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Abstract 

This study aimed to establish predictive values for hand grip strength based on electromyographic activity while exploring 

disparities between measured and predicted grip strength among 12 proficient handball players. Grip strength was quantified 

using a specialized device recording Newton force in real-time at a 0.1-second sampling window, synchronized with muscle 

electromyographic activity (sEMG) recorded using the Noraxon myoMOTION technique. Various electromyographic 

parameters were assessed, including peak activity, root mean square, time to peak, and area under the curve. Grip strength 

measurements were taken at three stages (50%, 75%, 100%) and maintained for 3 seconds each. The data were analyzed using 

IBM Statistical software, implementing neural networks and artificial intelligence methods. The results revealed statistically 

insignificant differences between recorded and anticipated grip strength (p>0.05), indicating a high level of predictive 

accuracy. Minor disparities were observed, suggesting potential avenues for further investigation. This study contributes to our 

understanding of predictive modeling for grip strength and highlights the importance of electromyographic activity in 

assessing muscular performance. 
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INTRODUCTION  

 

Hand grip strength is a fundamental measure 

of upper extremity function and overall muscular 

performance. It serves as a reliable indicator of an 

individual's physical health, functional capacity, 

and quality of life across various age groups and 

populations (Bohannon, 2008; Leong et al., 2015; 

Celis-Morales et al., 2018). Moreover, grip 

strength has been associated with numerous health 

outcomes, including mortality, cardiovascular 

disease, and disability (Wei et al., 2023). 

In recent years, electromyography (EMG) 

has emerged as a valuable tool for assessing 

muscle function and neuromuscular activation 

 

 

 

patterns during grip strength testing (Merletti et al., 

2002; Mesin et al., 2011; Vieira et al., 2011). By 

capturing the electrical activity generated by 

muscle fibers, EMG provides insights into the 

recruitment and coordination of motor units, 

thereby offering a deeper understanding of 

muscular performance. 

Additionally, advancements in EMG 

technology, such as high-density surface EMG and 

wireless EMG systems, have enhanced the 

precision and reliability of muscle activity 

measurements (Hauraix et al., 2019). Despite the 

extensive research on grip strength and 

electromyographic activity, there remains a gap in 

our understanding of the predictive relationship 

between these parameters. While previous studies 
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have examined the association between muscle 

activation patterns and grip strength, few have 

sought to establish predictive models based on 

electromyographic data. By elucidating the 

underlying mechanisms driving grip strength, 

predictive modeling can facilitate early detection 

of muscle dysfunction and inform targeted 

interventions to optimize muscular performance. 

In this study, we aim to address this gap by 

investigating the predictive values of hand grip 

strength based on electromyographic activity. 

Specifically, we will examine the relationship 

between muscle activation patterns measured via 

surface electromyography (sEMG) and grip 

strength in a cohort of proficient handball players. 

By leveraging advanced analytical techniques, 

including neural networks and artificial 

intelligence methods, we seek to develop robust 

predictive models that account for individual 

variations in muscle activation and strength. Our 

findings have the potential to inform personalized 

training strategies and enhance athletic 

performance in competitive sports settings. 
 

MATERIALS AND METHODS 

Research Sample: 

The research sample consisted of 12 

advanced-level handball players (Table1.). 

Comprehensive examinations were conducted to 

ensure the absence of previous injuries or 

functional impairments in the targeted research 

area. Additionally, the medical records of the 

research sample were reviewed to confirm the 

absence of high blood pressure signs or abnormal 

indicators in both the circulatory and nervous 

systems (Rufo et al., 2021). The research sample 

comprised athletes engaged in regular training and 

play. This case study followed ethical standards 

and received approval from the Ethics Committee 

of Second Artillery General Hospital PLA with 

reference number KY2017016 and date 

10/03/2022. 

 

Table 1. Show the demographic characteristics 

and statistics of the participants. 

 
Characteristic Mean ± SD 

Weight (kg) 75.6 ± 17.2 

Age (years) 28.3 ± 7.2 

Height (cm) 182.5 ± 8.5 

 

Procedures 
Targeted Muscles (Kunc et al., 2019). 

The muscles responsible for hand movements 

(flexion and extension) at the wrist joint were 

identified as follows: 

Brachioradialis 

The brachioradialis is an arm muscle 

responsible for flexing the arm and elbow joint. It 

can also perform both movements: supination 

(turning the palm upward) and pronation (turning 

the palm downward), depending on the arm's 

position. It connects to the distant radial tuberosity 

of the radius bone through the brachioradial 

ligament and to the dorsal epicondyle above the 

radial notch of the humerus. 

Flexor Carpi Radialis 

In anatomy, this muscle in the human 

forearm functions to flex the hand (radially). The 

Latin term "carpus" refers to the wrist, indicating 

its role in wrist flexion. 

Flexor Carpi Ulnaris 

This muscle has two heads: the humeral head 

and the ulnar head. The humeral head originates 

from the medial epicondyle of the humerus via the 

common flexor tendon, while the ulnar head arises 

from the middle border of the olecranon and the 

upper two-thirds of the dorsal border of the ulna. 

The ulnar nerve and ulnar artery pass between 

these heads. 

Extensor Carpi Radialis 

It is one of the five fundamental muscles 

controlling wrist movement. As a long muscle, it 

originates from the lateral side of the forearm, 

attaching to the base of the second metacarpal 

bone. Its function involves extension at the wrist 

joint, moving the hand towards the thumb and 

away from the ulnar side. 

Extensor Carpi Ulnaris: 

In human anatomy, this muscle is a structural 

muscle located on the ulnar side of the forearm. It 

functions in extending and adducting the wrist 

from the anatomical position. 

Electromyographic Variables (S. Ismaeel et al., 

2015). 

Peak Electromyographic Activity 

Defined as the highest recorded value 

through an EMG device, represented by the peak 

of the electrical wave.Measured in microvolts. 

Root Mean Square (RMS) 

A statistical measure used in 

electromyographic (EMG) analysis. Employed to 

measure the intensity or strength of electrical 
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signals recorded from muscles over a specific time 

period. 

RMS is calculated as the square root of the mean 

of the squared values of the muscle's electrical 

signal. Measured in microvolts (Vieira et al., 

2017). 

                   
 

Peak Duration (Pd) 

The time interval extending from the onset to 

the end of EMG peak. Represents the period 

during which muscle electrical activity appears at 

its maximum strength. Measured in milliseconds 

(S. Ismaeel, n.d.). 

Ratio of Time Change between Peak and Trough 

(Ratio) 

A mathematical value obtained by 

calculating the change in time between the peak 

and trough of recorded electromyographic activity. 

Indicates the ratio of the duration of the highest 

peak of EMG to the duration of the lowest trough. 

Measured as a dimensionless ratio (Journal et al., 

2020). 

Mean of Peaks (MOP) 

The arithmetic means of the highest EMG 

values. Calculated by dividing the sum of EMG 

values for each peak by the number of peaks. 

Provides an average measure of electrical activity 

during peak instances. Measured in the respective 

units of electromyographic activity. 

 

                 
 

The Area Under the Curve (AUC) 

The Area Under the Curve (AUC) is a 

measure of the enclosed area beneath a curve on a 

graphical plot. In the context of EMG or signal 

analysis for other biological activities, AUC 

signifies the integrated activity of the muscle over 

a specific time period. Typically, the curve 

represents the electrical activity of the muscle, and 

the AUC represents the total force or energy 

expended by the muscle during a specific 

timeframe. 

The AUC is a valuable metric for 

quantifying the overall muscle activity within a 

given time frame. It is measured in units of 

microvolts × milliseconds and is often used to 

assess the total muscle force or energy 

consumption during a specific activity 

(Selvanayagam et al., 2012). 

 

                       
 

Peak Sustain Time (Pt) 

Represents the duration required for the 

maximum EMG to remain visible. Indicates the 

time the muscle maintains its peak electrical 

activity. Measured in milliseconds. 

Peak-to-Valley Difference (Pv) 

The recorded difference between the highest 

peak and the lowest trough of EMG. Provides a 

percentage difference for each recording. Reflects 

the dynamic changes in EMG. Expressed as a 

percentage. 

Maximum Voluntary Contraction (MVC) 

Refers to the maximum force or effort that a 

muscle or muscle group can generate voluntarily 

during a specific contraction. It serves as a 

measure of the maximum force or muscle output 

achievable by an individual in a specific context. 

Measured in units relevant to force or contraction 

strength (Jan et al., 1999). 

Data Collection Tools 

Hand Grip Force (HGF) measure 

A device designed similar to a dynamometer 

was employed for measuring grip strength. This 

device allows data recording in multiple time 

windows with intervals as short as 0.1 seconds 

between each recording, as described by (Duque et 

al. 1995). The apparatus enables clear graphical 

representation for momentary evaluation, and it 

facilitates easy data export to Excel, as illustrated 

in Figure (1). Using the device, three attempts 

were given to each player, with each attempt 

executed at different intensities (50%, 75%, and 

100%). 

 

 
Figure 1. show the software  

Stages of Applying Artificial Intelligence in the 

Research (Alwosheel et al., 2018) 
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Utilizing machine learning to estimate muscle 

strength based on electromyographicactivity 

involves several key steps  

Data Collection 

Begin by gathering a dataset containing 

electromyographic readings and accurately 

measured muscle strength. Comprehensive and 

diverse data are preferred to establish a robust and 

generalizable model. 

Data Preparation 

Preparing the data involves cleaning and 

formatting it for model training. This may include 

transforming electrical signals into variables 

usable as inputs for the model. 

Feature Selection: 

Choose important variables that the model 

should consider during training. This might 

involve analyzing the data to identify which 

variables have the most significant impact on 

electromyographic activity and muscle strength. 

Data Splitting (Bonato et al., 2001) 

Divide the data into two sets: one for training 

the model and another for testing its performance. 

This allows evaluating the model's ability to 

handle new, unseen data not used during training. 

Selecting the Learning Model: 

Use neural networks, statistical methods, and other 

suitable algorithms for addressing the estimation 

problem. 

Model Training 

Train the model using the training dataset, 

where it learns how to correlate electromyographic 

activity with muscle strength. The model aims to 

identify relationships and patterns in the data that 

can be used for predicting muscle strength. 

Performance Evaluation 

Test the model using the testing dataset to 

assess its performance and its ability to handle new 

data 

Statistical Analysis 

A statistical program was used in the 

statistical analysis of the data obtained. Arithmetic 

mean, standard deviation, frequency, minimum 

and maximum values were used in statistical 

representations of the data. In the normality testing 

of the data, kurtosis and skewness values of ±1.5 

were taken into consideration (Tabachnick & 

Fidell, 2013). Neural networks were utilized to 

determine the relative importance of each variable, 

alongside leveraging artificial intelligence for 

predicting numerical values. 

 

RESULTS

Table 2. Show the viriables describtion 
 

Var. 
50%  75%  100%  

m ±s m ±s m ±s 

HGF (N) 24.8 3.5 31.3 2.47 43.7 1.92 

Peak (µV) 116 12.6 185 9.41 254 12.4 

Rms (µV) 121 33.5 193 21.7 263 25.6 

Pd (ms) 0.24 0.01 0.22 0.01 0.20 0.02 

Ratio % 13 1.55 26 1.37 31 1.49 

MOP (µV) 65 4.6 112 3.62 153 4.11 

AUC (µV.s) 4366 238 652 341 863 541 

Pt (ms) 0.98 0.08 0.64 0.07 0.56 0.049 

Pv % 7.65 1.2 12.5 1.12 21.6 1.91 

MVC 123 4.5 184 9.63 212 21.5 

HGF hand grip force, Peak the peak of wave, Rms root mean square, Pd peak delay, Ratio of muscle power, MOP mean of peak, AUC area 

under curve, Pt peak time, Pv peak variance, MVC maximum voluntric contraction 

 

Table 3. Shows the correlate among variables and HGF in 50%, 75%, and 100%. 
 Peak RMS AUC Pd Ratio MOP MVC Pt Pv 

50% 
Pearson 0.020 0.017 0.030 0.047 0.004 0.039 0.072* 0.006 0.016 

Sig. 0.532 0.587 0.347 0.138 0.889 0.222 0.022 0.856 0.616 

75% 
Pearson 0.416** 0.025 0.002 0.069* 0.028 0.030 0.024 0.002 0.017 

Sig. 0.000 0.438 0.952 0.028 0.380 0.340 0.448 0.957 0.589 

100% 
Pearson 0.304** 0.306** 0.358** 0.230** 0.253** 0.387** 0.366** 0.358** 0.174** 

Sig. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 *P<0.05
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Table 4.  Model summary and it's trusted in 50%, 75% and 100% 

 

Groups Varibles 
Intensity test 

50% 75% 100% 

Training 
Sum of Squares Error 284.79 339.15 250.03 

Relative Error 0.821 1.01 0.737 

Testing 
Sum of Squares Error 128.34 157.48 116.38 

Relative Error 0.901 0.98 0.679 

Table 5. Shows the importance of independantvariables in 50%, 75% and 100% intensity 

 

 

50% 75% 100% 

Importance 
Normalized 

Importance 
Importance 

Normalized 

Importance 
Importance 

Normalized 

Importance 

Peak 0.433 100.0% 0.119 41.2% 0.067 35.2% 

RMS 0.037 8.6% 0.128 44.2% 0.129 67.7% 

AUC 0.061 14.1% 0.086 29.7% 0.023 12.2% 

Pd 0.056 12.8% 0.289 100.0% 0.083 43.5% 

Ratio 0.056 13.0% 0.075 25.9% 0.110 58.1% 

MOP 0.094 21.7% 0.041 14.3% 0.157 82.5% 

MVC 0.096 22.2% 0.109 37.6% 0.190 100.0% 

Pt 0.075 17.2% 0.059 20.6% 0.156 81.9% 

Pv 0.091 21.0% 0.094 32.4% 0.086 45.1% 

 

Table 6. shows the descriptive and correlate between Handgrip Force (HGF) and Predictive Handgrip 

Force (P.HGF) 

 
  N Minimum Maximum Mean Variance skewness Correlate Sig. 

50% 
HGF 1000 12.69 36.72 24.79 12.6 0.074 

0.066* 0.037 
P.HGF 1000 23.97 25.83 24.79 0.145 .208 

75% 
HGF 1000 22.81 39.67 31.29 6.22 .074 

0.396** 0.000 
P.HGF 1000 28.89 33.71 31.21 0.912 .043 

100% 
HGF 1000 37.10 50.20 43.6951 3.763 .074 

0.535** 0.000 
P.HGF 1000 39.31 48.20 43.6594 1.304 .197 

       *P<0.05 

 

DISCUSSION 

 

Through the statistical results of the 

correlation coefficients between the variables of 

forearm muscle electrical activity during the three 

intensities under investigation, (Ismaeel & Fenjan, 

2020), it is observed that correlation coefficients 

were mildly present at 50% intensity and were 

significant for non-maximal voluntary contractions 

(Wei et al., 2023). Meanwhile, there was no 

significant correlation between the variables and 

forearm muscle strength. From the same table, a 

noticeable increase in the correlation percentage is 

observed at 75% intensity, with a focus on the 

peak electrical activity variable and the variable of 

the duration of higher activity. Additionally, a 

significant correlation is found between all 

variables and forearm muscle strength at 

maximum intensity, suggesting that the observed 

changes are statistically meaningful (Clancy et al., 

2005). A substantive explanation of the motor 

behavior of the muscle contraction being measured 

can provide insight into these findings (Smaeel et 

al., 2015). As wel as During muscle contraction, 

electrical signals are sent from the central nervous 

system (brain and spinal cord) to the muscle via 

nerve fibers. Although area under curve were ment 

the area under the electrical signal curve reflects 

the total electrical activity of the muscle over a 

specific time period (Králová et al., 2020). 

Till that maximum force and time 

durationcan explane the maximum force of muscle 

contraction depends on factors such as the number 

of responsive motor units and the activation of 

muscle fibers (Wakeling et al., 2002). After the 

peak of electrical activity, the muscle may 

maintain the ability to produce force for a longer 

period. This endurance can be attributed to the 
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resilience of muscle fibers and their capacity for 

sustained contraction (Rufo et al., 2021).  

Precise regulation of electrical activity may 

occur to sustain muscle force. Control over the 

activation of motor units and the distribution of 

electrical signals may contribute to this objective. 

In general, the prolonged maintenance of 

maximum force over time is explained by various 

factors, including the precise regulation of neural 

signals and the physiological properties of muscles 

(Forrester & Petrofsky, 2004). Neural and 

hormonal control, alongside the characteristics of 

muscle fibers, plays a crucial role in achieving this 

sustained force (Nema, 2022)  . The emphasis on 

muscle tension variability in generating force 

parallel to the stimulus is considered a significant 

academic source for understanding the objective 

changes in muscle contraction. This can provide a 

scientific explanation for the quality of the 

contraction, interpreting the nature of muscle 

tissue, and addressing training, rehabilitation, or 

health scenarios to optimize sports performance 

while considering the achievement of set goals 

(Journal et al., 2020). Understanding the nuanced 

aspects of muscle contraction is crucial in tailoring 

interventions for training, rehabilitation, or health 

improvement. The variations in applied muscle 

tension contribute to the diversity in force 

production, influencing the quality of contractions. 

Scientific insights into the nature of muscle tissue 

guide how training programs, rehabilitation 

strategies (Duque et al., 1995), or health 

interventions are structured. Dealing with training 

involves optimizing muscle tension to enhance 

performance, considering the specific goals set for 

athletic endeavors. Rehabilitation interventions 

aim to restore optimal muscle function, taking into 

account the intricacies of muscle contraction. 

Health-related considerations involve maintaining 

or improving muscle health while aligning with 

broader wellness objectives (Gabriel et al., 2011). 

By utilizing artificial neural network 

(ANN) technology and dividing the dataset into 

two subsets, namely the training set and the testing 

set, we can observe that variations in the intensity 

affecting the muscles of the forearm lead to 

changes in the statistical descriptors of the two 

groups. This is evident in the table above (Vieira et 

al., 2017). The use of artificial neural networks 

allows for the modeling and analysis of complex 

relationships within the data. The training set is 

employed to teach the neural network the patterns 

and features inherent in the data, while the testing 

set is used to assess the network's ability to 

generalize to new, unseen data (Sidek & Haja 

Mohideen, 2012). In the context of studying 

forearm muscles and their response to intensity 

variations, the statistical descriptors of the training 

and testing sets may exhibit differences due to the 

distinct patterns learned by the neural network 

during training. These differences could reflect the 

network's capacity to capture and adapt to the 

varying levels of muscle tension (Ismaeel & 

Fenjan, 2020). It's important to carefully analyze 

the specific statistical descriptors affected, as this 

can provide insights into how the neural network is 

interpreting and responding to the variations in 

muscle intensity.  

Additionally, (Selvanayagam et al., 2012), 

the performance of the network on the testing set 

helps evaluate its generalization capabilities and 

ensures that it can make accurate predictions on 

new, unseen data beyond the training samples (Jan 

et al., 1999). 

Building a model to predict muscle strength based 

on electrical activity variables can indeed provide 

objective insights and logical explanations (Kunc 

et al., 2019). However, the confidence in this 

model may vary with different intensities 

measured through it. Mathematical indicators give 

a clear idea by conducting statistical analysis 

among the three intensities to assess the reliability 

of the model for each intensity (Hou et al., 2007). 

The manuscript has demonstrated that the 

correlation between the recorded forearm muscle 

strength from the proposed device and the 

expected or estimated strength increases as the 

intensity approaches maximum (Wei et al., 2023). 

This can be explained by the fact that muscle 

fibers during contraction may provide a clearer 

picture of their behavior at higher intensities, as 

opposed to lower intensities. The model may excel 

in studying the timing of electrical activity at 

lower intensities, while the elevation in test 

intensity leads to a better understanding of the 

factors controlling the electrical recruitment of 

fibers (Bonato et al., 2001). In essence, the model's 

effectiveness may be influenced by the nature of 

muscle behavior at different intensities. It excels in 

studying electrical activity timing at lower 

intensities, while higher intensities provide 

valuable insights into the factors governing 

electrical recruitment of muscle fibers (Wang et 

al., 2021). The statistical analysis conducted 
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among the three intensities helps in assessing the 

robustness and reliability of the model across a 

range of muscle activities. 

Conclusions 

Different models are verified for each 

muscle contraction intensity (50%, 75%, 100%), 

each with its independent characteristics. The level 

of muscle mobilization is a fundamental principle 

in predicting muscle strength. Opportunity to 

explore the mechanisms of muscle action. 

Recommendations 

Classify the types of movements to be 

measured for strength according to intensity to 

achieve more logical results. Give greater 

importance to examining recorded strength along 

with expected strength simultaneously, with the 

option to disable self-data generation from within 

the application. Some variables of 

electromyographic activity associated with time 

and muscle strength need independent study based 

on the nature of the movement. Conduct applied 

field research coupled with standardized 

examination and evaluation devices. Low-intensity 

models exhibit a presence of variables related to 

time periods, while high-intensity models have a 

more pronounced presence of variables related to 

peak activity. There is inverse (negative) 

interference of some variables, providing a greater. 

There is a non-significant difference between the 

resulting and expected muscle strength using 

artificial neural networks. 
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