𝑚
) + Ω (

𝑣

𝑚
)] 𝑚∝(1

− 𝜉)∝𝑠 . 

 

 

 

 

 

 

 

(11) 

 

Multiplying both sides of (11) by  𝜉𝛼−1, then integrating 

the resulting inequality with respect to 𝜉 over [0,1], we 

can obtain 

 

∫  𝜉𝛼−1Ω (𝜎−1(𝜉𝜎(𝑢) + 𝑚(1 − 𝜉)𝜎(𝑣)))
1

0

𝑑𝜉

+ ∫ Ω (𝜎−1(𝜉𝜎(𝑣)
1

0

+ 𝑚(1 − 𝜉)𝜎(𝑢)))  𝜉𝛼−1𝑑𝜉

≤ ∫ [Ω(𝑢) + Ω(𝑣)] 𝜉∝𝑠+𝛼−1𝑑𝜉
1

0

+ ∫ [Ω(𝑢/𝑚) + Ω(𝑣/𝑚)]𝑚∝(1
1

0

− 𝜉)∝𝑠𝑑𝜉. 
 

Hence, 

 

Γ(𝛼 + 1)

2∝𝑠
[

1

(𝑚𝜎(𝑣) − 𝜎(𝑢))
𝛼 𝐼(𝑢)+

𝛼:𝜑
Ω( 𝑣)

+
1

(𝜎(𝑣) − 𝑚𝜎(𝑢))
𝛼 𝐼(𝑣)−

𝛼:𝜑
Ω( 𝑢)]

≤
[Ω(𝑢) + Ω(𝑣)]

2∝𝑠(∝ 𝑠 + 𝛼)

+
[Ω (

𝑢

𝑚
) + Ω (

𝑣

𝑚
)] 𝑚∝

2∝𝑠

Γ(𝛼 + 1)Γ(∝ 𝑠 + 1)

Γ(𝛼+∝ 𝑠 + 1)
. 

 

This completes the proof. 

 

Corollary 3.3: If we take 𝑚 =  1 and ∝ =  1, then we 

obtain Theorem 8 in [12]. 

 

Corollary 3.4: If we take 𝜎(𝑥) = 𝑥, 𝑚 =  1 and 𝛼 =∝ =
 1 , then we get the classical Hermite–Hadamard 

inequality under s-convex function proved by Dragomir 

and Fitzpatrick [16]. 

 

Corollary 3.5: If we take 𝜎(𝑥) = 𝑥, 𝑠 =  𝛼 = 𝑚 =∝ =
 1, then inequality (7) reduces to inequality (1). 
 

 

4. DISCUSSION AND CONCLUSION 

 

This paper introduces a new class of generalized (𝑠, 𝑚) −
𝜎 convex functions, extending the concept of σ-convexity 

within the framework of fractional calculus. By 

employing the σ-Riemann-Liouville fractional integral, 

we derived novel Hermite-Hadamard type inequalities, 

which generalize existing results and introduce new 

fractional inequalities. These findings provide valuable 

insights into the relationship between convexity and 

fractional operators. The flexibility of the new (𝑠, 𝑚) − 𝜎 

convex functions enables further exploration in fractional 

calculus, particularly with different fractional operators. 

Future research could investigate the extension of these 

results to other operators, such as the Atangana-Baleanu 

integral, expanding the applications of these inequalities. 

In conclusion, the results obtained here represent a 

meaningful contribution to fractional analysis and its 

applications, offering a foundation for further studies in 

this field. 
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