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 This study presents a Geographic Information Systems (GIS) and Unmanned Aerial Vehicle 
(UAV) based approach to determine suitable roof patches of buildings for solar panel 
installation in Harran University (Şanlıurfa) campus area. Initially, the Solar Radiation 
Potential (SRP) of the study area was calculated using a UAV-based Digital Surface Model 
(DSM) in GIS. Then, a correction process was applied to this theoretically calculated SRP by 
using an adjustment coefficient derived from 5-year measurements of the Solar Power Plant 
(SPP) located in the region. This coefficient was used to adjust the calculated SRP and 
compared with the SPP measurements at a concurrent period. The rooftop objects were 
segmented by textural analysis to determine the suitable panel installation patches on the 
buildings. Then, the obtained suitable patches are divided into four different classes 
considering the adjusted total SRP to find panel installation priority. Finally, the calculated 
electricity potential of the suitable roof patches could meet approximately 65% of the yearly 
consumption of campus buildings. This paper reveals that in GIS-based SRP studies, it is 
necessary to detect the rooftop objects to obtain the solar panel installation area more 
accurately, and a correction should be applied to approximate the theoretically calculated SRP 
values to the actual values.   

Research Article 
 
Received: 23.01.2024 
Revised:  12.03.2024 
Accepted: 17.03.2024 
Published: 25.07.2024 
 

 

 
 
 

1. Introduction  
 

In today's world, energy usage is perceived as an 
indicator of technological development and high welfare 
levels for developed countries. All fundamental and 
essential aspects of life, such as industry, trade, housing 
and transportation, depend on energy. However, the 
primary energy resources of the world such as water and 
fossil-based fuels, are in continual depletion. This 
depletion affects human life as well as energy production 
directly. Moreover, the usage of these primary energy 
resources causes ecological damages such as drought, air 
and soil pollution, etc. This has driven many countries to 
use clean and renewable energy sources such as wind, 
geothermal and solar [1]. In the past few decades, these 
alternative renewable energy resources made a rapid 
change, especially in rural settlements [2].  According to 
Elliot et al. [3], any kind of renewable energy source 
provides opportunities for electricity generation at a 
public service scale, village and farm needs, and off-grid 
independent energy generation. At this point, some 
parameters such as energy demand, environmental 

conditions and especially power station locations should 
be considered to establish alternative power systems [4]. 
In this context, solar energy has the potential to become 
more popular than other renewable energy sources with 
its accessibility, economic advantage, and ease of use.  

Estimating solar energy is a valuable tool for 
developing energy strategies, designing facilities and 
urban planning [5-9].  As it is known the fundamental 
consideration for solar energy is to detect Solar Radiation 
Potential (SRP) both spatially and temporally. This 
potential can obtain either meteorology station 
measurements (used to estimate the solar radiation 
through interpolation in the areas) or Geographic 
Information Systems (GIS) based Digital Surface Model 
(DSM) approach [10].  A meteorological station based 
study was performed by Nematollahi and Kim  [11]. They 
calculated the yearly horizontal radiation of 24 
meteorology stations for five years to get a feasibility 
report for new Solar Power Plants (SPP). Meteorology 
stations may not always be used for several reasons such 
as inconvenient location, insufficient station number, 
incompatible technology and missing parameters [12]. 
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Due to the scarcity of meteorology stations, GIS-based 
studies are more abundant in scientific literature. In 
these kinds of studies, DSM is an essential input for the 
SRP calculation based on the hemispherical model. The 
spatial resolution of the DSM is important and depends 
on the generation methods. For instance, while a DSM 
(~1 m) generated with Light Detection and Ranging 
(LiDAR) data may be sufficient to get the slope and 
orientation of rooftops in terms of spatial resolution, a 
Shuttle Radar Topography Mission (SRTM) elevation 
data (~30 m) could not be used for this purpose. 
Therefore, high resolution data is required for solar 
panel installation studies. 

The roof of a building is the most suitable patch for 
solar panel installation. Thus, SRP calculation becomes 
more complicated due to the requirement for 
comprehensive knowledge of the geometric and physical 
conditions of rooftop structures [13]. Generally, in city-
scale studies, a LiDAR-based DSM is used to calculate the 
SRP of the entire city surface. Subsequently, the building 
footprints and directions are used as constraints to 
obtain rooftop SRP values [14]. Kucuksari et al. [15] 
followed a similar procedure and used airborne LiDAR 
data with GIS in a campus area to calculate SRP using 
slope, aspect, elevation and insolation as input 
parameters. Then, to get the long-term net profit of 
rooftop solar panel installations, electricity potential was 
examined in consideration of possible costs. Huang et al. 
[14] proposed a Graphical Processing Unit-based SRP 
calculation model with LiDAR data using GIS. The 
suitable roofs were decided according to the yearly 
average total radiation, slope, and aspect. Verso et al. [16] 
applied a multi-criteria approach based on GIS and DSM 
to calculate the SRP. Then several criteria were applied 
such as building shapes, types, annual solar potential and 
panel size to detect suitable roofs. 

Determining the appropriate roof patches and 
evaluating their SRP is important for solar panel 
installation [15]. Depending on the complexity of the 
urban area, the accuracy and resolution of the spatial 
data may vary. The high-resolution DSM can be obtained 
by satellite imagery and laser systems, but it is not 
efficient in terms of economy, time, and updating. In this 
context, DSMs with different spatial accuracy and 
resolution can be produced using Structure-from-Motion 
(SfM) based Unmanned Aerial Vehicle (UAV) 
photogrammetry. This approach, which has been used 
extensively in the last two decades, brings great 
advantages. It provides cheaper and higher spatial 
resolution DSM in comparison with LiDAR, especially for 
local city areas [17]. 

Compared to conventional manned aerial 
photogrammetry, UAV photogrammetry has serious 
advantages in areas such as flight altitude, cost, time, 
repetitive use, and image processing [18]. It is also 
suitable for photogrammetric flights. Especially the SfM 
approach used in the processing of aerial photographs 
obtained by UAV gives very successful results. This 
approach is an innovative, user beneficial and low-cost 
photogrammetric technique, which has been used widely 
over the last few years [19].  

Besides, the possibility of re-use of UAV systems, 
being automatic, portable, and easy to use in the urban 
area makes it more advantageous [20]. Thus, UAV-based 
DSMs can be used in SRP studies for urban areas. In this 
regard, Shao et al. [21] applied a UAV-based procedure to 
get high resolution data on roofs. They classified the 
building types and building roofs (flat, non-flat) to make 
a better decision for panel installation. Dewanto et al. 
[22], calculated rooftop SRP from UAV-based DSM and 
overlaid it on a three-dimensional (3D) model of campus 
buildings using a web-based GIS environment. Fuentes et 
al. [23], calculated the SRP of an individual building roof 
with UAV-based DSM. After solar panel installation, the 
generated electricity production was compared with the 
calculated potential for a year. 

There are two common gaps in the mentioned SRP 
studies: (1) the rooftop objects were not considered and 
(2) the SRP is based on theoretical calculations. 
Generally, in GIS-based studies, the entire rooftop is 
considered a potential solar panel installation area. 
However, this assumption may deviate considerably in 
the real world, especially in cases of different roof types 
(flat, non-flat). Moreover, rooftops may be occupied by 
different objects such as chimneys, air conditioners, 
ventilation, antennas, or solar water heating panels. In 
such cases, a detailed analysis of the rooftop is required 
to calculate accurate SRP. For this analysis, an high-
resolution DSM (e.g., pixel < 25 cm) is needed. Thus, 
rooftop objects can be eliminated and the most suitable 
areas for solar panel installation can be determined by 
segmenting roofs in more detail. Although in some 
studies segmentation is used to detect the roof planes, 
the rooftop objects on the segmented planes were 
ignored. Furthermore, SRP calculation performed in 
hemispherical based GIS software gives approximate 
results since it does not contain real meteorological 
factors. This situation causes the calculated SRP to be 
different from the actual Solar Radiation (SR). While a 
comparison between generated electricity and GIS-based 
calculated energy was performed in some studies, no 
adjustment process mentioned calculated SRP.  

The objectives of this study are twofold: first, it 
attempts to determine the most suitable roof patches for 
solar panel installation; second, it attempts to adjust the 
calculated SRP. For this purpose, a textural analysis was 
performed using high-resolution DSM to detect the 
rooftop objects. Then, monthly, seasonal and annual 
coefficients were calculated with the data (for 5 years) 
obtained from the SPP in the study area and the most 
suitable coefficient was used to adjust the calculated SRP. 

 

2. Method 
 

The study was held in the Harran University 
Osmanbey Campus located in Şanlıurfa which is in 
southeast Turkey (Figure 1). The annual average (last 30 
years) of the sunshine duration of the city is over 8.5 h/d 
[24]. According to the long-term average of SR reported 
in Global Solar Atlas [25], Şanlıurfa has one of the highest 
SRP in the country. 

The SR of a particular point on the earth depends on 
the orientation and elevation [26]. Thus, the SRP of that 
point is mainly calculated according to the hemispherical 
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viewshed algorithm. A DSM can supply necessary 
information about the surrounding topography including 
the obstacle and shadow area of that point [27]. Although 
DSM is sufficient for SRP calculation, various parameters 
such as meteorological station data [14], classified 
satellite images [28] and topographic maps [29] can be 
used as inputs depending on the purpose of the study. In 
our case, the building footprints, SPP measurements and 
UAV based DSM were used as input. The workflow of the 
study is given in Figure 2. 

In the study, a workflow including photogrammetric 
UAV flight, SfM, textural analysis and GIS based SRP 
calculation was carried out. There are several important 
and specific steps within this workflow. First, the high-
resolution DSM of the region was produced using SfM-
based UAV photogrammetry. Second, textural analysis 
was performed on high resolution DSM to detect rooftop 
objects. Third, is the coefficient calculation for the SRP 
adjustment. Finally, the electricity potential was 
calculated according to the suitable roof patches and was 
compared with the actual consumption. 

 

 
Figure 1. The study area. 

 

 
Figure 2. The workflow of the study. 



International Journal of Engineering and Geosciences, 2024, 9(2), 281-291 
 

284 
 

2.1. UAV photogrammetry 
 

There are some differences between SfM and 
traditional photogrammetry in terms of mathematical 
and statistical approaches. Traditional photogrammetry 
looks for solutions by using global consistency, 
compatibility, the accuracy of measurements and model 
validity. On the other hand, SfM is an image matching 
technique that generates a 3D model of an object by 
automatically aligning positions, camera parameters and 
3D geometry of the object with an appropriate overlap 
rate through a photogrammetric approach [30]. Then, a 
photogrammetric bundle block adjustment is used to 
build a local model with all generated 3D points. Today, 
several SfM-based image processing software can 
generate high resolution DSM and orthophoto from 
aerial images captured with UAV platforms [20]. Lucieer 
et al. [31] managed to generate a 2 cm resolution DSM to 
get microtopography with Agisoft software. Toprak et al. 
[18] reached under cm accuracy in a rocky archeological 
site with the SfM approach. Besides, due to the high 
spatial resolution data of UAV systems, they can be used 
in biomass estimation and yield prediction [32], cotton 
plant height [33] and accurate extraction of buildings in 
a complex urban area [34]. 

 
2.2. Textural analysis 

 
The purpose of texture analysis is to identify flat areas 

suitable for panel installation. At this point, texture 
analysis aims to detect objects that disrupt the flatness of 
a roof section and could obstruct panel installation, such 
as air conditioning units, antennas, or chimneys. 

Images are generally described with color values, 
brightness and pixel size. On the other hand, texture 
parameters such as variance, dissimilarity and entropy 
are rarely used. A pixel of an image can contain color and 
brightness values. However, the texture becomes 
meaningful with a set of neighboring pixels. 
Mathematically, the Gray Level Co-Occurrence Matrix 
(GLCM) is used to get a two-dimensional histogram of the 
gray levels of a neighboring pixel pair. In other words, 
GLCM displays the frequency of pixel pair apparency in 
an image. GLCM is used to calculate texture parameters 
which are suggested by Haralick et al. [35]. In this study, 
the GLCM-based variance parameter was used to detect 
rooftop object segments. Briefly, variance defines the 
heterogeneity of pixel neighboring. Equation 1 is used to 
calculate the variance parameter. 

∑ (𝑖 − 𝑀)2𝑃(𝑖)

𝑁𝑔−1

𝑖=0

 (1) 

 
where: 

• P(i) denotes pixel probability. 
• Ng refers to pixels' gray value. 
• M is the mean pixel value obtained from input 

DSM. 
 

2.3. GIS-based calculation of solar radiation 
potential 

 

It is a fact that the amount of SR emitted from the sun 
is different from the amount reaching the earth's surface 
by passing through the atmosphere. Ŝúri and Hofierka 
[36] reported three main elements that affect SR: Earth’s 
position, Earth’s topography, and atmospheric 
conditions. In a GIS-based SRP calculation, above 
mentioned elements are used as solar parameters, DSM 
and atmospheric conditions (absorption and dispersion) 
respectively. DSM is used to determine the maximum 
possible obstruction angle in consideration of all 
directions around the geographical location of the study 
area [27]. The detected angles allow us to get a 
hemispherical viewshed that consists of both visible and 
blocked directions in the sky [26]. This sky map is used 
to calculate the diffuse SR (caused by the scattering of 
sunlight in the atmosphere) received at a particular 
location in DSM. Then, the sun map is produced 
according to the position change of the sun over time 
(hour, day and month) considering the position of the 
study area. The sun map is used to estimate the amount 
of direct SR received by a particular location in DSM [37]. 

The generated viewshed, sun map, and sky map are 
used to calculate direct and diffuse SR for every single 
pixel of DSM in GIS [38]. The whole amount of SRP which 
is called the global SR (𝐺𝑙𝑜𝑏𝑎𝑙𝑇) is derived from the sum 
of the total direct SR (𝐷𝑖𝑟𝑇) and total diffuse SR (𝐷𝑖𝑓𝑇) 
(Equation 2) [39]. 
 

𝐺𝑙𝑜𝑏𝑎𝑙𝑇 = 𝐷𝑖𝑟𝑇 + 𝐷𝑖𝑓𝑇 (2) 
 

The total direct SR (𝐷𝑖𝑟𝑇) of a particular location on 
the earth's surface is the sum of the direct SR from all 
directions of the sun map (Equation 3) [27].  

 

 

𝐷𝑖𝑟𝑇 = ∑ 𝑆𝐶𝑜𝑛𝑠𝑡 ∗ 𝛽𝑚(𝜃) ∗ 𝑆𝑢𝑛𝐷𝑢𝑟𝜃,𝛼 ∗ 𝑆𝑢𝑛𝐺𝑎𝑝𝜃,𝛼 ∗ cos(𝐴𝑛𝑔𝑙𝑛𝜃,𝛼) (3) 

 
where: 
• 𝜃 – with a centroid at a zenith angle. 
• 𝛼 – azimuth angle. 
• 𝑆𝐶𝑜𝑛𝑠𝑡 — The solar flux constant (1367 W/m2) 

[40]. 
• 𝛽 —The atmosphere transmissivity for the 

shortest path in the zenith direction. 
• 𝑚(𝜃) — The relative optical path length. 

• 𝑆𝑢𝑛𝐷𝑢𝑟𝜃,𝛼 — The time duration of the sky map. 

• 𝑆𝑢𝑛𝐺𝑎𝑝𝜃,𝛼 — The gap fraction for the sun map. 

• 𝐴𝑛𝑔𝑙𝑛𝜃,𝛼 — The angle of incidence between the 

axis normal to the surface and the centroid of the 
sky sector (tilt angle). 

 
Diffuse radiation (𝐷𝑖𝑓𝑇) is calculated using Equation 

(4) [27]: 
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𝐷𝑖𝑓𝑇 = 𝑅𝑔𝑙𝑏 ∗ 𝑃𝑑𝑖𝑓 ∗ 𝐷𝑢𝑟 ∗ 𝑆𝑘𝑦𝐺𝑎𝑝𝜃,𝛼 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡𝜃,𝛼 ∗ cos(𝐴𝑛𝑔𝑙𝑛𝜃,𝛼) (4) 
 

where: 
• 𝜃 – with a centroid at a zenith angle. 
• 𝛼 – azimuth angle. 
• 𝑅𝑔𝑙𝑏 — The global normal solar radiation. 

• 𝑃𝑑𝑖𝑓 — The proportion of global normal 

radiation flux that is diffused. It is approximately 
0.2 for very clear sky conditions and 0.7 for very 
cloudy sky conditions. 

• 𝐷𝑢𝑟 — The time interval for analysis. 
• 𝑆𝑘𝑦𝐺𝑎𝑝𝜃,𝛼 — The gap fraction for the sky map. 

• 𝑊𝑒𝑖𝑔ℎ𝑡𝜃,𝛼— The proportion of diffuse radiation 
originating in each sky sector relative to all 
directions. 

• 𝐴𝑛𝑔𝑙𝑛𝜃,𝛼— The angle of incidence between the 
intercepting surface and the centroid of the sky 
sector (tilt angle). 

 
In equations for both diffuse (3) and direct solar 

radiation (4), the variables 𝜃, 𝛼 and 𝐴𝑛𝑔𝑙𝑛𝜃,𝛼 —which 
represent the zenith, azimuth, and tilt angles, 
respectively—are dependent on the Earth's position and 
vary over time. Latitude plays a significant role in solar 
geometry, influencing these parameters in relation to the 
sun's position. 

 
2.4. Estimation of adjustment coefficient 

 
As mentioned in Section 1, GIS-based calculated SRP 

varies from actual SR. Thus, an adjustment process is 
needed. For this purpose, monthly average SR data for 6 
years were obtained from the SPP located in the study 
area. 5-years of SR data (2015-2020) were used for the 
Adjustment Coefficient (AC) estimation and the 
remaining 1-year (2021) SR data were used for control 
purposes. The 5-year SR data were grouped into time 
intervals as monthly, seasonal and yearly and their 
averages were obtained. Similarly, the calculated SRP 
data for 2021 were grouped as monthly, seasonal and 
yearly. The 5-year average of SR values was 
proportioned to the 2021 calculated SRP values and then 
monthly, seasonal and annual coefficients were 
calculated. In the end, 3 different types (monthly, 
seasonal and annual) of ACs were obtained by using 
Equation 5. 

 

𝐴𝐶𝑡 =

(∑ 𝑆𝑅𝑡𝑖

2020

𝑖=2015
) 5⁄

𝑆𝑅𝑃2021𝑡

 
(5) 

 
where: 
• 𝐴𝐶 is the Adjustment Coefficient. 
• 𝑡 – is the time interval (e.g., January for monthly, 

Spring for seasonal and year for annual 
adjustment calculation 𝑡 = 𝑖). 

• 𝑖 – is the measured year of the SPP data. 
• 𝑆𝑅 – is the solar radiation value of the 

corresponding year. 
• 𝑆𝑅𝑃 – is the calculated solar radiation potential 

from GIS. 

By applying these ACs to 2021 calculated SRP, 
monthly, seasonal and annually corrected SRP values 
were obtained. The corrected SRP values were compared 
with 1-year (2021) of measured SR data to determine the 
most suitable AC. Thus, the GIS-based calculated SRP 
values are approximate to the real values by using the 
most suitable AC. 

For AC calculation, it is necessary to have a monthly 
average SR measurement collected from near the region 
of interest. Since meteorological conditions directly 
affect the sunshine duration during the day, hourly SR 
measurements must be obtained for a reliable monthly 
average SR measurement. In addition, the location of the 
study area directly affects the SR value. Any significant 
changes in these parameters will require a recalculation 
of AC. 

 
2.5. Identifying suitable roof patches 

 
All the roof patches of a building cannot be suitable 

for solar panel installation due to the above-mentioned 
rooftop objects. Thus, all roof patches were determined 
as suggested in Section 2.2. Consequently, rooftop 
objects were detected, and several parameters were used 
to identify suitable roof patches. 

The first parameter is the minimum installation area. 
This parameter should be decided according to the solar 
panel dimensions and orientations to be installed. That 
means this parameter may vary depending on the project 
requirements, panel and building type. Although Khanna  
[41] reported that less than 30 m2 of building roof 
patches may not be suitable for panel installation, Palmer 
et al. [42] used 8 m2 for houses and Huang et al.  [14]  used 
10 m2 for urban buildings. We used this value as 30 m2 in 
consideration of large faculty buildings and panel 
dimensions. The second parameter is the slope. It is not 
feasible to install panels over a 45-degree slope. So, a 
lower than 45-degree slope is used as a parameter in this 
study. The third parameter is the aspect. The study area 
is located in the northern hemisphere. Therefore, the 
amount of SRP is inadequate for the north facing roof 
patches. So, these patches were removed. The last 
parameter is the minimum amount of the yearly average 
SRP of the patches. This parameter was used as a yearly 
minimum of 800 kWh/m2. 

 
2.6. Estimation of electricity potential 

 
Spatial variations of solar panel installations on the 

roof are critical to understanding the SRP [43]. 
Calculating the electricity potential from SRP depends on 
the installation scenarios of the panels and the panel 
properties [44]. In this context, tilt and panel area affect 
the total number of panels, while efficiency and 
performance ratio values affect the total electricity 
potential. For this reason, creating building-based 
scenarios may give more accurate results. However, this 
approach is not effective in urban areas with many 
buildings. Additionally, there is no need for spaces and 
access roads between the solar panels on a roof, unlike 
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the solar panels installed in the open area according to an 
expert opinion from the SPP. Therefore, in our case, it has 
been assumed that all suitable roof patches are installed 
with similar solar panels (25% tilt and 1.67 m2 panel 
area) of SPP in the region. Hence, the same panel 
parameters namely efficiency and performance ratio 

values were used for electricity potential calculation. To 
determine electricity potential Equation 6 was used [13]. 

In this study, the SR value refers to the adjusted SRP 
(kWh/m2), the efficiency of the solar panel is 16% and 
the performance ratio of the solar panel is 88%. The 
efficiency and performance ratio of the panel were 
obtained from the manufacturer of the panels. 

 
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑆𝑅 𝑣𝑎𝑙𝑢𝑒 × 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 × 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 (6) 

 
3. Results and discussion 
 

In the study, ten different photogrammetric flight 
plans were prepared, and UAV (DJI Mavic 2 Pro) flights 
were performed to create a high-resolution DSM.  For the 
flight parameters, the elevation was decided as 100 m for 
70% overlaps both forward and literal. 1019 suitable 
aerial images were captured for the 4.16 km2 area. The 
calculated ground sample distance was 3.7 cm. In the 
end, the orthophoto and a 25 cm spatial resolution DSM 
were generated for the study area (Figure 3). All 
photogrammetric products were generated in Pix4D 
software. 

Before textural analysis, the DSM was masked with 
building footprints. Then the texture-based variance 
parameter was generated by using masked DSM and the 
segments of the rooftop objects were obtained. Sample 
buildings with original and segmented footprints are 
given in Figure 4. 

As seen in Figure 4, the rooftop objects such as air 
conditioner parts, antenna, chimney and elevator room 
were detected successfully. Thus, 147 parts of the 
original building footprints were segmented into 699 
parts. This situation allows us to investigate all 
segmented roof patches in detail for panel installation. 

 
 

 
Figure 3. Orthophoto and DSM of the study area. 

 

 
Figure 4. Sample buildings with original and segmented footprints. 

 
After the rooftop segmentation, comparison and 

adjustment were performed between calculated SRP and 
SPP measurements. To find a suitable AC, three different 
SR data were used (Table 1). The first one is the 
calculated SRP of the study area from March 2021 to 
February 2022. Second is the monthly measurements of 
the SPP for a continuous period of 5 years from March 

2015 to February 2020. This data was used to calculate 
ACs. The third one is the SPP measurement from March 
2021 to February 2022. This data was used to compare 
adjusted SRP values. 

In Table 1, the total of the 1-year SPP measurements 
(2021-2022) is close to the total of the 5-year SPP 
measurements (2015-2020). However, the total of the 
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calculated 1-year SRP (2021-2022) significantly differs 
from these measurements. Therefore, the 5-year SPP 
measurements were compared with calculated SRP 
utilizing monthly, seasonal and annual periods. 
According to this comparison, three types of ACs were 
calculated regarding Equation 5 (Table 2).  

 
Table 1. Monthly averages of solar radiation values 

(kWh/m2). 

Month 
Calculated 

SRP 
(2021-2022) 

SPP  
Meas. 

(2015-2020) 

SPP  
Meas. 

(2021-2022) 
March 105.13 141.24 123.47 
April 139.86 181.14 158.52 
May 172.32 211.36 218.13 
June 176.11 239.88 219.35 
July 178.44 248.62 236.21 

August 156.46 219.42 225.46 
September 116.07 176.70 208.40 

October 79.35 127.97 152.70 
November 47.08 85.98 130.99 
December 33.96 65.41 72.23 

January 43.12 71.49 91.25 
February 63.47 92.18 97.96 

Total 1311.37 1861.37 1934.66 

 
Table 2. Calculated Acs. 

Month 
Adjustment Coefficients 

Monthly Seasonal Annual 

March 1.343 

1.288 

1.502 

April 1.295 

May 1.227 

June 1.362 

1.386 July 1.393 

August 1.402 

September 1.522 

1.654 October 1.613 

November 1.826 

December 1.926 

1.679 January 1.658 

February 1.452 

 
The calculated coefficients were used to adjust the 

SRP values. In order to examine the effects of the 
coefficients, the calculated and adjusted SRP values for 

2021-2022 were compared with SPP measurements for 
2021-2022 (Figure 5). 

Although there is not a big difference in trend (similar 
fluctuation) between the SPP measurement (turquoise) 
and the calculated SRP (blue), there is a considerable 
difference in quantity. The main reason for this is the lack 
of meteorological models in GIS-based approach. The 
theoretical values are approximated to the actual values 
with the calculated ACs. As seen in Figure 5, the annual 
adjusted SRP values show the highest deviation from the 
SPP measurement. Even though the monthly adjusted 
SRP values were improved, the seasonal adjusted SRP 
(green) more significantly approached SPP 
measurement. To express this situation metrically, the 
averages of monthly differences between all the SRP 
values and SPP measurements given in Figure 5 were 
examined (Table 3). 

In Table 3, the difference between SPP measurement 
and seasonal adjusted SRP is the lowest. Therefore, the 
seasonal coefficient was selected for SRP adjustment. The 
comparison of averages of yearly total values for 
calculated SRP, SPP measurement and adjusted SRP 
values were given in Table 4. 

 
Table 3. The averages of monthly differences 

(kWh/m2). 
  Adjusted SRP 

Difference 
Between 

Calculated 
SRP 

Monthly Seasonal Annual 

SPP Meas. 
(2021-2022) 

51.94 18.33 17.97 32.60 

 
Table 4. The averages of the yearly total (kWh/m2). 

 Calculated 
SRP 

SPP 
Measurements 

Adjusted  
SRP 

2021-2022 1311.37 1934.66 1882.86 

 
According to the averages of yearly total values given 

in Table 4, the difference between the calculated SRP and 
the SPP measurement values is approximately 46%. This 
difference decreases to 3% after the adjustment is 
applied. In this case, a 43% improvement was achieved 
by using AC. Thus, the seasonal AC was used to adjust the 
SRP values of roof patches. The seasonal adjusted total 
SRP for buildings is given in Figure 6. 

 

 
Figure 5. The comparison of monthly solar radiation average values. 
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Figure 6. The adjusted total SRP for buildings. 

 

 
Figure 7. Suitability classes of roof patches for solar panel installation. 

 

 
Figure 8. Suitability of the sample buildings. 
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In this study, 262 suitable roof patches were selected 
from all segmented parts regarding the parameters given 
in section 2.5. Also, a suitability classification was 
produced according to adjusted total SRP values to find 
the priority of the roof patches (Figure 7). Thus, 
flexibility has been provided in terms of which suitable 
roof patches should be preferred primarily in solar panel 
installation projects. 

According to the results, the yearly SRP values for 
suitable patches varied from 901 to 2014 kWh/m2 and 
the average SRP value of the whole suitable roof patches 
was calculated as 1715 kWh/m2. The Capable class has 
the lowest area (13%) according to the whole suitable 
area. Similarly, the best class which has the highest SRP 
values covers 31% of the suitable area. In general, 87% 
of the suitable areas were highly efficient (yearly over 
1655 kWh/m2) for panel installation. A close view of the 
suitability of the sample buildings is given in Figure 8. 

Rooftop segmentation and suitability classification 
provided detailed information for panel installation. For 
instance, when Figure 8 was examined, multiple 
suitability classes can be seen in an individual building 
due to the segmentation. Thus, it can be easily decided 
primarily on the installation patch for every building. 
Additionally, the unsuitable roof patches for solar panel 
installation were eliminated. It should be noted that the 
material for the construction of roofs is not investigated 
in the study. This situation needs to be considered in the 
installation process. 

For further analysis, the adjusted SRP of usable roof 
patches was converted to the electricity potential. To 
achieve this, the same installation features of the SPP 
(25% tilt and 1.67 m2 panel area) located in the study 
area were utilized. According to the panel 
manufacturer's 16% efficiency and 88% performance 
ratio values, the yearly theoretical electricity generation 
potential was calculated as 13 GWh. This calculated 
amount meets approximately 65% of campus 
consumption in 2021. 

 

4. Conclusion  
 

Today, traditional energy sources are declining, while 
energy demand is increasing. This trend is leading people 
to seek renewable energy sources. As a renewable energy 
source, solar energy has become more popular due to the 
wide range of accessibility from all around the world. At 
this point, the first step to establishing a facility is to 
determine SRP for the interested area. This process is 
easier for an open area, but it is complicated for rooftops. 
In this study, a workflow including photogrammetric 
UAV flight (DJI Mavic 2 Pro), SfM, image processing and 
GIS was used to detect both SRP and suitable roof patches 
for solar panel installation. 

In the study, the UAV-based high-resolution DSM and 
SRP were generated for the study area. Then, three types 
of ACs were calculated based on long term SPP 
measurements. These ACs have been applied to the 
calculated values and compared with the 2021 
measurements.  Seasonal AC was chosen as it most 
closely approximates the GIS-based calculated values to 
the SPP measurements. This AC was used to adjust the 
SRP values of roof patches. To select suitable areas, the 

segmented roof patches and adjusted SRP were 
examined in consideration of the given installation 
parameters. Consequently, the selected roof patches 
were classified to find the priority of panel installation. 
According to the results, 87% of suitable roof patches 
were identified as highly efficient (yearly over 1655 
kWh/m2) for solar panel installation. For a solid 
example, the adjusted SRP is converted to the electricity 
potential and compared with campus electricity 
consumption for 2021. It is seen that the potential of 
suitable roof patches corresponds to 65% of the actual 
electricity consumption for 2021. 

It is necessary to visit each roof manually when UAV 
and GIS are not used to determine suitable areas for 
panel installation. In these manual visits, suitable areas 
for installation should be determined by considering the 
area of the roof, roof objects, and shadow areas. This is 
time consuming, costly, and labor-intensive when 
multiple buildings are involved. On the other hand, when 
UAV is used, roof areas and roof objects are obtained 
precisely, economically, and quickly, without making any 
building visits with high resolution orthophoto and DSM 
of the study area. In addition, the SRP values of the roofs 
that cannot be obtained by manual building visits can be 
calculated using GIS. In this way, suitable roof patches for 
panel installation and their priorities were determined. 
As a result, the UAV and GIS methods are more practical 
and effective than the manual method in terms of SRP 
calculation, data recording, time and personal safety, 
especially for local areas. Besides, the rooftop 
segmentation facilitates the detection of suitable areas 
for solar panel installation. In GIS-based SRP studies, 
values may deviate from the actual value due to multi-
parametric algorithms. At this point, regional ACs may be 
used to correct the SRP values. In future studies, under 
which conditions and how much the AC value changes 
from region to region will be examined. 
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