Fundamental Journal of Mathematics and Applications, 7(1) (2024), 53-58

FUNDEMENT]

Research Paper / Open Access

% FuiMa Fundamental Journal of Mathematics and Applications

ISSN Online: 2645-8845
www.dergipark.org.tr/en/pub/fujima
https://doi.org/10.33401/fujma. 1424382

A Note On Kantorovich Type Operators Which Preserve Affine
Functions

Didem Aydin Ar1 """ and Gizem Ugur Yilmaz >+

VKirikkale University, Faculty of Engineering and Natural Science, Department of Mathematics, Kirtkkale, Tiirkiye
2National Defence University, Turkish Air Force Academy,Istanbul, Tiirkiye
Tdidemaydn @ hotmail.com, * gzmm_ugur@windowslive.com

*Corresponding Author
Article Information Abstract
Keywords:  Modulus of con- The authors present an integral widening of operators which preserve affine functions. Influenced
tinuity; Rate of convergence; by the operators which preserve affine functions, we define the integral extension of these operators.
Voronovskaya theorem We give quantitative type theorem using weighted modulus of continuity. Withal quantitative

Voronovskaya theorem is aquired by classical modulus of continuity. When the moments of the
operator are known, convergence results with the moments obtained for the Kantorovich form of
the same operator is given.

AMS 2020 Classification: 41A25;
41A36

1. Introduction

In mathematical analysis, studies on approximation by linear and positive operators retained its importance for many years.
Recently many researchers have studied some generalizations of these operators, especially the Kantorovich form of Bernstein,
Baskakov and Szasz operators. Also they have studied some operators which preserve test functions, exponentials and affine
functions (see [1]-[8]).
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Note that K,, is just reproduced 1. These operators provide us to switch a Lebesgue integrable function by means of its mean

k k+1
values on the sets | —, .
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General in use, such a (L,),>1 sequence of linear and positive operators are specified. In 2016, Agratini studied Kantorovich
type operators which preserve affine functions ([2]). Inspire of these general operators which preserve affine functions, we
study these operators on weighted spaces.

Let’s describe the layout of this work. In first part, nodes and moments are given. The second part belongs to some
approximation findings for the operators.

The purpose of this article is to show that if we know the moments of the operators, we find convergence results with the
moments obtained for the Kantorovich type generalization of the same operator.
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2. Properties of the operators

Througout the paper, we consider an interval R™ = [0,c0). In [9], we can see the Kantorovich form of the Bernstein operators
as

K00 = ()Y Buale) [ (@), x€ [0,1]

k=0 i

n+1

where f € L;[0,1]. Let C (R™) denotes the space of real-valued continuous functions on R, now we give L, operator which
can be written as

Z)’”k xnk )CER+ (2.1)
ke,

where A, € C (R") and 4,4 > 0 and (n,k) € N x J,. Also (x,x)ey, be set on the interval R™ where J, C N is a set of
indices. Now we consider nodes for each n € N,

Xnjer ] — Xn o = Up, K € Jy
where lim u,, =0.
n—soo
We take into about L, operators given by (2.1) which preserve affine functions,

Z Anx(x) =1 and Z A (X)X =x, x ERT.
kEd, kEd,

Now let u, = sup u,. If R* = [0,00), then we set A* = [£-,c0).
neN

2.1. Auxiliary Results

We give some results which will be necessary for proofs of theorems. At first, we find some moments and central moments of

Xnk+1

Ly 2 /f 1)dt, x € R 2.2)

Un ey
n Xk

operators.
Lemma 2.1. Let L, defined by (2.1), n € N, x € A*and e,(t) =1t for
r=1, 2, 3, 4. Then we have

) Kn(eo)(x) 1,
(i) Kn(er)(x) =x+ o,
2
(i) Ky(e2)(x) = Ly(e2)(x) +unx— %,
3
(@iv) K, (e3)(x) = Ly(e3)(x) +3 SupLy(e2)(x) + utx — %,
4
v) K, (e4)(x) = Ly(e4) (x) + 2u,Ly(e3) (x) + 2uL, (e2) (x) +ux — '%"
Proof. (i) Itis clear from the definition of the operatorf(;.
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(v) At that time, (v) can be calculated similarly.
O

Lemma 2.2. Let ¢@"(t) = (t—x)",n=0,1,2,... For the operator K, given by (2.2) if we set §,»(x) = n((px( );x) and
Cna(x) = Ky(@f(t);x), then we have

2
u
G2 (x) = Ln(e2; ) + —x%

Cra(x) = Ly(es)(x)+ (2uy, —4x)Ly(e3)(x) + (2u,2, + —6xu, + 6x2)Ln(ez)(x) —|—4x3u,,Ln(el )(x) — 3x4Ln(e ) (x)+ u” —2x%u 2.

Proof. By using Lemma 1.1, we obtain

Gialx) = Ku(@2(1):x) = Lu(ea;x) + t + upx — 2x(x + %”) +2°
= Ly(er;x)+ %ﬁ —x%
Now let’s calculate K, (@?(1);x).
Gua(x) = Ku(@}(1):x) = Ku(eq,x) — 4K, (€3,x)x + 6K, (€2,x)x* — 4K, (e1,%)x° + x* K, (eo,, X)
= Ly(eq;x) +2upLy(e3 ;%) + 2uLy(ea ;) + upx + uf — dx(Ly (e3,;x) + %MnLn(eZ,;x) +ulx+ MZE')
+6x2 (Lo (€2,:X) + upx + %ﬁ) - 4x3(”2—” +La(e15x)) +x*Lu(eo ;%))

= Lu(eq)(x) + (2un — 4x)L,(e3) (x) 4 (2u? + —6xu, + 6x7) Ly, (€2) (x) +4x>up Ly (e1) (x) — 3x* Ly (e0) (x) 4 ut — 2x%u?,
so the desired result is achieved. O
3. Rate Of Convergence

In this part, setting f € R™, approximation result is given for K, operator. In [10] and [11], proof of Korovkin theorems are
given.
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Let p(x) = 1 +x* be a weight function and K + be a positive constant depending of f, we define
By (RY) = {f:R" 5 R:|f(x)| <K/ p(x)}
and
Cu (B*) = C (B*) NBy (E*).
Considering the space of functions
Cy (RY) = {fe Cu (RY) : lim 2 =k, < oo}.
Obviously Cj; (R*) € Cy (R*) C By (RT). Here the norm is defined as
Sl
1Al = sup =——.

H xeRT (X)

If fe C,]j (RT), then ||L,(f) |l < [If1l,, -These results and Korovkin type theorems can be seenin [12, 10, 11].

Let C¥(R™) be the subspace of all the functions f € C(R™) such that lim ﬂ—?z‘ = k, where k is a positive constant. For
X—yo0

f € C*(R"), weighted modulus of continuity is defined by

o |f (1) — f(x)]
0lf:0)= \lfx\é&pxeﬂw (1 +x2)(1 +(t _x)Z) '

(3.1)

Utilizing 3.1, we give quantitative type theorem.

Theorem 3.1. If f € Cﬁ (R™), then we have

K(f:2) = f(x)| < 32(1+27)Q(f:9).
Proof. From the property of (3.1), we can write

Q(f:A8) <2(1+4)(1+6%)Q(f:9)

for positive A (see in [13]). By the definition of Q(f;0) for f € Cﬁ (R*) and x, 7 € R* and § > 0, the following inequality is
satisfied:

4
70~ 1] < 16 (1422) Q4(:9) (1 = ) 62)

and by using Lemma 1 and (3.2), we have

Kol — (0] < £ 1= K139+ Kall70) = £ ()] ):

Now applying (3.1) to f{\L

Xnk+1

R @] < T aat) [ 170 fola
N kedy ok
< 16(1+X2)Q(f,6) <1+Cn§§x)>7

choosing 6 =/, 4(x), it follows

Kt s 0| <32(+2)0 15/,
so we obtain desired result. O

Let us denote by @ (f;8), the classical modulus of continuity defined as

o(f;8)=  sup |f(x)=f{)]. (3.3)

|x—t|<8 xteRT
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Theorem 3.2. Let f € CR) and o (fN; 5) is the modulus of contiuity of f such as finite for 8 > 0. We have
1 - 1 » " Cn74 (X)
ey (Kor) ) =) = 53¢ <x>] <o (f N (X)> .

Proof. By using the Taylor expansion at the fixed point x and (3.3) for & € [x,7], we obtain

o) = |f(t)—f(x)—fl(!x)(t—X)— P10y
—x2 " " x2 "
- E o -rw| <S5 e (118 )
—x —x2 —X 1"
< 0 (e -a) < L0 O+V5|)wu 5)

Now applying it to IA(;,we have
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If we choose

and by using

(K ler — x) < 4/ Gua(x) 4/ G2 (x)

inequality, we can write

(Kaf) () = 1) fz” Ve

<\ f ( \/447(?>

Thus we obtain

‘ 1 (kv"f)(x)_f(x)_lf”(x)‘g ( \/m>

4. Conclusion

In this study, we showed that when the moments of an operator are known, some approximation theorems can be given for the
Kantorovich type of the same operator using these moments.
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