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Abstract. This work derives an identity that maps between the 2-norm of two multiplied 2π-periodic functions
in L2 space (i.e.,

∥∥∥ f .g
∥∥∥2

L2(−π,π)
) to the individual Fourier coefficients of f and g. Alternately, it maps between the

2-norm of two multiplied discrete-time Fourier transforms (i.e.,
∥∥∥F { f }.F {g}∥∥∥2

L2(−π,π)
) to the discrete-time samples

of f and g. The results are equality to Cauchy–Schwarz inequality, and extend the results of our previous paper that
map between

∥∥∥ f
∥∥∥4

L4(−π,π)
to the Fourier coefficients of f , alternately

∥∥∥F { f }∥∥∥4
L4(−π,π)

to the discrete-time samples of f .
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1. Introduction

For a 2π-periodic function f in Lebesgue space (L4), our previous paper [20] derived an identity that maps between
4-norm of f (

∥∥∥ f
∥∥∥4

L4(−π,π)) and the Fourier coefficients of f , such norm is labelled L4(−π, π)-norm. In this paper, section 2

derives a similar identity that maps between L2(−π, π)-norm of two multiplied functions f and g (
∥∥∥ f .g
∥∥∥2

L2(−π,π)) and the
individual Fourier coefficients of f and g. Alternately, it maps between L2(−π, π)-norm of two multiplied discrete-
time Fourier transforms (DTFT) F { f } and F {g} (

∥∥∥F { f }.F {g}∥∥∥2L2(−π,π)) and the individual discrete-time samples of f
and g. Furthermore, for the discrete-time discrete-frequency case, it maps 2-norm of two multiplied discrete Fourier
transform (DFT) sequences to their inverse discrete Fourier transform (IDFT) sequences and vice versa, or 4-norm of
a DFT sequence to its IDFT sequence and vice versa. Section 3 shows scenarios where the results are useful in solving
for the exact value in physical problems such as comparison of energies of signals (e.g., detection and estimation) and
computing power spectrum of weighted signals (e.g., digital filters). Then, section 4 draws the overall conclusion.
Notation: A bold letter (u[n]) denotes a sequence of index n, and a non-bold (u[n]) is its nth element. A superscript
asterisk (.∗) denotes conjugate transpose. The convolution operator is denoted (⊛) and Hadamard product denoted (⊙).
Contribution: The well-known Cauchy–Schwarz inequality [1, 7] states ⟨u|v⟩ ≤ ∥u∥2∥v∥2. Let u′ =

√
u and v′ =

√
v,

then ⟨u|v⟩ = ⟨u′2|v′2⟩ =
∑

(u′⊙v′)2 =
∥∥∥u′ ⊙ v′

∥∥∥2
2, and∥u∥2 =

√
⟨u|u⟩ =

√∑
|u|2 =

√∑
|u′|4 =

∥∥∥u′∥∥∥24. The inequality is re-

formulated to
∥∥∥u′ ⊙ v′

∥∥∥2
2 ≤
∥∥∥u′∥∥∥24∥∥∥v′∥∥∥24, and its integral form [4,9] to

∥∥∥ f (t)g(t)
∥∥∥2

2 ≤
∥∥∥ f (t)
∥∥∥2

4

∥∥∥g(t)
∥∥∥2

4. If f (t), g(t) ∈ L2(−π, π),
the identities introduced in this paper provide equality to these two forms of Cauchy–Schwarz inequality.
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2. Mapping of L2(−π, π)-norm of TwoMultiplied Functions to Their Fourier Coefficients

The mapping is given firstly in the case of continuous-time discrete-frequency, then in the case of discrete-time
continuous-frequency, and finally for the discrete-time discrete-frequency finite sequences.

2.1. Continuous-time 2π−periodic Functions. A continuous-in-time, L1-integrable, complex-valued function f (t) is
re-constructed from its frequency components f̂ (ξ) using the inverse Fourier transform [29],

f (t) =
∫ ∞
−∞

f̂ (ξ)ei2πξt dξ, ∀ t ∈ R.

If f (t) is periodic in the interval [−π, π], then it is synthesized from discrete harmonics, and the integral is reduced to a
summation resulting the famous Fourier series,

f2π(t) =
∞∑

n=−∞

ĉneint, t ∈ [−π, π],

where the Fourier coefficients ĉn are given by ĉn =
1

2π

∫ π
−π

f2π(t)e−int dt.

Theorem 2.1. Let f (t) and g(t) be two complex-valued functions in time t ( f , g : R → C), and f (t), g(t) be periodic
and have finite-length N = 2M + 1 discrete Fourier coefficients as f (t) =

∑M
n=−M ûneint and g(t) =

∑M
n=−M v̂neint, where

ûn and v̂n are the complex Fourier coefficients, and ûn, v̂n ∈ C, then∥∥∥( f .g)(t)
∥∥∥2

L2(−π,π) =

∫ π
−π

∣∣∣ f (t).g(t)
∣∣∣2 dt = 2π

M∑
n=−M

ûn

M∑
m=−M

û∗m

[ M∑
l=(n−m)−M

n≥m

v̂∗l v̂l−(n−m) +

M∑
l=(m−n)−M

n<m

v̂∗l−(m−n)v̂l

]
.

For infinite-length Fourier coefficients (i.e., M = ∞),∥∥∥( f .g)(t)
∥∥∥2

L2(−π,π) =

∫ π
−π

∣∣∣ f (t).g(t)
∣∣∣2 dt = 2π

∑
n∈Z

ûn

∑
m∈Z

û∗m

[∑
l∈Z
n≥m

v̂∗l v̂l−(n−m) +
∑
l∈Z
n<m

v̂∗l−(m−n)v̂l

]
.

Proof. It follows same steps of proof of [20, Theorem 2.1] –given also previously in [21]–, and is given again below;∫ π
−π

∣∣∣ f (t).g(t)
∣∣∣2 dt =

∫ π
−π

∣∣∣∣∣∣∣∣
M∑

n=−M

ûneint
M∑

l=−M

v̂leilt

∣∣∣∣∣∣∣∣
2

dt =
∫ π
−π

M∑
n=−M

ûn

M∑
m=−M

û∗m
M∑

l=−M

v̂l

M∑
k=−M

v̂∗kei(n−m+l−k)t dt,

for n + l = m + k =⇒ ei(n−m+l−k)t = 1, and for n + l , m + k =⇒ ei(n−m+l−k)t = e±iat, where a = 1, 2, ..., 4M.

=

∫ π
−π

M∑
n=−M

ûn

M∑
m=−M

û∗m
M∑

l=−M

v̂l

( M∑
k=−M

n+l=m+k

v̂∗k +
M∑

k=−M
n+l,m+k

v̂∗ke±iat
)

dt = 2π
M∑

n=−M

ûn

M∑
m=−M

û∗m
M∑

l=−M

v̂l

M∑
k=−M

k=l+n−m

v̂∗k,

where the exponential terms vanish after integration as the definite integral of e±iat is zero for the integral limits t = ±π.
For the condition on k, not all combinations of (l+n−m) satisfy k ∈ [−M,M], so the unused combinations are excluded,

−M ≤ k ≤ M,

−M ≤ l + n − m ≤ M,

(m − n) − M ≤ l ≤ M + (m − n). (2.1)
However, − M ≤ l ≤ M. (2.2)

Then, the valid range of l is (2.1) ∩ (2.2) ≡

 −M ≤ l ≤ M + (m − n), if n ≥ m,
(m − n) − M ≤ l ≤ M, if n < m.

= 2π
M∑

n=−M

ûn

M∑
m=−M

û∗m
[ M+(m−n)∑

l=−M
n≥m

v̂lv̂∗l+(n−m) +

M∑
l=(m−n)−M

n<m

v̂lv̂∗l+(n−m)

]

= 2π
M∑

n=−M

ûn

M∑
m=−M

û∗m
[ M∑

l=(n−m)−M
n≥m

v̂∗l v̂l−(n−m) +

M∑
l=(m−n)−M

n<m

v̂∗l−(m−n)v̂l

]
.



H. Sharkas, Turk. J. Math. Comput. Sci., 16(2)(2024), 419–425 421

Where the counter l was shifted down by (m − n) in the case (n ≥ m). Moreover, for v̂n ∈ R, it simplifies to

= 2π
M∑

n=−M

ûn

M∑
m=−M

û∗m
M∑

l=|n−m|−M

v̂lv̂l−|n−m|. □

2.2. Discrete-time Functions. A function f (t) sampled at equally-spaced time instants has a continuous frequency
response f̂ (ω) periodic in the interval [−π, π]. If the real or complex discrete samples of f (t) are represented as a
sequence x[n], then f̂ (ω) is synthesized using the discrete-time Fourier transform (DTFT) [29],

f̂2π(ω) =
∞∑

n=−∞

x[n]e−iωn, ω ∈ [−π, π],

where the discrete samples x[n] are given by x[n] = 1
2π

∫ π
−π

f̂2π(ω)e−inω dω.

Theorem 2.2. Let f (t) = u[n] and g(t) = v[n] be two discrete functions sampled at equally spaced points, and have
a finite-length N = 2M + 1, where u[n], v[n] ∈ CN , and f̂ (ω) =

∑M
n=−M u[n]e−iωn and ĝ(ω) =

∑M
n=−M v[n]e−iωn be the

discrete-time Fourier transform of f (t) and g(t) respectively, then∥∥∥∥( f̂ .ĝ)(ω)
∥∥∥∥2

L2(−π,π)
=

∫ π
−π

∣∣∣∣( f̂ .ĝ)(ω)
∣∣∣∣2 dω = 2π

M∑
n=−M

u[n]
M∑

m=−M

u∗[m]
[ M∑

l=(n−m)−M
n≥m

v∗[l]v[l−(n−m)]+
M∑

l=(m−n)−M
n<m

v∗[l−(m−n)]v[l]
]
.

If v[.] ∈ RN , then∥∥∥∥( f̂ .ĝ)(ω)
∥∥∥∥2

L2(−π,π)
=

∫ π
−π

∣∣∣∣ f̂ (ω).ĝ(ω)
∣∣∣∣2 dω = 2π

M∑
n=−M

u[n]
M∑

m=−M

u∗[m]
M∑

l=|n−m|−M

v[l]v[l −|n − m|].

For infinite-length discrete-time functions (i.e., M = ∞),∥∥∥∥( f̂ .ĝ)(ω)
∥∥∥∥2

L2(−π,π)
=

∫ π
−π

∣∣∣∣ f̂ (ω).ĝ(ω)
∣∣∣∣2 dω = 2π

∑
n∈Z

u[n]
∑
m∈Z

u∗[m]
∑
l∈Z

v[l]v[l −|n − m|].

Proof. The proof follows the same steps of the proof given in theorem 2.1. □

2.3. Discrete-time Discrete-frequency Finite Sequences. The discrete Fourier transform (DFT) works on a real or
complex finite sequence in time-domain and produce a same length complex finite sequence in frequency domain,
alternately, its inverse (IDFT) works on the frequency domain sequence to generate the time domain sequence. The
analysis formula or DFT decomposes a sample in frequency domain to the contributions of every sample in time
domain, and is given by,

x̂[κ] =
1
√

N

N−1∑
n=0

x[n] e−i2πκn/N , 0 ≤ κ ≤ N − 1.

The synthesis formula or IDFT constructs a sample in time domain from the contributions of every sample in frequency
domain, and is given by,

x[n] =
1
√

N

N−1∑
κ=0

x̂[κ] ei2πκn/N , 0 ≤ n ≤ N − 1.

Theorem 2.3. Let u[n]
F
←→ û[κ] and v[n]

F
←→ v̂[κ], where 0 ≤ n, κ ≤ N − 1, be two finite sequences in CN , and

related by discrete Fourier transform (DFT) as û[κ], v̂[κ] are the DFT’s of u[n], v[n] respectively, then∥∥∥(u ⊙ v)[n]
∥∥∥2

2 =
1
N

N−1∑
κ=0

û[κ]
N−1∑
µ=0

û∗[µ]
[ N−1∑
ℓ=κ−µ
κ≥µ

v̂∗[ℓ]v̂[ℓ − (κ − µ)] +
N−1∑
ℓ=µ−κ
κ<µ

v̂∗[ℓ − (µ − κ)]v̂[ℓ]
]
. (2.3)

If v̂[.] ∈ RN , then ∥∥∥(u ⊙ v)[n]
∥∥∥2

2 =
1
N

N−1∑
κ=0

û[κ]
N−1∑
µ=0

û∗[µ]
N−1∑
ℓ=|κ−µ|

v̂[ℓ]v̂[ℓ −
∣∣∣κ − µ∣∣∣]. (2.4)
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Proof.

∥∥∥(u ⊙ v)[n]
∥∥∥2

2 =

N−1∑
n=0

∣∣∣(u ⊙ v)[n]
∣∣∣2 (I)
=

N−1∑
κ=0

∣∣∣∣ (u ⊙ v)̂ [κ]
∣∣∣∣2 (II)
=

N−1∑
ℓ=0

∣∣∣∣∣∣ 1
√

N
(û ⊛ v̂)N[ℓ]

∣∣∣∣∣∣2 (III)
=

1
N

2N−2∑
ℓ=0

∣∣∣∣∣∣∣∣
N−1∑
κ=0

û[κ] · v̂[ℓ − κ]

∣∣∣∣∣∣∣∣
2

,

where (I) was derived using Parseval’s identity (see appendix A), (II) was derived using the convolution theorem (see
appendix B), and (III) was derived using relation (C.2) proposition C.1 (see appendix C) where the circular convolution
of length (N) was replaced by the linear1 convolution of length (N + N − 1), where 0 ≤ ℓ ≤ 2N − 2,

=
1
N

2N−2∑
ℓ=0

( N−1∑
κ=0

û[κ] · v̂[ℓ − κ]
)( N−1∑
µ=0

û∗[µ] · v̂∗[ℓ − µ]
)
=

1
N

N−1∑
κ=0

û[κ]
N−1∑
µ=0

û∗[µ]
2N−2∑
ℓ=0

v̂∗[ℓ − µ]v̂[ℓ − κ].

Simplify by limiting the range of ℓ to exclude unused combinations. Since the index of v̂[.] ∈ [0,N − 1], then

0 ≤ ℓ − κ ≤ N − 1,
κ ≤ ℓ ≤ N + κ − 1. (2.5)

Moreover, 0 ≤ ℓ − µ ≤ N − 1,
µ ≤ ℓ ≤ N + µ − 1. (2.6)

The usable range of ℓ is (2.5) ∩ (2.6) ≡

κ ≤ ℓ ≤ N + µ − 1, if κ ≥ µ,
µ ≤ ℓ ≤ N + κ − 1, if κ < µ.

=
1
N

N−1∑
κ=0

û[κ]
N−1∑
µ=0

û∗[µ]
[ N+µ−1∑
ℓ=κ
κ≥µ

v̂∗[ℓ − µ]v̂[ℓ − κ] +
N+κ−1∑
ℓ=µ
κ<µ

v̂∗[ℓ − µ]v̂[ℓ − κ]
]
,

shift down the sums in the two terms inside the brackets by µ and κ, respectively,

=
1
N

N−1∑
κ=0

û[κ]
N−1∑
µ=0

û∗[µ]
[ N−1∑
ℓ=κ−µ
κ≥µ

v̂∗[ℓ]v̂[ℓ − (κ − µ)] +
N−1∑
ℓ=µ−κ
κ<µ

v̂∗[ℓ − (µ − κ)]v̂[ℓ]
]
.

If v̂[.] ∈ RN , then

=
1
N

N−1∑
κ=0

û[κ]
N−1∑
µ=0

û∗[µ]
N−1∑
ℓ=|κ−µ|

v̂[ℓ]v̂[ℓ −
∣∣∣κ − µ∣∣∣]. □

Corollary 2.4. The proof of
∥∥∥(u ⊙ v)[n]

∥∥∥2
2 in Theorem 2.3 applies to∥u[n]∥44 by setting u[n] = v[n].

Theorem 2.5. Let u[n]
F
←→ û[κ] and v[n]

F
←→ v̂[κ], where 0 ≤ n, κ ≤ N − 1, be two finite sequences in CN , and

related by discrete Fourier transform as u[n], v[n] are the IDFT’s of û[κ], v̂[κ] respectively, then∥∥∥(û ⊙ v̂)[n]
∥∥∥2

2 =
1
N

N−1∑
n=0

u[n]
N−1∑
m=0

u∗[m]
[ N−1∑

l=n−m
n≥m

v∗[l]v[l − (n − m)] +
N−1∑

l=m−n
n<m

v∗[l − (m − n)]v[l]
]
. (2.7)

If v[.] ∈ RN , then ∥∥∥(û ⊙ v̂)[n]
∥∥∥2

2 =
1
N

N−1∑
n=0

u[n]
N−1∑
m=0

u∗[m]
N−1∑

l=|n−m|

v[l]v[l −|n − m|]. (2.8)

Proof. The proof follows the same steps of the proof of theorem 2.3. □

Corollary 2.6. The proof of
∥∥∥(û ⊙ v̂)[n]

∥∥∥2
2 in theorem 2.5 applies to

∥∥∥û[n]
∥∥∥4

4 by setting û[n] = v̂[n].

1Because the resultant terms of the convolution are all summed -even after squared by outer product-, using linear discrete convolution equals
using circular/cyclic convolution (see (C.1) and (C.2) in proposition C.1). The former is used here for its convenience with the following calculations.
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Remark 2.7. Another famous representation of DFT that is used in engineering - and in MATLAB® - is

x̂[κ] =
N−1∑
n=0

x[n] e−i2πκn/N , 0 ≤ κ ≤ N − 1, x[n] =
1
N

N−1∑
κ=0

x̂[κ] ei2πκn/N , 0 ≤ n ≤ N − 1.

When this representation is used, theorem 2.3 is modified by multiplying the right hand side (RHS) in equations (2.3)
and (2.4) by 1/N2, and theorem 2.5 is modified by multiplying the RHS in equations (2.7) and (2.8) by N2.

3. Applications

Given two deterministic signals x[t] and y[t] observed in time and sampled as discrete-time sequences. Therefore,
their power spectral density (PSD) functions [24, pp.3] [2, pp.174] are periodic within [−π, π] and defined as,

S x( f ) =
∣∣∣x̂( f )
∣∣∣2 and S y( f ) =

∣∣∣ŷ( f )
∣∣∣2 , where x̂( f ) =

∑
t∈Z

x[t]e−i2π f t and ŷ( f ) =
∑
t∈Z

y[t]e−i2π f t.

Define a cost function C(θ, θ̂) as a function of the error ϵ, and assume the criterion of choice to calculate ϵ is the squared
error (i.e., ϵ ≜ (θ − θ̂)2). The estimator θ̂ that minimizes the cost C(θ, θ̂) is referred to as the minimum mean-square
error estimate (MMSE) [2, pp.357], and the corresponding cost is CMMS E =

∫ ∞
−∞
ϵ dθ =

∫ ∞
−∞

(θ − θ̂)2 dθ. Now, assume it
is required to calculate the cost between S x( f ) and S y( f ), then

CMMS E =

∫ π
−π

[
S x( f ) − S y( f )

]2
d f ,

which is a quartic (4th-order) function of x̂( f ) and ŷ( f ), that according to [24, pp.17] has no simple closed-form solution.
However, the introduced theorems in this work together with [20] provide a closed-form solution when x̂( f ) and ŷ( f )
are 2π−periodic in frequency (i.e., x[t] and y[t] are discrete in time). For instance, assume sequence y[t] has PSD S y( f )
that needs to be designed as close as possible to S x( f ) in applications such as waveform/filter design [5,11,26,31] and
beamforming [12, 13, 21–23, 27, 33, 34], or to compare how close S y( f ) is to S x( f ) in applications such as detection
and estimation [8, 14, 17, 18, 25, 28, 32] and machine learning [3, 6, 10, 15, 16, 19, 30]. Then, the cost is calculated as,

CMMS E =

∫ π
−π

[
S 2

x( f ) − 2S x( f )S y( f ) + S 2
y( f )
]

d f =
∫ π
−π

[∣∣∣x̂( f )
∣∣∣4 − 2

∣∣∣x̂( f )ŷ( f )
∣∣∣2 +∣∣∣ŷ( f )

∣∣∣4 ] d f

=
∥∥∥x̂( f )

∥∥∥4
L4(−π,π) − 2

∥∥∥x̂( f )ŷ( f )
∥∥∥2

L2(−π,π) +
∥∥∥ŷ( f )

∥∥∥4
L4(−π,π) . (3.1)

The first and the last terms in (3.1) were solved in [20, Theorem 2.2] and the middle term was solved in theorem 2.2.
The solution is a function in the discrete–time sequences x[t] and y[t]. Similar scenario if the PSDs are replaced by
auto-correlation functions [2, pp.153] then a closed-form solution is possible using [20, Theorem 2.1] and theorem 2.1
and the solution is a function in the discrete Fourier coefficients x̂[ f ] and ŷ[ f ]. However, the computational complexity
of the RHS in these mentioned theorems are of order O(N3), which makes its usage in real-time applications critical.

4. Conclusion

We introduced an analytical solution to the L2-norm of two multiplied exponential Fourier series. Theorem 2.1
maps the L2-norm of two multiplied 2π−periodic functions (i.e., finite/infinite exponential Fourier series) to their in-
dividual Fourier coefficients. Theorem 2.2 maps between the L2-norm of two multiplied DTFT to their time samples.
The introduced solutions result the exact values and avoid numerical errors happens if the integral is calculated numer-
ically. Theorems 2.3 and 2.5 extended the results to discrete-time discrete-frequency finite sequences, i.e., DFT/IDFT
respectively. However, step (II) in proof of Theorem 2.3 made a transition from multiplication to convolution which
increased the order of computational complexity from O(N2) to O(N3), nevertheless, the accuracy of the result remains
unchanged because the functions are basically discrete. The identities are useful in physical problems such as compar-
ison of energies of signals (e.g., detection and estimation) and computing power spectrum of a weighted signal (e.g.,
digital filtering), as they result in the exact value. Besides, the identities hold equality to Cauchy–Schwarz inequality
for functions periodic in [−π, π] -satisfied for discrete sequences-, a problem that appears a lot in functional analysis.
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Appendix A. Parseval’s Identity

For x̂[κ] = 1
√

N

∑
n x[n] e−i2πκn/N and x[n] = 1

√
N

∑
κ x̂[κ] ei2πκn/N , where 0 ≤ n, κ ≤ N − 1, Parseval’s identity states,

∥x[n]∥22 =
∥∥∥x̂[κ]

∥∥∥2
2 .

Proof.
N−1∑
n=0

|x[n]|2 =
N−1∑
n=0

x[n].x∗[n] =
N−1∑
n=0

( 1
√

N

N−1∑
κ=0

x̂[κ]ei2πκn/N
)
.x∗[n] =

1
√

N

N−1∑
κ=0

x̂[κ].
( N−1∑

n=0

x∗[n]ei2πκn/N
)

=
1
√

N

N−1∑
κ=0

x̂[κ].
( N−1∑

n=0

x[n]e−i2πκn/N
)∗
=

1
√

N

N−1∑
κ=0

x̂[κ].
(√

Nx̂[κ]
)∗
=

N−1∑
κ=0

x̂[κ].x̂∗[κ] =
N−1∑
κ=0

|x̂[κ]|2 . □

Appendix B. The Convolution Theorem

For x̂[κ] = 1
√

N

∑
n x[n] e−i2πκn/N and x[n] = 1

√
N

∑
κ x̂[κ] ei2πκn/N , where 0 ≤ n, κ ≤ N − 1; and the N-periodic circular

convolution rN[m] = (u ⊛ v)N[m] =
∑

n u[n].vN[(m − n)mod N], where 0 ≤ m ≤ N − 1, the convolution theorem states

(û ⊛ v̂)N =
√

N (u ⊙ v)̂ .

Proof.

(û ⊛ v̂)N[m] =
N−1∑
κ=0

û[κ].v̂N[(m − κ)mod N], let δ = m − κ, and v[n]
F
←→ v̂[δ], where 0 ≤ n, δ ≤ N − 1

=

N−1∑
κ=0

û[κ].v̂[δ] =
N−1∑
κ=0

û[κ].
( 1
√

N

N−1∑
n=0

v[n]e−i2π(m−κ)n/N
)
=

N−1∑
κ=0

û[κ].
( 1
√

N

N−1∑
n=0

v[n]e−i2πmn/Nei2πκn/N
)

=

N−1∑
n=0

( 1
√

N

N−1∑
κ=0

û[κ]ei2πκn/N
)
v[n]e−i2πmn/N =

N−1∑
n=0

u[n].v[n]e−i2πmn/N =
√

N (u ⊙ v)̂ [m]. □

Appendix C.

Proposition C.1. Let u[n] and v[n], where 0 ≤ n ≤ N−1, be two finite sequences inC1×N . Let their circular convolution
be given by rN[n] = (u ⊛ v)N[n], and their linear convolution be given by r[ℓ] = (u ⊛ v)[ℓ], where 0 ≤ ℓ ≤ 2N − 2. Let
r1 = r[ℓ1] and r2 =

[
r[ℓ2] 0

]
, where 0 ≤ ℓ1 ≤ N − 1 and N ≤ ℓ2 ≤ 2N − 2. Consider the fact that rN ≡ r1 + r2, then∑

n

rN =
∑

n

r1 + r2 =
∑
ℓ

[
r[ℓ1] r[ℓ2] 0

]
=
∑
ℓ

r. (C.1)

∑
n

|rN |
2 =
∑

n

|r1 + r2|
2 =
∑

n

(
|r1|

2 +|r2|
2 + r∗1r2 + r∗2r1

)
=
∑

n

(
|r[ℓ1]|2 +|r[ℓ2]|2 + r∗[ℓ1]r[ℓ2] + r∗[ℓ2]r[ℓ1]

)
=
∑
ℓ

[
r∗[ℓ1]
r∗[ℓ2]

] [
r[ℓ1] r[ℓ2]

]
=
∑
ℓ

∣∣∣∣[r[ℓ1] r[ℓ2]
]∣∣∣∣2 =∑

ℓ

|r|2 . (C.2)
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