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Abstract 

A three-dimensional analytical solution was derived for an incompressible steady potential at an initially uniform 

velocity flow around a sphere, which translates forward, backward, rotates longitudinally or transversally. The 

concept of relative velocity was used to analyze the flow around the transitionally moving sphere. To analyze the flow 

around the longitudinally rotating sphere, A formula of the circumferential velocity of the fluid is found at the 

equatorial plane of the sphere and then generalized to the whole sphere as an approximation. The superposition 

principle of velocities was used to analyze the flow around the transversely rotating sphere, the stagnation points were 

detected and analyzed, the pressure distribution at the equator was calculated and compared with the experimental and 

CFD results, and the lift coefficient was calculated and compared with the experimental results and a good agreement 

for 𝐶𝑝 and 𝐶𝐿 was found at low spin factors, In contrast, at high spin factors the results begin to diverge due to the 

viscous effects and eddy formation. 
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POTANSİYEL AKIŞ İÇİN DÖNEN BİR KÜRE ANALİTİK ÇÖZÜMLEME VE CFD İLE 

KARŞILAŞTIRILMASI  

Özet 

İleriye veya geriye doğru hareket eden veya uzunlamasına veya enlemesine dönen bir küre etrafında başlangıçta 

tekdüze bir hız akışındaki sıkıştırılamaz sabit potansiyel için üç boyutlu bir analitik çözüm türetildi; geçişli olarak 

hareket eden küre etrafındaki akışı analiz etmek için bağıl hız kavramı kullanıldı. . Boyuna dönen küre etrafındaki 

akışı analiz etmek için, kürenin ekvator düzleminde akışkanın çevresel hızının bir formülü bulunur ve daha sonra bir 

yaklaşım olarak tüm küreye genelleştirilir. Enine dönen küre etrafındaki akışı analiz etmek için hızların süperpozisyon 

prensibi kullanılmış, durma noktaları tespit edilip analiz edilmiş, ekvatordaki basınç dağılımı hesaplanıp deneysel ve 

CFD sonuçlarıyla karşılaştırılmış, kaldırma katsayısı hesaplanıp karşılaştırılmıştır. düşük spin faktörlerinde C_p ve 

C_L için iyi bir uyumun olduğu, yüksek spin faktörlerinde ise viskoz etkiler ve girdap oluşumu nedeniyle sonuçlar 

farklılık göstermeye başladığı görülmüştür. 

Anahtar Kelimeler: Potansiyel akış, analitik çözüm, dönen küre, süperpozisyon prensibi, durgunluk noktaları 

 

1. Introduction 

Understanding the flow of fluids around rotating spheres is crucial in various scientific and engineering fields due 

to its diverse applications. While potential flow theory simplifies the problem by assuming an ideal, inviscid fluid 

without friction, it provides valuable insights into real-world fluid dynamics. 

Spinning sports balls (football, golf, baseball, tennis) experience lift and drag due to the Magnus effect, where the 

rotation interacts with the surrounding airflow. Potential flow models provide a basic understanding of this 

phenomenon [7]. 



AURUM MÜHENDİSLİK SİSTE MLERİ VE Mİ MARLIK DERGİSİ  

AURUM JOURNAL OF ENGINEERING SYSTEMS AND ARCHITECTURE 

 

Cilt 8, Sayı 1 | Yaz 2024 

Volume 8, No 1 | Summer 2024 

 

102 

 

 Potential flow models provide intuitive visualizations of streamlines and pressure distributions around the sphere, 

revealing how rotation affects the flow patterns. 

Unlike viscous flow problems, potential flow around a rotating sphere often admits analytical solutions. These 

solutions offer valuable mathematical tools for understanding the basic dynamics and developing further 

theoretical models. 

The analytical solution for an incompressible viscous flow is constricted in simple geometries and unidirectional 

flows, where the difficult nonlinear convective terms in momentum equations were omitted, whereas the potential 

flow is not constricted to these cases because they are canceled for inviscid flows[4, p. 529]. 

 

1.1. The Potential Flow Around a Rotating Cylinder  

White [4, p.546-548] and Anderson [3, sec.3.15] derived a two-dimensional analytical solution for an 

incompressible steady potential at an initially uniform velocity flow around a rotating cylinder, a stream function 

is used as a summation of three types: a uniform, a doublet, and a vortex, the equations of radial and tangential 

velocities were obtained [4, eq. 8.38] [3, eqs. 3.119-3.120]. 

The three-dimensional flow around a rotating cylinder can be considered as two-dimensional flow due to the axial 

symmetry, then the stream function is used because it’s restricted to two- dimensional flows, it can’t be used in the 

three-dimensional flows [4, p. 264], for this reason the stream function cannot be used in the three-dimensional 

flows around rotating spheres. 

Anderson [3] in his book investigated in detail the potential flow around a non-rotating cylinder and a transversely 

rotating cylinder, he derived expressions for the pressure coefficients for the two previous cases.  

 

1.2. The Potential Flow Around a Rotating Sphere  

Graebel [8, sec 2.4], and White [4, sec 8.8] wrote in detail in potential flows, he stated that if a sphere is 

accelerated in an inviscid fluid, there will be a drag pressure exerted on the sphere, and there is an “added mass” 

that must be considered in writing Newton’s second law, and if the sphere moves at a constant velocity in an 

inviscid fluid, there is no drag pressure exerted on the sphere, then there is no need to use “added mass”. 

Briggs [2] measured experimentally the effect of the angular velocity and the velocity of the air stream on the 

lateral deflection of a baseball by dropping the baseball while rotating around a vertical axis through a horizontal 

wind stream in a tunnel, he also measured experimentally the pressure distribution in the equatorial plane of a 

smooth and rough Bakelite spinning spheres, the ball diameter was 3-in (0.0381m), the wind speed was 125 ft/

s (38.1 m s⁄ ), and the angular velocity was 1800 rpm (188.5 rad s⁄ ), he represented his results graphically. 

Alaways and Hubbard [5]  developed a theoretical model for determining the lift force on spinning spheres, They 

used the (unpublished data) of Sicorsky and Lightfoot to compare, which measured the Magnus lift on a spinning 

baseball using a wind tunnel, they used three speeds of wind stream, and measured the Magus lift for both 2-seam 

and 4-seam orientations, the following Figure [6, Fig.1] (Figure (1)) shows the difference between two-seam and 

four-seam orientations. 
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Figure 1. The difference between two-seam and four-seam orientations. 

1.3. The Potential Flow Around A Fixed Sphere  

Hildebrand [1, Sec. 9.8] solved this problem which is an initially uniform flow passes a fixed sphere, this flow is 

downward, see Figure 2, the flow is axisymmetric about the z-axis, there is no circumferential velocity component, 

the flow is an incompressible, steady, and potential (an inviscid and an irrotational), he used the governing 

differential equation: 

 ∂

∂R
 (R2  

∂∅

∂R
) +  

1

sin φ
 

∂

∂φ
 (sin φ 

∂∅

∂φ
) = 0 (1) 

By using the separation of variables method, the Legendre solution, and the boundary conditions: 

 VR(a, φ) = 0 (2) 

 lim
R→∞

𝐕 = −U∞ 𝐤 (3) 

 He obtained the solution and the velocity: 

 
∅(R, φ) =  −U∞ ( R + 

1

2
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) cos φ + C (4) 

 
𝐕 =  −U∞ [1 −  (

a

R
)
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] cos φ 𝐞R + U∞ [ 1 + 
1

2
 (

a

R
)

3

] sin φ 𝐞φ 
(5) 

 

2.  Methods 

2.1. Spherical Coordinates 

In spherical coordinates [9] the point P in space is determined by three components (R, φ, θ), as illustrated in 

Figure 2. 

2.1.1. The Spherical Coordinates With Different Orientation 

The spherical coordinates with different orientation, in which the x-axis points upward, shown in the Figure 3. 

A correspondence between Figure 1 and Figure 2 leads to  

 cos φ̅ =  sin φ cos θ (6) 

 
cos θ̅ =  

sin φ sin θ

√1 − sin2 φ cos2 θ
 (7) 
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Figure 2. The spherical coordinates. 

Figure 3. The spherical coordinates with different orientation. 
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 sin θ̅ =  
cos φ

√1 − sin2 φ cos2 θ
 (8) 

 

 

2.2. Potential Flow Around A Longitudinally Rotating Sphere 

If the sphere described earlier in section 2.3 rotates longitudinally with an angular velocity of ω (rad s⁄ ) around z-

axis in the direction of the increasing of angle θ, see figure 2, the flow will still axisymmetric about the z-axis, and 

the governing equation ( Equation 1) will still valid, by following the same procedure in section 2.3 and adding a 

boundary condition by assuming  that the circumferential velocity  of the fluid at the equator of the sphere equals 

the circumferential velocity of the rotating sphere itself at the same place, i.e.  

 Vθ (a,
π

2
) = ωa (9) 

The obtained solution will be 

 ∅(R, φ, θ) = −U∞R [ 1 +  
1

2
 (

a

R
)

3

] cos φ + ωa2θ + C (10) 

 𝐕 =  −U∞ [1 −   (
a

R
)

3

]  cos φ 𝐞R + U∞ [ 1 + 
1

2
 (

a

R
)

3

]  sin φ 𝐞φ +
ωa2

R sin φ
𝐞θ (11) 

   

2.3. Potential Flow Around A Transversal Rotating Sphere 

If the flow described earlier in the previous section changes to flow in the opposite direction of the x-axis instead 

of z-axis, the sphere will rotate transversally, by using the Figure 2, Figure 3, the relations (6), (7) and (8) 

analyzing of velocities and  the superposition principle, the velocity components becomes 

 
VR = −U∞ [1 −  (

a

R
)

3

] sin φ cos θ (12) 

 
Vφ = −U∞ [ 1 +  

1

2
 (

a

R
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3

] cos φ cos θ (13) 

 
Vθ = U∞ [ 1 + 

1

2
 (

a

R
)

3

] sin θ +
ωa2

R sin φ
 (14) 

   

2.3.1. The Stagnation Points 

2.3.1.1. The Stagnation Points On The Sphere Surface 

The stagnation occurs at two semi-circular curves, the equations of them are 

  

 
sin φ =

2

3
S                     θ = 270° , 0° ≤ φ ≤ 180° , 0 ≤ S ≤ 1.5   

(15) 

 
sin θ = −

2

3
S                  φ = 90°, 180° ≤ θ ≤ 360°, 0 ≤ S ≤ 1.5   

(16) 

where S is the spin parameter [5] 
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 S =
ωa

U∞

 (17) 

2.3.1.2. The Stagnation Curves That Far From The Sphere Surface 

The equation of stagnation curve is 

 
sin φ  = S

r2

 [ r3 +  
1
2

 ]
 (18) 

Where 

 
r =

R

a
 (19) 

2.3.2. The Pressure At The Sphere Surface and Magnus-Robins Force 

The pressure at the sphere surface is derived, the equation is  

 
Ps − P∞ =

1

2
 ρ (U∞

2 −
9

4
U∞

2 cos2 φ cos2 θ −
9

4
U∞

2 sin2 θ − 3
U∞ ωa sin θ

sin φ
−

ω2a2

sin2 φ
) (20) 

The pressure coefficient equation is  

 
Cp = 1 −

9

4
cos2 φ cos2 θ −

9

4
sin2 θ − 3

ωa sin θ

U∞ sin φ
−

ω2a2

U∞
2 sin2 φ

 (21) 

Cp at the equatorial plane 

 
Cp = 1 − (

3

2
sin θ + S)

2

 (22) 

Cp at the equatorial plane of fixed sphere 

 
Cp = 1 −

9

4
sin2 θ (23) 

The Magnus-Robins force equation is  

 F = 3π ρ a3ω U∞ (24) 

The lift coefficient is 

 CL = 6 S (25) 

3.  Results 

3.1. The Comparison With The Experimental Results 

3.1.1. The Comparison With The Pressure Coefficient at the equatorial plane.  

Figure 4 shows the pressure distribution over a fixed sphere (equation (23)), a spinning sphere (equation (22)), a 

spinning rough sphere [2, Fig. 6], a spinning smooth sphere [2, Fig. 5], a cylinder [3, Eq. 3.101], and a spinning 

cylinder [3, Eq. 3.126]     
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Figure 4. The Pressure Distribution Over Spheres And Cylinders. 

In the experimental results, we can distinguish two tops and two bottoms, the second top is slightly flat, and the 

analytical curve of the spinning sphere achieves a qualitative agreement with the experimental results but differs 

quantitatively because of the viscous effect especially the separation process and the eddies formation at the rear 

side of the sphere, also the low spin factor here (S=0.1885) contributes in this qualitative agreement. 

 

3.1.2. The Comparison With The Lift Coefficient  

Equation (25) is presented as a red line which is plotted over the copy of Always and Hubbard figure[5, Fig. 10] as 

shown in Figure 5, we can see a good agreement with Sikorsky experiments on the 4-seam pitches up to nearly S = 

0.03, if the spin parameter increases over than 0.03 the divergence will occur due to viscous effect.   

 

Figure 5. The Lift Coefficient Comparison With Sikorsky Experiment on The Four-Seam Baseball [5, Fig. 10]. 

 

3.2. The Comparison With The CFD Results 

3.2.1. The Flow is Really Inviscid 
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In this sub-section, A numerical CFD solution is obtained via "FEATool Multiphysics" which is a Matlab 

application, to solve the Laplace equation (1) numerically, for a non-spinning sphere of a radius of 0.2 m, and 

U∞ = 1 m s⁄ .The flow is really inviscid because the solved Laplace equation doesn't contain viscous terms, then 

the resulting pressure coefficient (cp) at the equatorial plane is plotted versus the circumferential angle (θ) in the 

following figure (Figure 6) with brown color, in the same figure, the analytical solution for (cp) calculated by 

using Equation (23) is plotted in blue color. 

 

Figure 6. The Pressure Coefficient Comparison With CFD Solution For Inviscid Flow Around a Non-Spinning 

Sphere. 

It's Obvious the very good agreement between the analytical and numerical results. 

3.2.2. The Flow has low viscosity 

In this sub-section, A numerical CFD solution is obtained via "Openfoam" to solve the low viscosity flow 

(μ = 0.001133 kg ms⁄ ) around a sphere of a radius of 0.2 m, and U∞ = 1 m s⁄ . The flow is viscous, but for the 

approximation purpose, it can be considered as an inviscid, because it has a low viscosity, then the resulting 

pressure coefficient (cp) at the equatorial plane is plotted versus the circumferential angle (θ) in the following 

figures (Figures 7-10) with blue color, in the same figure, the analytical solution for (cp) calculated by using 

Equation (22) is plotted in red color, the results was obtained for non-rotating sphere and for rotating spheres with 

angular velocities of 1,2,5rad/s, see Figures 7 to 10, respectively.  
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Figure 7. The Pressure Coefficient Comparison With CFD Solution For Low Viscosity Flow Around a Non-

Spinning Sphere. 

 

Figure 8. The Pressure Coefficient Comparison With CFD Solution For Low Viscosity Flow Around a Spinning 

Sphere With 1 rad/s. 

 

Figure 9. The Pressure Coefficient Comparison With CFD Solution For Low Viscosity Flow Around a Spinning 

Sphere With 2 rad/s. 

 

Figure 10. The Pressure Coefficient Comparison With CFD Solution For Low Viscosity Flow Around a Spinning 

Sphere With 5 rad/s. 
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In the numerical results, we can distinguish tops and bottoms, and the analytical curve of the spinning sphere 

achieves a qualitative agreement with the numerical results but differs quantitatively because of the viscous effect 

especially the separation process and the eddies formation at the rear side of the sphere. 

 

4. Conclusion 

The analytical curves of the spinning sphere achieve a qualitative agreement with the numerical results but differ 

quantitatively because of the viscous effect especially the separation process and the eddies formation at the rear 

side of the sphere. 

At higher rotation rates, the flow becomes more complex. The flow field can exhibit phenomena such as 

separation, wake formation, and drag. Analytical solutions for the potential flow around a rotating sphere at high 

rotation rates are generally not available, and numerical methods such as computational fluid dynamics (CFD) are 

often employed to study these flows. 

It's worth noting that potential flow assumptions may not accurately capture all the features of the flow around 

rotating spheres, especially in real-world situations where viscosity and vorticity cannot be neglected. In those 

cases, a more comprehensive analysis considering the effects of turbulence and boundary layers would be 

necessary. 
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