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What is Conditional Probability?
In Defense of Lowe’s Definition(s)

Hilmi Demir

Abstract: In the standard and traditional view, the concept of conditional 
probability is defined with what is known as the ratio formula: the probability of B 
given A is the ratio between the probability of A and B and the probability of A. It 
is well known that this definition does not match the conceptual and mathematical 
expectations that we have from conditional probability, especially for the 
probability values at the limits. Thus, as pointed out by several philosophers such 
as Popper and Hájek, it is fair to conclude that we have yet to have a satisfactory 
definition for the concept of conditional probability. E.J. Lowe, in a debate with 
Dorothy Edgington, proposed two different definitions of conditional probability, 
and unfortunately his definitions have gone unnoticed in the literature. In this 
paper, my main aim is to renew interest in Lowe’s definitions. I achieve this aim 
by showing that E.J. Lowe’s definitions have great potential in providing us with 
a satisfactory definition of conditional probability. 
Keywords: conditionals, Philosophy of Probability, Kolmogorov, probabilistic 
independence

Özet: Standard Olasılık kuramında bir olayın bir diğer olaya koşullu olasılığı 
rasyo formülü olarak bilinen bir formül ile tanımlanmaktadır. Bu formüle göre B 
olayının A olayına koşullu olasılığı (A ve B) olayının olasığının sadece A olayının 
olasılığına bölünmesi ile bulunan değerdir. Bu standard tanımın özellikle 
limitlerdeki olasılık değerleri için kavramsal ve matematiksel beklentilerimizi 
karşılamadığı bilinen bir durumdur. Aralarında Popper ve Hájek gibi isimlerin 
de bulunduğu birçok felsefecinin de belirttiği gibi, bu durumdan elimizde tatmin 
edici bir koşullu olasılık tanımı olmadığını çıkarsamak yanlış olmayacaktır. E.J. 
Lowe, Dorothy Edgington ile girdiği bir tartışma bağlamında koşullu olasılığın iki 
alternatif tanımını önermiştir. Ne yazık ki, literatürde bu tanımlara gereken önem 
verilmemiştir. Literatürdeki bu eksikliği gidermeyi hedefleyen bu makalenin 
genel amacı, Lowe’ün önerilerinin tatmin edici bir koşullu olasılık tanımı sunma 
potansiyeline sahip olduğunu göstermektir. 
Anahtar Kelimeler: şartlı önermeler, Olasılık Felsefesi, Kolmogorov, olasılıksal 
bağımsızlık

I. Introduction 

Despite its long history and prevalent usage in many different fields, the 
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concept of conditional probability has yet to have a satisfactory definition. 
According to the standard view, which was provided by Kolmogorov in 
1933, conditional probability is defined with the following formula, which 
I call SF – short for the “standard formula.” 

(SF) PA(B)=(P(A&B))/(P(A))  provided that P(A)>0 
[A is called the conditioning event and B is called the conditioned 
event. A and B are consistently used for the conditioning event and 
the conditioned event, respectively, throughout the paper.]  

This formula leads to several counterintuitive consequences, 
especially because of not being defined where the probability of the 
conditioning event is 01.  For example, it does not define PA(A) where A is 
an impossible event. Furthermore, not all events with zero probability are 
impossible events. There are possible events with zero probability, and, 
for such events, the conditional probability is undefined under SF. This 
zero-denominator problem, which may be seen as a small glitch at first, is 
a serious conceptual shortcoming. Let me quote what Popper says about 
the problem:  

Systems [that define conditional probability with SF] are …very 
weak: it can occur in [such] systems that p(a,b)=r is a meaningful 
formula2, while at the same time, and for the same elements p(b,a)=r 
is not meaningful, i.e. not properly defined, and not even definable, 
because p(a)=0. But a system of this kind is not only weak; it is also 
for many interesting purposes inadequate: it cannot, for example, 
be properly applied to statements whose absolute probability is 
zero, although this application is very important: universal laws, 
for example, have, we may here assume, zero probability (emphasis 
original; Popper 1959, p. 334).

SF has even more puzzling implications for mutual independence 
1   Probabilities can be defined over events, sets, or propositions. Each choice may have differing 

implications on how to interpret probabilities. Such issues, however, do not have any effect 
on my argumentation in this paper. The choice I made in this paper is to stick with the choice 
of the theoretician that is being mentioned. For example, when analyzing Kolmogorov’s 
view, I use events as the applicanda of probabilities, and similarly I use propositions when 
analyzing Hájek’s, Edgington’s, and Lowe’s ideas. When presenting the proofs in Section 
IV, my choice is a bit more liberal. I use the terminology that is more apt for the reasoning 
presented in each proof.	

2   p(a,b) is Popper’s notation for the probability of a given b.
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of events. According to the independence criterion based on the formula 
(A and B are independent if and only if (A&B) = (A)P(B)), any event 
with probability of 1 or 0 ends up being independent from itself. This 
is counterintuitive, because identity is the ultimate case of probabilistic 
dependence (Hájek, 2010; Fitelson and Hájek, 2014). Such problems led 
to a search in the literature for different ways of interpreting/defining 
conditional probability with the purpose of resolving those problems. 
There have been many such attempts, which roughly follow two different 
routes. The first is to reverse the direction of analysis in the theory of 
probability. In the traditional Kolmogorovian approach, single-event 
probabilities 3, P(A), are taken to be primitive, and conditional probabilities 
are defined in terms of those primitive single-event probabilities. Scholars 
such as Popper (1959) and Hájek (2003), among many others, suggested 
taking conditional probabilities, i.e. PA(B), as primitive and defining single-
event probabilities derivatively by PT(B) where T represents necessity. The 
second route taken in the literature is to understand SF as a theorem that 
follows directly from a definition of conditional probability. Obviously, 
this route requires coming up with a new definition for conditional 
probability. My main aim in this paper is to renew interest in the second 
route by focusing on E.J. Lowe’s work.

Dorothy Edgington and E.J. Lowe had a lively debate that started in 
the mid-1990s; its main topic was how to explicate conditional statements 
and judgments, which is not my concern here, but within the debate E.J. 
Lowe offered two different definitions for conditional probability. Those 
definitions form the main content of my paper. In his 1996 Mind article, 
Lowe first pointed out a conceptual mistake that is prevalent in the literature 
on conditional probability. He claims that conditional probability is not a 
kind of probability different than single-event probabilities; rather, it is a 
conditional statement about single-event probabilities. He then defined 
conditional probability with a conditional statement; the definition that he 
gave there faced serious criticisms from Edgington (1996). In a somewhat 
late response, Lowe retracted his 1996 definition and offered a new one 
in his 2008 Analysis article. I claim that Lowe’s 2008 definition with a 
slight revision becomes consistent with our conceptual and mathematical 
expectations of conditional probability. In addition to this main claim, I 
also offer a different interpretation of Lowe’s 1996 definition that blocks 

3  Single-event probabilities are called 'absolute probabilities' and conditional probabilities are 
   called 'relative probabilities' in Popper’s terminology.
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Edgington’s criticisms and becomes complementary to the revised version 
of Lowe’s 2008 definition. My defense of Lowe’s definitions consists of 
accomplishing the following four tasks:

i)     Identify and analyze the problems about the standard formula. 
ii)    Analyze Lowe’s 1996 definition and offer a different 
       interpretation that blocks Edgington’s criticisms.  
iii)  Provide a list of desiderata for a satisfactory definition of
       conditional probability. 
iv)  Prove that the revised version of Lowe’s 2008 definition has    
       great potential for satisfying the desiderata mentioned in (iii).

If I successfully accomplish these tasks, my overall conclusion will 
be that there is a satisfactory definition for the concept of conditional 
probability that is provided by Lowe and unfortunately has gone unnoticed 
in the literature. If this definition is included in Kolmogorov’s theory of 
probability, SF becomes a theorem of Kolmogorov’s formalization as 
desired by many such as De Finetti4.  This may be considered as a humble 
contribution to Kolmogorov’s theory of probability since SF properly 
interpreted is not a definition but rather a theorem, contrary to what 
Kolmogorov claims. This is not to claim that Kolmogorov made a mistake 
in his formalization. Rather, it means that in some cases conceptual 
clarification may not be at the top of the priority list of a mathematician, 
but the same luxury, as pointed out by Popper, Hájek, and Lowe, among 
many others, is not available to philosophers.

II. Analysis of the Standard Formula  

Kolmogorov, in his Foundations of Probability, provided a formalization of 
the theory of probability. After stating his five axioms, he gave the standard 
formula as the definition of conditional probability. It is quite to the point 
to ask whether the formula really is a definition or not. First of all, as Hájek 
(2003) points out, the standard formula is not a stipulative definition of a 
made-up operation, because the concept of conditional probability is not 
a technical notion such as a zero-sum game or categorical imperative. The 
concept of conditional probability had been in use in ordinary language 
long before any philosopher or mathematician attempted to give a 
definition for it. Ordinary language locutions such as the likelihood of 
B in the light of A, informed by A, relative to A, or upon discovering A 
4  Reported in Lowe 1996.
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are used to state conditional probability statements. Such locutions are 
used to form conditional probability statements in more theoretical work 
as well. Bayes’ Proposition 5 is a clear example of this: “If there be two 
subsequent events, the probability of the second b/N and the probability 
of both together P/N, and it being first discovered that the second event has also 
happened, the probability I am right is P/b” (emphasis added; Bayes, 1764, 
prop 5).

These remarks are sufficient enough to show that any given definition 
for conditional probability cannot be considered as a stipulative one. It 
must be understood as a definition of a concept that has been in use in 
ordinary discourse for a long time and, thus, the given definition must 
be consistent with the intuitions that we have about the concept. If this is 
true, then one can assess the success of a suggested definition by seeing if 
the implications of the definition are consistent with intuitively expected 
results.

Let us put the standard formula to this assessment test. When the 
probability of the condition A is greater than zero, the standard formula 
works very well. First of all, as proven by Williams (1980), the standard 
formula gives us the most minimal revision in the probability of B under 
the assumption that event A has happened. In other words, the change 
in probability values implied by the standard formula is no more or less 
than what is required upon learning new evidence. Despite this success, 
however, the standard formula fails severely when the probability of the 
condition is 0. Our intuitions tell us that PA (A) is 1 regardless of the value of 
the probability of A. Similarly, PA(not-A) must be zero no matter what P(A) 
is. However, the standard formula leaves these values undefined when P(A) 
is 0. This problem is well known and might be dismissed as a technicality 
because of the seeming oddness of conditioning on impossible events. But 
the problem is more general than just impossible events. In Kolmogorov’s 
theory, all practically impossible events are assigned zero probability. 
Thus, some zero-probability events are theoretically possible events. Here 
is what Kolmogorov says: “For an impossible event A,P(A) = 0. But the 
converse is not true. P(A) = 0 does not imply the impossibility of A . In this 
case, event A is practically impossible.” (Kolmogorov, 1950/1933, p. 5).

Such practically impossible but theoretically possible events are 
assigned the probability of 0. Following Hájek’s (2010) terminology, I 
shall call such events improbable events. Let me give a simple example of 
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such an event: suppose that a fair coin is tossed infinitely many times. The 
probability that it lands heads every time is 0. Because of that, SF leaves 
the following conditional probability undefined: the probability of the 
coin landing heads every time given the event that it landed heads every 
time. But, conceptually, it is clear that this conditional probability must be 
1. It seems to me that this example is enough to show that conditioning on 
events with 0 probability is a serious problem for the standard formula.

Another problem that afflicts the standard formula is the mutual 
independence of random events in the theory of probability. Before 
explaining the independence problem, it will be useful to mention how 
crucial mutual independence is for the theory of probability. According to 
Kolmogorov, his formalization of the theory of probability is equivalent to 
the “theory of additive set functions”. So, in a sense, there is no need for a 
separate theory of probability. The main thing that led to the formation of 
the theory of probability is the concept of mutual independence. He says: 
“Historically, the independence of experiments and random variables 
represents the very mathematical concept that has given the theory of 
probability its peculiar stamp” (Kolmogorov, 1950/1933, p. 8).

In Kolmogorov’s formalization, the mutual independence of events 
is defined as follows. Events A is are mutually independent if and only if

  
P(A1&A2& … &An )=P(A1 )P(A2 ) … P(An )

For the ease of presentation, I will use the instantiation of this 
definition for the mutual independence of two events, i.e. (A&B) = (A)
P(B). This definition together with the standard formula implies the 
other well-known formulation of mutual independence: A and B are 
independent from each other if and only if PA(B)=P(B). These two criteria 
work well for the events that have a probability value strictly between 
0 and 1. This is why it has been used in empirical fields without much 
questioning, since probability values of 0 and 1 are not cases one runs 
into in such fields. However, events with probability values of 0 and 1 
are conceptually important, and unfortunately Kolmogorov’s definition 
fails to capture our intuitions about mutual independence in such cases. 
For example, an event with the probability value of 0 or 1 ends up being 
independent of itself since P(A&A) = P(A)P(A) in both cases. Not only that, 
but furthermore, according to this criterion, any event with probability of 
0 is independent of its negation, anything that entails it, and anything that 
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it entails (Hájek, 2010; Fitelson and Hájek, 2014).

Such problems about the standard formula stated above, in my 
opinion, lead to two conclusions. First, since the standard formula does not 
capture our intuitions about conditional probability statements especially 
for the events with probability values at the limits, it cannot be considered 
as a satisfactory definition of the concept of conditional probability. Thus, 
we need to search for a satisfactory definition for conditional probability. 
Second, since the standard formula works very well for the probability 
values strictly between 0 and 1, a satisfactory definition of conditional 
probability must imply the standard formula, but not the other way around. 
In other words, given a satisfactory definition, the standard formula must 
be a theorem of the theory of probability together with its axioms. These 
two conclusions, in turn, imply the desiderata for a satisfactory definition 
of conditional probability that will be stated in Section IV below.

For now, let us turn to the debate between Edgington and Lowe 
in order to see if we can find a satisfactory definition for conditional 
probability in that part of the literature.

III. A Bit of History and Lowe’s Definitions 

Dorothy Edgington in her lengthy survey “On Conditionals” (1995), 
following Ramsey’s footsteps, attempted to give an explication of conditional 
statements in terms of the conditional probability of the consequent of 
the statement given the antecedent. While doing that, she interpreted 
probabilities as degrees of belief, and a derived notion of degrees of belief-
under-a supposition. Lowe in his 1996 article raised a serious charge against 
Edgington’s attempt. His charge was that the very concept of conditional 
probability is defined by a conditional statement, and using it to explicate 
conditional statements would be circular. While presenting his charge, since 
the standard formula does not include a conditional statement, Lowe had to 
show that the standard formula is not a definition of conditional probability, 
or at least not a satisfactory one. After stating several shortcomings of 
the standard formula (the details of which are not crucial for my aims in 
this paper) he says the following: “I conclude that we do need to define 
conditional probability.” In that article, Lowe suggested the following 
conditional statement as the definition of conditional probability5: “The 
5  He examines three alternative definitions and ends his analysis with this definition as the   

one he favors.
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conditional probability of B given A is the probability which B has/would 
have if the probability of A is/were 1” (p. 609). Let me call this definition 
L96 and use Lowe’s symbolism of the definition instead of its verbal 
expression. 

(L96)  PA (B) = df (the x)  [if P(A)=1,then P(B)=x]

Since this definition does not provide a way of calculating the value of 
x, Lowe combines this definition with the standard Bayesian assumption 
so that the standard formula is implied by L96.  

This definition results in the same value for the conditional probability 
of B given A as does the standard ratio-based definition [i.e. SF] of 
conditional probability…when that is taken in conjunction with the 
usual “Bayesian” assumption that we should update our subjective 
probabilities according to the principle of “conditionalization”.
According to the latter principle, the value that (B) should have when 
A is discovered to be true is the value that (B | A) [the probability of 
B given A] had beforehand (ibid, p. 609).  

Edgington (1996), in her response to Lowe, points out two main 
shortcomings of the principle of conditionalization. The first one is: 
“Counterexamples to the principle of conditionalization would be ten a 
penny, were it the foolhardy recommendation that always, on learning 
A, you make your new P(B) equal to your old P(B given A). In fact, it 
recommends this only if A is all that you presently learn which is relevant 
to B” (p. 624). Edgington is right here; one may learn more than just A 
or one might have some other background information that becomes 
relevant to B upon learning A. This is exactly why Lewis (1976) suggested 
his idea of Imaging as an alternative to Bayesian Conditionalization. In 
Lewis’ Imaging, upon learning A, the probability of not-A is transferred 
to only one alternative, to the possible world that is closest to the not-
A-world. In the principle of conditionalization, the probability of not-A 
is distributed across all remaining possible worlds in proportion to their 
previous probabilities6. In Lewis’ Imaging the background knowledge 
about the distance of A-worlds to not-A worlds becomes relevant upon

6 It should be obvious that Imaging and Bayesian Conditionalization give different results.
    Interested readers may work out the following example, which is borrowed from Lewis (1976).  
  Suppose that there are three possible worlds with equal probabilities. The first two worlds 
   are A-worlds, whereas the third is a not-A-world. The second world is the closest to the third 
   one.	
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learning A. The second shortcoming that Edgington mentions is that the 
principle of conditionalization is a normative principle and people do not 
always abide by it. On the basis of these two shortcomings, she concludes 
that “Lowe’s definition is inadequate and beyond repair.” Although I 
agree with her analysis of the principle of conditionalization, I disagree 
with her conclusion. As I discuss below, there is a different interpretation 
of Lowe’s definition that is adequate and in need of no repair.

The debate between Edgington and Lowe went silent for more than a 
decade. In 2008, however, Lowe made another contribution to the debate. 
In his article “What is ‘Conditional Probability’?”, after  acknowledging 
the difficulties afflicting his previous definition L96, Lowe retracts 
that definition and proposes the following conditional statement as a 
replacement. I shall call this new definition L08.

(L08) For any proposition B, PA (B) is the probability that B has if a 
probability of 1 is assigned to A and for any propositions C and D 
that entail A, the ratio (P(C))/(P(D)) is left unaltered in value.  

Now, as I show below, this definition with a small revision actually 
meets all the required desiderata for a successful definition. Before 
proceeding, however, there is a further point that I would like to make. 
Lowe did not have to give up on his earlier definition and replace it 
with the new one. L96 can be interpreted in such a way that it becomes 
complementary to L08. L96 can be interpreted as specifying the class of all 
probability revisions upon new evidence. As briefly stated above, there 
are several different ways of probability updates; some examples from 
the literature are the principle of conditionalization, Lewis’ Imaging, and 
Gärdenfors’ Generalized Imaging, and one could come up many more 
different ways. Thus, L96 can be interpreted as defining that class and not 
a particular member of that class. Under this interpretation, one does not 
have to add the Bayesian assumption, which was the very assumption that 
caused Edgington’s concerns. Moreover, because of being the definition 
of a class, L96 does not have to imply the standard formula, which 
extensionally corresponds to only one member of that class: the principle 
of conditionalization. Now, if L96 defines the class of all revisions, what is 
L08? L08 defines a particular member of the class. This particular member, 
as proven by Williams (1980), is the one that makes the most minimal 
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revision upon new evidence7.  To repeat, L96 defines a class, and L08 defines 
the global minimum of that class. Under this interpretation, L96 and L08 
are complementary to each other and, thus, Edgington’s assessment of 
L96 as being inadequate and beyond repair no longer applies.

IV. Revision, Desiderata, and Proofs  

At first glance, it looks like L08 runs into similar problems when the 
probability of the conditioning event A is 0. For example, one may raise 
the following objection:

Objection: Assume that P(A) is 0 and instantiate C and D in L08 
with (A&B) and A, respectively. Since both (A&B) and A entail A, 
given L08, the original value of the ratio of the probability of these 
two propositions must be left unaltered in value, but the original 
value is undefined since P(A) = 0 by our assumption, and P(A&B) 
is also 0 because of that. L08 also leaves all the ratios, which are 
undefined in the standard formula, as undefined. Thus, L08 fares no 
better than SF when  it comes to conditioning on zero-probability 
events/propositions.

Reply: The objector’s reasoning misses a crucial point that is 
implicitly stated in the very last part of L08: “…the ratio (P(C))/
(P(D)) is left unaltered in value.” In order to be “left unaltered in 
value”, the ratio must have a value to begin with. Since any ratio 
that is undefined does not have a value assigned to it, the ratios 
that are undefined in the original distribution do not fall under the 
ratios that are supposed to be kept with the same value. Thus, the 
objection does not work against L08.  

Now, this reply may not convince the skeptic objector. In such a case, 
it is quite easy to revise L08 slightly and block the objection in a more 
straightforward manner. We could revise L08 by qualifying “the ratio 
(P(C))/(P(D))” with “if it is defined”. For undefined ratios, whatever the 
antecedent of L08 implies will apply. Our slightly revised version, L08′, 
will read as follows:

7   To be more specific, Williams proved that Bayesian Conditionalization, which is defined by 
    the standard formula, gives us the most minimal revision. In the following section, I show 
    that L08 implies the standard formula, and thus L08 represents the global minimum of the 
    class of all revisions.
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(L08′) For any proposition B, PA(B) is the probability that B has if a 
probability of 1 is assigned to A and for any propositions C and D 
that entail A, the ratio (P(C))/(P(D)) , if it is defined, is left unaltered 
in value.

L08′ has the potential of being a satisfactory definition of conditional 
probability. In order to show that, let me first state a list of desiderata 
for a satisfactory definition, which follows from the conclusions drawn in 
Section II.

(D1) The definition must be in line with our conceptual intuitions 
about conditional probability. A representative set of such intuitions, 
which is borrowed from Hájek (2003), is the following: for all values 
of (A) between 0 and 1, inclusive, 

PA (A)=1
PA (not-A)=0
PA (F)=0  where F is a necessarily false proposition and A is not,  
PA (T)=1  where T is a necessarily true proposition, i.e. not-F .  

(D2) The definition must imply the standard formula when P(A) > 0 
(D3) PA(B) must be defined for all values of (A). 
(D4) The definition must not be implied by the standard formula. 
(D5) The definition should work well with an independence criterion 
so that no proposition, regardless of its probability value, should turn 
out to be independent from itself.

Proof of (D1):

The proof here is trivial; just replace B in L08′ with A, not-A, F and T, 
respectively. Under the assumption that P(A)  is 1 as L08′ requires, P(A) is 1, 
P(not-A) is 0, P(F) is 0, and P(T) is 1.

Proof of (D2):

1.  P(A)>0					     Assumption
2.  (A&B) entails A and A entails A
3.  (P(A&B))/(P(A))  is defined		  From 1 and 2  
4.  (P(A&B))/(P(A))=(PA (A&B))/(PA(A))  	 From L08′ and 3
5.  (P(A&B))/(P(A))=(PA (A&B))/1  		  From 4 and (D1)
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6.  (P(A&B))/(P(A))=(PA(B))/1  	 From 5
7.  (P(A&B))/(P(A))=PA(B) 		  From 6

The equation in (7) is nothing but the standard formula8.  Thus, L08′ 
implies the standard formula.

Proof of (D3):

From (D2), we know that L08′ defines conditional probabilities when 
(A) > 0. Thus, here we only need to show that L08′ defines conditional 
probability when the probability of the condition is 0. As we stated, 
events/propositions with zero probability come in two types: impossible 
events/necessarily false propositions and improbable events/propositions 
that correspond to such events.

Type 1: The conditioning proposition, A, is a necessarily false 
proposition. This has three cases. The conditioned proposition, B, can be 
i) a necessarily false proposition, ii) a necessarily true proposition, or iii) 
a contingent one. 

i)   PF (F)=1  	                Trivial, see (D1) 
ii)  PF (T)=PF (not-F)=0  	 Trivial, see (D1)
iii) PF (B)=?   

This case is a bit tricky. It is generally accepted that the value here 
has to be 19.  Here we can reason in the following way by using event 
terminology. If an impossible event were to happen, then any other 
possible event would also have happened. This reasoning, which 
I admit is not very strong, allows us to assign 1 to the probability.

Type 2: A is a proposition that represents an improbable event. We 
again have three cases. 

i)   PA (F)=0         			   Trivial, see (D1)  
ii)  PA (T)=1         			   Trivial, see (D1) 
iii) PA (B)= ? 

8   Allow me to state two clarifications about the proof. First, line 3 follows from lines 1 and 2, 
    because line 3 is a ratio and the only way for a ratio to be undefined is when its denominator 
    is zero. We know from line 1 that the denominator of the ratio in question is greater than zero. 
    Second, line 6 follows from line 5 simply because of the logical equivalence between (A & B & 
   A) and (B & A) without needing any further assumption. To see this, the interested reader  
   may apply the standard formula to the two formulas in question.	
9   See Popper, 1959.
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This case is also a bit tricky. Since A is an improbable event, it 
corresponds to an infinite sequence. With the same reasoning 
presented above, we could assign 1 to the probability. If B itself is 
an improbable event, i.e. corresponds to another infinite sequence, it 
will entail not-A, in which case the value will be 0 as proven in (D1).  

Proof of (D4): 

The standard formula does not imply L08′ since L08′ defines conditional 
probabilities where SF leaves them undefined as proven in (D3).

Proof of (D5): 

For mutual independence, I use the following criterion: A and B are 
mutually independent if and only if PA(B)= P(not-A)(B). As we know 
from the literature, this criterion is equivalent to the two criteria 
discussed in Section II whenever (A) is strictly between 0 and 1. The 
problem arises for the two criteria previously discussed when (A) is 
1 or 0. In such cases, events/propositions end up being independent 
from themselves. Given L08′, the criterion I use does solve this 
problem.

1. A and B are mutually independent iff PA (B)= P(not-A )(B)        Independence
2. PA (A)= 1 for all values of P(A)	                        From (D1) and (D3) 
3.P(not-A) (A)= 0 for all values of P(A)	                         From (D1) and (D3) 
4.PA (A)≠ P(not-A) (A)  for all values of P(A)	                                   From 2 and 3
5.A is not independent from itself for all values of P(A)	   From 1 and 4 

	

V. Conclusion 

There is something odd about treating the standard formula as the 
definition of the concept of conditional probability. It just gives us an 
equation with which values of conditional probabilities can be calculated. 
The technique of how to calculate the value of an instantiation of a concept 
is not a definition of that concept. For example, P=F/S provides us only 
with a formula for calculating the values of pressure given a specific set 
of conditions in chemistry. But this is not a definition of pressure. The 
definition, as we all know, is the force applied to per unit area. The 
definition and the formula are closely related, because if the definition is 
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a true definition of the concept, then the formula should follow from the 
definition directly. This is what happens in the case of pressure. Once you 
know the definition, there is no need to memorize the formula; it falls out of 
the definition with no need for any further premise. The standard formula 
for conditional probability is analogous to P=F/S  ; it should directly follow 
from the definition of the concept of conditional probability. In this paper, 
I have shown that a slightly revised version of Lowe’s 2008 definition has 
this property. It not only implies the standard formula but also allows us 
to make sense of the concept even for probability values at the limits. If 
my reasoning in the two tricky cases in the proofs is accepted, then, I dare 
to say, we should call the revised version of Lowe’s 2008 definition the 
definition of conditional probability.

This has at least three crucial implications.

I1.  One does not need to reverse the direction of analysis in the 
theory of probability, i.e. take conditional probabilities as primitive and 
define single event probabilities via conditional probabilities, in order to 
solve the problems afflicting the standard formula. 

I2. Since the definition itself is a conditional statement, using 
conditional probabilities for explicating conditional statements/judgments 
is in danger of circularity. It seems that Lowe is right, after all, in his 
assessment of Edgington’s work on conditionals. 

I3.   Including L08′ in the textbooks on the theory of probability as the 
definition of conditional probability and proving the standard formula as 
a theorem will provide a more firm conceptual foundation for the theory of 
probability. I am not sure, however, how much attention mathematicians 
will pay to what philosophers say.

Hilmi Demir, Bilkent Üniversitesi, Türkiye
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