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Abstract

In this paper, the Ulam-Hyers-Rassias stability is discussed and the existence and uniqueness of solutions for a
class of implicit fractional w-Hilfer Langevin equation with impulse and time delay are investigated. A novel form
of generalized Gronwall inequality is introduced. Picard operator theory is employed in authour’s analysis. An
example will be given to support the validity of our findings.
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1. Introduction

The concept of derivatives of arbitrary order, which is essential to fractional calculus and provides a useful tool for
characterizing the inherent properties of numerous materials and processes, has maintained its appeal to a large number of
scientists in recent years. In [1], Capelas de Oliveira and Sousa presented a generalization concerning these derivatives, in
which they combined many formulations, including the traditional Caputo and Riemann-Liouville operators, and proposed a
new fractional differential operator, known as the fractional y-Hilfer operator.

Parallel to fractional derivation, another theory is growing: fractional differential equations. This theory has numerous
applications, especially in the domains of signal processing, biology, physics, engineering, and finance. (Refer to [2, 3]).

One of the best examples of these fractional differential equations is the Langevin equation, which was initially proposed by
Paul Langevin in 1908. Its goal is to give descriptions of specific phenomena that physicians, engineers, economists, and other
experts may use. The Langevin equation first described the random movement of particles suspended in a liquid, which is
commonly referred to as Brownian motion. In addition to being widely applied in all fields, Brownian motion and stochastic
differential equations are also commonly used tools in all scientific fields. (see [4]-[13]).

Furthermore, the best modeling method was found to be fractional differential equations with impulse plus delay included.
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Since fractional differential equations with impulse are used to simulate evolutionary situations involving fast changes at a
finite or infinite number of instants, they represent a fascinating area of study. Similar to this, fractional differential equations
with time delay represent real dynamics. They are used in a wide range of fields, including physics, chemistry, biology, road
traffic, and medicine. Their goal is to simulate by taking into account the past. Giving someone a drug, for instance, doesn’t
result in an instant reaction; instead, you must wait a few minutes to see whether the substance has actually had an impact.
(Refer to [14, 15]).

The majority of the time, it can be difficult to solve fractional differential equations exactly, and even when it can be done,
it can be time-consuming and difficult to compute. Asking whether they are getting close to the exact solutions or if the error
we made was not that big makes it simpler to give an appropriate explanation of the approximate solutions.

The concepts of Ulam-Hyers stability, Lyapunov stability, exponential stability, and finite-time stability are employed to
evaluate the behavior of solutions to differential equations or dynamical systems under perturbations. Every kind of stability has
uses and benefits of its own. Even though Lyapunov, exponential, and finite-time stabilities are important in their own contexts,
Ulam-Hyers stability provides a special benefit by emphasizing the robustness of approximations. This makes it particularly
desirable for real-world applications where we need to be sure that small deviations won’t result in large inaccuracies because
exact conditions are rarely realized. It is a useful tool in the stability analysis toolkit due to its adaptability and wide range of
applications. (see [16]-[18]).

Abdo et al. [19] have studied the Ulam-Hyers-Mittag-Leffler stability, uniqueness, and existence of a fractional delay
differential equation

HDPPVin(1) = f(L,w), 0<1<b,
Tl(l):r?;""w (0*) =wy € R,
w(l) =), —eo<1<0.

Recently, Lima KB et al. [20] investigated the Ulam-Hyers stability, uniqueness, and existence of the following fractional
delay impulsive differential equation:

HRP 2 Yw(1) = f(1,w), 1€ (0,b\{u, 12, tm},
Aw () =1; (w (lf)) =w (li*) —w(lf) , i=1,2,...,m,
~l=
JO_,'_?:W(O) = wy,
W(l):(p(l)a IS [—V,O]-
Motivated by the latter work, we present in this work a fairly exhaustive study of a novel class of implicit y-Hilfer fractional
Langevin equation with delays and impulses given by the form:

Hpp ey (%gaj{“uz) w() = f (l,w(l),w(c(l)) ey (%g&j"ﬂm) W(l)) 1€ 0,6\ {11,125t}
Aw () =1; (w (lf)) = w(lﬁ) —w(lf) , i=1,2,....m,

T TYw(0) = wo, Y=g+ (p1+p2)(1-4),

w(t)=0(), 1€[-r0], 0<r<eco.

(1.D

Where 3(1);}:;”' and @gilf; represent Y-fractional integrals in order 1 — ¥y and y-Hilfer fractional derivative in order
® € {p1,p2} and type ¢ respectively. 0 < ¥ <1, 0< ¢g<1. Also, f:[0,b] xQ — R a given function, [; : R - R
and @ : [-r,0] — R continuous functions, w (1;") = lim; g+ w(1;+7) ,w (1;7) =lim;_,o- w(4; — 7),1; satisfies 0 = 19 < 1 <

< <ly<lyt] =b<eoand o:[0,b] — [—r,b] is a delay function that is continuous and ensures 6 (1) < 1,1 € [0,D].

LetJ=[0,b], and let C (J,R) and C" (J,R) be the Banach spaces of continuous functions, n-times continuously differentiable
functions on J, respectively. Moreover, for any f € C(J,R), we have || f||c = sup{|f(1)|: 1 €J}. On the other hand, we
consider the weighted space in [20], defined by

Cioyy(LR) ={w:J > R: (y(1)—yw(0)" "w(i) eC(J,R)}, 0<y<l.
Define the Banach space

w:J—=R; WEley;w([li,l,#]],R),iio,...,m, 0<y<1
and there exist w (1;7) ,w (1;) ,withw (1;) =w (1, ),i=1,2,....m [’ r==

PC\_yy(J,R) = {
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using the norm
Iwllpe, = su5>|(w(l) —y(0)! Tw()].
1€
We then specify the space.

Qyy = {w :[=nb) > R:weC([-r0],R) ﬂPCl_M,(],R)} ,
using the norm [|w|q,,, = max { Iwllc, ||w||pclfw}. One can verify that (Qy.y, || - |, ) is a Banach space ( see [19, 20]).

2. Preliminaries

Definition 2.1. ([1]) For p > 0, and y € C'(J,R), the fractional y-Riemann-Liouville operator with order p for an integrable
function w can be written as

o) = s [ W) =y s e

in which y'(1) > 0, V1 € J.

Definition 2.2. ([1]) For 0 < p <1, w € C(J,R), y € C'(J,R) with y'(1) > 0, Vi € J, the fractional y-Hilfer derivative
operator with order p and type 0 < q < 1 of w is represented as

~aq(1 L d\ (-g)1-p);
HOPEY (1) = 7 lp>w<w/(l)dl) S0P 1), 22)

Lemma2.3. ([I])Let0<p<1,0< g<1,weC'(J,R), then

~g+1ll H©g+qlllf (l) _ W(l) _ (W(l) ;(‘Z()O))pl j(l):ﬁ;ww(()), (2.3)

where p =p+q(1—p).

Lemma 2.4. ([1, 21]) Let p,g > 0,6 > p and w € C(J,R). Following that V1 € J there are
PV 5 D

(1) .Jgfl g;” w(l) = g+z Yw(v),

(2)HDFEYIEY w(1) = w(),

(3)30+,1< w(1) = w(0))! = L2 (y(1) — y(0)P+at,

11;14/ _ () y(0)?

(5)H@g+qlw(w(l) w(0))5 (ra(ﬁ)p)(llf(l) o)
(6) H©g+q1w(‘/’(l) v(0)% =0 0<d<l

Lemma 2.5. ([1]) Let 0 <y < 1 and f € Ci_y.y[0,b]. Then

3o f(0) = lEmel’/f() ., 0<1—y<p.

To show the Ulam-Hyers-Rassias stability for problem (1.1), we generalise the definitions for y-Hilfer given by Rizwan et
al in [22].
Take € > 0,0 >0, ¢ € Qy,y, and considering

{ HOPUIY (HDPAY 4 2 ) w(t) — f (1,w(),w(o (1)), HC‘D"'”(HQMWJF’I)W(U)‘58"’(‘)’ LeS a

Aw () =L (w(y )| <€0, k=1,....m

Definition 2.6. (/20]) Problem (1.1) is Ulam-Hyers-Rassias stable in terms of (¢(1),0), when a real number cp ¢ > 0 exists
in which, for all € > 0 and all v € Qy,y, solution of (2.4), there is a solution w € Q. to the problem (1.1) with

{|v(1)—w(l)|—07 1€ [-n0],
(W) =y (0)! Y (v(1) = w(1))| < crmoe(9(1)+6), 1€
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Remark 2.7. ([20]) A continious function v € Qy.y is a solution of (2.4) only if g € Qy.y a functionand g, k=1,2,....ma
sequence ( both depends on v ) exist in which

(1) [3(1)] < 29(2), k=12...m
(@H@qu(Hmm”W+x)w<>=f(uwaxw«w>>H@&ﬁW(H©ﬁ1W+z)qu+ga» te,

0t

) Awy) =L (w(y ))+gn k=12,....m

Definition 2.8. (/23]) Consider the metric space (&,d). If there is a w* € & in which
1. Fo ={w*}, inwhich F5 ={we & : T (w)=w}

2. {T" (wo) },en converges to w* for each wy € &.

Then the operator J : & — & is a Picard operator.

Lemma 2.9. ([24]) Take T : & — & an increasing Picard operator with F o = {w*q }, and take (& ,d,<) an ordered metric
space. Then, for eachw € &,w < .7 (w) shows w < w.

Lemma 2.10. (/25]) Take w,v be two functions on J that are integrable. Consider y € C'(J,R) is an increasing function in
which W' (1) # 0,V1 € J. Suppose that

(i) Both w and v are positive.

(ii) For any J, (gi);_, __, are bounded and monotonic increasing functions.

(iii) p; > 0(i=1,2,...,n). If

) <30+ L at) [ WO -y wiwds

then

3 H;{ZI (gi,(l)r(pi/)) ! ’S — Ky Z{'(:I i’_l vis)as
+Z<1/2I3,Zk,:1 (e ) /LI[W()(W(I) y(s)) ] ()d).

Assume further that v(1) is a nondecreasing function on J. Next, the inequality given by [25, Corollary 2.1], for n =2, gives
us

w(t) <v(1) [Ep, (w0 (1,0)) +Ep, (W22(1,0))],
where y} (1,0) := g(1)[(p)(y(1) — w(0))?, and E, is the Mittag-Leffler function defined in [2] by

n

= Z
E = _ R .
»(2) n;)r(nqu),ze@, e(p) >0

Lemma 2.11. Forn=2. Let w € Qy,y satisfying the following inequality

2 '
D+ Y e [ VOO -w@)" weds+ ¥ o). 120, @5)
=1 J0 0<y<t
where B, > 0,k =1,...,m is a nonnegative constant and v € Qy.y is nonnegative too. Following that

w(1) <v(1) (14 B [Ep, (w21 (1,0)) +Epy (w(1,00)])" [Ep, (21 (1,0) +Epy (wI2(1,0))] . 1€ (upn),  (26)
where f =max {f:k=1,2,...,m}.

Proof. For n =2, and by lemma 2.10, we derive

w(t) <v(1) [Ep, (W2 (1,0)) +Ep, (W22(1,0))], 1€0,u], 2.7

[Ep, (W' (1,0)) +Ep, (W52 (1,0))], 1€ [t tep1]- 2.8)

k
v(1)+ Zﬁjw 1
=0
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By induction, for k = 0, inequality (2.6) holds by (2.7). Suppose that for k = j < m, (2.6) holds. After that, using (2.8) and
the nondecreasing nature of v and E,,, we obtain for 1 € (141,1j42],

j+1
W) < |v +’Zﬁ, 0) | [Epy (w2 (1,0)) + Ep, (w22(1,0))]
r j+1 ;
: V“”J.Zlﬁfvw (1B [Epy (W2 (1:0)) +Epy (w2 (1,0)]) " [Ep, (W) (1,0)) +Epy <wgz<u,o>ﬂ]
>;[ Ep, (V{é"( )) E),, (W§2(l,0))]
Jj+l1 .
< |v(t)+B Z v(1) (1+ B [Ep, (WP (1,0)) +Ep, (ng(z,O))])"l [Ep, (w2 (1,0)) + Ep, (w§2(z,0))]1
x' Epy (00 (1.0)) +Epy (v22(0.0))].
then
1= (14 B [Ep, (W' (1,0)) +Ep, (2 (1,0)])""" 1 )
W( )S V( )+ﬁ ( ) 1_(1+l3[ ( (l,O))+Ep2( (170))}) [Em (W5 (lao))JrEllz (Wp (l 0))}
X [ p1 (ng(la ))+Epz (‘l’pz(l 0))}
= [y +v(0) (1B [Ep (w7 (1.0)) +Epy (w2 00)]) ™ 1) | [Epy (v (1.0)) +Epy (v22(1,0))]
< () +9(0) (14 B [Epy (v (1,0)) +Epy (w72(1.0)]) " =v()] [Epy (v (1,0)) +Epy (w7(1,0))]
= (1) (1 B [Ep, (w1 (1,0)) + Epy (w2 (1.0))])7 " [Ep, (w2 (0,0)) + Epy (w2(1,0))]
This finishes the proof. O

3. Formula of Solutions
Lemma3.1. Let0<p,pp <1, 0< g<1,andh:J— R be continuous. A function w € Qy.y, given by

(v(@) — w7 * o

is the unique solution for the problem that follows

w fJP1+P2 ‘l’ha+2{jP2W a ) .
w(t _[ W ()] (w(t) = w(0)" "+ 300 Y (1) = ATV w (1) G-D

{H@gﬁw(%mux) w(t)=h(1), 1€J, (3.2)

w(a)=wo,  a>0,

in which jPH-Pz Wha _ ~P1+P2 V’h( )
0 )

l=a

Proof. Taking the fractional y-integral operator of order p; + p, on each side of (3.2). Then utilizing Lemma 2.3, we arrive at

~ v —p(0)" !y, :
w(t) —ex(w(t) = w(0))7~! + 432 ( - ¢ mf) W25 mv0)) = 3007 ¥n(). (3:3)
where ¥1 = g+ p1 (1 —q), and e is an arbitrary constant.

Since 1 —y < 1 — 7, lemma 2.5 implies that 3(1)1_7:' Yw(0) =0.

Hence (3.3) reduces to /

w(t) = er(w(1) = y(0))" " + 30 VR(1) — ATV w(). (3.4)

0+t
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. wo7jgjrtp2wh“+ljg€li’w(a) . . .
In (3.4), the boundary condition w(a) = wy leads to e¢; = OO . We substitute e; in (3.4), we obtain

(3.1).
On the other hand, suppose w can be the unique solution satisfying (3.1), taking the fractional y-Hilfer derivative @gi’_'f‘"

on either side of (3.1), and using lemma 2.4, we can obtain

HDAVi(1) = YR (1) ~ Aw(r),

then taking fractional ’Dgi"fw again, it follows

APV (HDPIY 44 ) w(t) = h(1)

0t

Hence, the proof is complete.

We obtain the following result from 3.1, which is useful in what follows.

Lemma 3.2. A function w € Q. has a solution of (1.1) if and only if w € Qy.y is a solution of the given fractional integral
equation

(1), 1€ [—n0],
w(l) = w m Li(w(y ~ ; ~D2 3.5
® [F(;) Y 9(%5%3))} R (1,0)+ I PVE, (1) - A1), 1ed, 3
in which F,, (1) = £ (1,w(1),w(0(1)),F, (1)), and Rl (1,0) = (y(1) — y(0))"" L.
Proof. Assume that w satisfies (1.1), then w satisfies
Hop v (%g&j“ux) w(t) = f (l7w(l),w(0'(l)) Hopay (”sagag“"m) w(l)) .
Take /D7 4Y (HCDgi’ql;W + l) w(t) = F,, (1). It follows that F,, (1) = f (1,w(1),w(c(1)),F,(1)). Then, we have
APV (HDPY 44 ) wit) = F (1)
If 1 € [-r,0], clearly that w(1) = ¢(1). For 1 € [0,1;], #DIL4Y (HﬁDgf(fw—i-l) w(t) = F,, (1) can be writen as
HDg P w(t) + ATDE Y w(1) = F, (1) (3.6)

Taking the fractional y-integral operator of order p; 4 p> on each side of (3.6). Then utilizing Lemma 2.3, we arrive at

) —wO)! ., S : o
$20 - ("S DT 51 m,(0) 4 202Y (3D W) ) = 3R (1), 37

Utilizing again Lemma 2.3, we can get

w(t) -

(v() ;(u;)w))y‘l35;Z;WW<0>+WZ

where yi =g +p1(1—q) .
Since 1 —y < 1 — 7, lemma 2.5 implies that 3(]);7:' Yw(0) =0.
1

Hence by Cilfw’/w(O) = wp and R}, (1,0) = (w(1) — y(0))""!, equation (3.8) reduces to

ot,1

o -1
¥ () - IO 5l )) =3 ¥R, 69

Wi . .
w(t) = ﬁ%sﬂw(m) + YR (1) = 205 w(). (3.9)

If 1 € 11, 1] then H@gi’?w (HCDgi’z;W—Fl) w(t) =F, (1) withw (1) =w (1) + 1 (w (1)) By lemma 3.1, one obtain
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-W l+ _jP1+I72;‘I/Fv£1 _1_13172;![/“}(11) 4 .
W(l) = ( 1 ) 0+, . 0t,1 %K/(l,o)+jg$m’wa (l)—ljgi’f:/W(l)
L 9’{1[/(1170)
(w () +4h (w(1y)) _jgﬁngwﬂél +Aj€iﬂfw(ll) y ~P1FHP2Y D2V
- R, (11,0) By (1,0) + 3GV R (1) = 496 wlr)
M Y TPyt P23y — P1+p2iy ot 1ZH"
_ [ e B0+ 36 YRS - A5 w(u) +4 (w (1)) = g, RS AT w(u) R (1,0)+ 3P PEVE, (1)
L 9%(11,0) /AN 0t 1 W
- Ajgfz’w(l)
[ 22 RY (11,0)+1 (w (1))
_ | Ty vt 1 1 y ~PI+P2Y oy
- R (1,0) ]9“"“’0”%% VE (1) = AT W)
wo Il (W (lf)) Y P1+p2 Y R
= + RY(1,0)+ 3P0 P2VE (1) — 2302 Yw(1).
T RY(11,0) y(0)+ 35, w() ot 1 W(1)

If 1 € 1, 13] then again by lemma 3.1

[w (1) =3B P2VER + A3 Ya(1a) _ _
w(l) = : : RY(1,0)+TPPEVE (1) — APV (1
( ) I 9{3”/(12’0) W( ) 0,1 ( ) 0t+,1 ( )
r - - TPy 1287
w(ty ) +h(w(y)) =350 PPYEE+ AT Y w(t) _ .
= " u R (1,0)+ 35 P2VE, (1) = A3 Yw(1)
L 9{‘4/(12’0) ’ )

A 0t,1 0t,1 EKY( ())
= l7
R (12,0) v

{WO + I (W(ll))} 9{7&/(1270) Jrjgjrtpz;wﬂzz 7)Ljpz;ll'w(l2) A (w (127)) *j‘g}rtpz;va? Jrljpz;ll’w(lz)

+3§Lﬁp2;"’Fw (1) = A3 w(1)

_ Cwo L w(y)) Lw(y)) I .
N _F(Y)+ 93?,,(11,0) + 9{2/’/(1270) ]%(hOHJm,I YF, (1) ljoﬂl:/w(L).

Repeating the same fashion in this way for t € 1, 1;41] , we get
Li(w(y +p2; ~D25
w(t) = | 4y, giywilim R, (1,0)+ T TVR (1) - ATV (1), k=1,2..m
In contrast, Suppose w can be the unique solution satisfying (3.5). If 1 € [—r,0], clearly that w(1) = @(1). If 1 € [0,14],

taking the fractional y-Hilfer derivative /D7%%" on either side of
wo ~D1+D2; ;
w(t) = W.‘)ﬂ,’,(uo) +IVE (1) AT w(), (3.10)

using lemma 2.4, we can obtain
Ab2d¥y, (1) = 3P1YE, (1) — Aw(1).

0t,1 ot "V

Then taking fractional Z)gﬂi;w again, it follows

1Y (MDY 42 ) w(t) = R (1),

Now we show that the initial condition J(I)IZ;WW(O) = wy also holds. We apply fié:?fw on both sides of (3.10), then lemma 2.4
implies that ' '

j(l)::}:;ww(l) =wo+ j(l):?:+P]+P2§WFW (l) _ a,j(l)_:?:erz;WW(l).
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Since l —y<1—Y+pi+prand 1 —y < 1—7y+ py, lemma 2.5 implies that
~1
JO+YW (0) = wyo.
Ift € [, 411], k=1,2,...,m. Using again lemma 2.4, we obtain

HPLEY (HDPY 2 ) w(1) = F (1) and w (1) = w (7)) = I (w (1) -

Hence, the proof is complete.

4. Existence, Uniqueness and Stability

We present the following hypothesis in order to show the existence, uniqueness, and stability of the solution.
H1: f:J xR?® — Ris continuous and .Z > 0, 0 < Zf < 1 are constants satisfy :

Lf (wr,wa,wz) = f (1,v1,v2,v3)] < Z(w(0) = w(0) 77 {lwi —vi| + w2 —val} +Zlws —vs,

1 €Jand wy,vy,wp,va,w3,v3 € R,
H2: [;:R—R,(i=1,...,m) satisfy :

1w (7)) =1 (v (57))| < Zig[w (57) =v () |-

where w,v € Qy.y, and .Z7, > 0.

H3: The inequality

22(y(b) —y(0) VPt AIT(y) (w(b) — w(0))”

K =mL+
! (1-Z)T(p1+p2+1) C(p2+7)

<1,

where .27 =max{.%,:i=1,2,...,m}.

H4: A non-decreasing function ¢, bounded in J, and a constant l(p > 0 exist in which, for each 1 € J,
~P1P2;
WY (1) < Ag (1)

Theorem 4.1. Suppose that HI-H4 are true. Then
(i). There is a unique solution to problem (1.1) in the space Qy.y.
(ii). Problem (1.1) is Ulam-Hyers-Rassias stable.

Proof. Part 1: In this part we will prove the existence as well as the uniqueness of solutions to problem (1.1).
Considering Lemma 3.2, we set the operator &7 : Qy.yy — Qy.y

(1), e [-n0],

o 1) == w i ; :
(/w) (1) o 119({751 0)) Ry (1,0)+ 351 2YE () - ATV w(), e,

where F,, (1) = f (1,w(1),w(0o(1)),F, (1)).
As we can see, the solution to problem (1.1) will be the fixed point of <7
We demonstrate that on £y, &/ is a contraction map. Let, w,v € Qy.y. Then for 1 € [—r,0], we have:

|Zw— a7v|c=0. 4.2)

4.1

Further, for any 1 € J, we have

o 1w (1) =1 (v (1)) ! s ~
() (1) — (@) 0)] <(0,0) [}:1 S o ) R ) = Eolds
ALY
+ = T(p) Jo N2 (1,s) [w(s) —v(s)| ds,
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where A/ (1,5) = ¥/ (s)(w(1) = w(s))”, p=pa,p1+p2.
Using (H1), (H2), and
Fu(1) = F(1)] < Z(w(1) = w(0) " {|w(1) —v(1)| +|w(c (1)) = v(a (1))} + L |Fu(1) = R (1))
It follows that "y
Fu0) — Ry < 2 YO0y )+ (o) — (o))
1- %
Therefore, we have
— (@)1
< (1.0 [zz P i) v (1)
i=1
(1 ZT (p1+p2)/ NP (1,5) (w(s) — w(0) T x {|w(s) = v(s)| + [w(a(s)) —v(a(s))|} ds
|’}D|2) /Ol(/Vuf)z(l,s)|w(s)fv(s)|ds.
Then .
[(w(1) —w(0)) T ((@w)(1) — (@v)(1))] S;fn(w(li) —y(0)" Y |w(y ) —v (1))
Ly —yO)"" v B -
’ (1-%) F(P1+p2)/o APl WO
x {w(s) =v(s)|+ [w(o(s)) —v(c(s))|} ds
1
Y (%(p:l y/ N (1,9) (w(s) — y(0))7!
< (w(s) = w(0)' 7 w(s) — v(s)|ds.
Then
[(w(1) = w(0)) 7 ((@w)(1) — (@) (1))
SWl"Z?”W_VHPCI—}/;W
25(‘/’(1) - ‘V(O))liy ! pP1+p2
(1—Z5)C(p1+p2) HW_VHPC"V"”/O M (L s)ds
_ 1- 1
# UL HOD e, [ A 1) 006) — w0 s
2.2(y(1) —w(0) 7 -
Sl ot T g T ey 1 e X (Y w0
_ 1-
# ELR YO vl (1)~ w0
2.2 (y(b) — w(0)!~rtPtr2 T(y)|A|(w(b) — w(0))P2
< |t (1=Z)D(p1+p2+1) L(p2+7) ]”WV”PC'Y‘W'
Therefore,
lw—=Vpc, .y, = Sllg’|(llf(l) —y(0) Y ((Fw) (1) = (FV)(1)| < A |w=Vllpe,_,,- 4.3)

From (4.2) and (4.3), we have
W —v]a,, = max{||4sz— |, || Aw— mHPCFW}

< ¢ max {Oa [[w— V”PCl—y;w}

< H|w—vla,,-
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As # < 1, Banach’s fixed-point theorem shows that the operator <7 has a fixed point, which is the unique solution to problem

(1.1).

Part 2: Now, let us discuss the Ulam-Hyers-Rassias stability.
Take v € Q. as the solution to (2.4) and w € Qy,, as the unique solution to the problem:

H@g:‘i"’('f@"”"’m) w(1) = ( ()w(o(z)),%ggf{‘w(H@g’aj"”m)w(l)), 1e 0,6\ {t1,1,...,tn},
Aw (1) =w (1) - ( ) Liw(y)), i=12....m, 4.4
j(l)ﬂlw (0) = wo, +(p1+p2)(1—q),

w(t) =), 1€ [—r,O].

According to Lemma 3.2, we have

(p(l)’ S [_r’O]a

W(l) = [Wo +Zm1 19(;;5‘ )):| RY (l O)+JP1+P2 WFw( 1) — ljm;ww(l)7 Leld. 4.5)

By assuming that v is a solution of (2.4). Hence, based on Remark 2.7, the solution of

ALY (1Y 4 2) (1) = £ (1,v(1), v (0(1) TDPEY (TR £ 2 ) wl1)) +8(1), 1€ (0.0 {11, 1},
Av(y)=1; (v (ll-_)) +gi, i=12,....m
3o Yv(0) =wo, Y=g+ (p1+p2)(1-4q),
V(l):(p(l)a IS [—V,O].
It can be formulated as follows:
(P(l), e [7"70]7
1) = Wi m Li(v ; +gi ~ H ; 4.6

MOZN e r SO o ,0) 4+ 90 PYR (10 - AXENW + Ve, ve, 0

where, F, (1) = f (1,v(1),v(c(1)),F, (1)).

Now let, w,v € Q.. Then for 1 € [—,0], we have:

[[w—=v|lc=0. 4.7
Further, for any 1 € J, we have

m

o [Lilw(y ) —Li(v(y i ~D1+D2s
i) =vt0) <00 | § OGP oy 00§ ol aprrnig
142 |/1| 2(
+m/ AP 5) B 5) ~ B 5) s+ =L /JVP (1,5) [w(s) — v(s)|ds.

Using (H1), (H2), and remark 2.7, we’ve obtained

(w(1) = w(0) 7 (w(t) —v(1))] Si«%(‘l’(li) = () T w () = v () |+ i by (1) —y(0)' 7

i 1- 1
O o A ) o) - yio)

x{wls) =v(s)|+|w(o(s)) = v(a(s))[} ds
_ 1- 1
M(W(l%(p:;(o» Y/O M (1,9) (w(s) = y(0)"!

X (w(s) = w(0)) 7 w(s) = v(s)lds + (w(1) — w(0))' "ede 9 (1).

+
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Then, if M = max {m(y(b) — y(0))' 7, A (w(b) — y(0))' "7}, we get
|(w(1) = w(0) 7 (w(1) —v(1)| <Me (6 +6(1) +Z‘1«i’1 (1) = w(0) 7w (1) = v (1) |
L) WO [ gy
G Tyt Jy W)~y ) »
xA{w(s) =v(s)|+|w(a(s)) —v(a(s))[} ds '
_ 1- t
O VO - yioyr
X (w(s) = y(0))' ¥ |w(s) —v(s)|ds.
And now for every z € C([—r,b],R4), we define 7 : C([—r,b],Ry) = C([—r,b],Ry) as
0, 1 €[-n0],
Me (6 + (1 ))+Z’”1$1( (1))
(70 = G A 1) Gl (o) ds “9)
+ By o W(z W)~ wO)2()ds,  tel.
We show that .7 is a Picard operator. Let z,w € C ([—r,b],R;). Then,
| Tz— Twlc=0. (4.10)

Further, for any 1 € J, we have

(T — (Tw)) s)mjlf 2 (7) —w (1))

+ FOL YOV o S [0 % 0) = () 0(6) — (o () s
i POV WOTE 15y yts) — w0 ) wis .
Then
(F0) ~ (Tw)0)] <m Lzl
S

" "L'“”“}(;;’;(O”” o wlle [ A 6) — wi0)) s
<=l 22 A ION el () - y(0)

+ TR = WOD Ty y) - o
[y e it

Therefore,

|T2=Twlc= Sllégl(yzm) —(Iw) ()| < Alz=wllc.
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By % < 1, the operator .7 is a contraction mapping. According to [26, Theorem 2.1], we obtain that .7 is Picard operator
and # 4 = z*. Then for all 1 € [—r,b],

(1) =Me(6+9(1)+ Y L7 (u)

0<y<t
o 1—- 1
f(—wo(;f)) V;(lo-)l-)sz/ MY (s) % (2 () +2 (0 (s)) ds (4.11)
1
MO 1) wt6) — w0 2 ().

Next, we prove that z* is increasing. Take 11,1, € [—r,b] with 1; < 1p. Then for 11,1, € [—r,0], we have z* (1) —z* (11) = 0.
Further, for 0 <y <1 <b. Define Ny = mingc (g (z*(s) +2"(0(s))) and N2 = mingc | 5 2" (s), we have

()~ (1) =Me(0+9¢(n) ~Me(O+o(u)+ Y L) - Y L)
0<1;<1p 0<;<1
Z(y(b) - y(0) PP ) (24(s) 4 (G (s))) dis
+(1—«$f) (P1+P2 </ My (19) (2 (s) +27 (0 (s)))d

- [l @0+ ) i)

i PO VIO (1% ) t0)— w0 2" (s

I'(p2)
- [ - v <z as)

t
—/1W1+P2(l,s)ds)
0

A _ 1=y L
+ IO ([* 1) wis) - w0 s

1 , B . )
- [ A - vy as)

> Z "%il*(li) gliga(gf)(b)(plli(pi)_i_ 5 ((llf(lz) _ l,,(0))171er2 —(y(1)— I,(/(O))plﬂ’z)

0<y;<1,—14

1
+N2\F( YA |((p2+y 7( Pz‘H’—l_(y/(l])—w(o))mﬂf—l)

>0.

Therefore, The operator z* is increasing. Since 6(1) < 1,z*(0(1)) < z*(1),1 € J. By (4.11), we get

(1) <Me(0+9(1)+ Y L ()
0<y<t
22(yb) —yO)' " [t i,
(1-Z)T(pi+p2) / MY (1) ()ds (4.12)

_ 1— 1
MO 1) wt6) — w0 2 ().

+
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As 0 <y <1, then (y(s) — w(0))"! < 1. So, (4.12) reduce to

75(1) <Me(6+¢(1)) + Z 4.7 ()

0<y<i

I VOV [ (u,9e (s

(1=Z))T(pi+p2) @19
A ®) W) [t
+ () /OJVVf’ (1,8)z"(s)ds.
Using lemma 2.11, with
W) =20, V() =Me(0+6(0)
22l wO)T ) - y©) T,
gl(l)_ (1_$f) F(pl-i-pz) ’ gz(l)_ F(P2) ? ﬁ =4,
we obtain
(1) <Me(0+6(0)
_ - ¢
><<1+.$, eSS y(w(z)—w(o»m*m)+Ep2<|z|<w<b>—w<o»17<w<l>—w<o>>"2>D

(1=%)

_ l=y+pi+p2 k
Epl+p2 <2$(W(b)(l l_[/E;i)) Y+p1+p. > _|_Ep2 (|),|(l[/(b) _ W(O))ly+p2)]>

— l=y+p1+p2
x [Emﬂﬂz <2‘$("’(b)(1 e — ) +Epy (1A(w(b) 1//(0))1‘””2)]

<crmo€(0+¢(1)), 1€,

_ 1—-
x [E (w WO =vO) Ty W(O))”'*’”) T Epy (121(w(b) — w(0)) 7 (w(1) - w(0))™)

<Me(0+¢(1)) x <1 +.%

where

— 1=y+pi+p> k
Epvivey (zg(w’) [ — ) g (M (w(5) - w(O))lW)D

2.2 (y(b) — y(0))! - rtr1te
EP1+P2-,W

Cfm,o =M (1 +%

X

(1-2)

) +Epyy (1A1(w(b) W(O))IWZ)] .

Specifically, when z(1) = (y(1) — w(0))'~¥|w(1) — v(1)|, using (4.8), we obtain z < .7 (z), where the Picard operator .7 is
increasing. Next, applying Lemma 2.9, we get to z < z*.Therefore, it follows

(W) = y(0) "(wt) —v(1)| < crmoe(9(1)+6), 1€ (4.14)
Thus, problem (1.1) is Ulam-Hyers-Rassias stable. 0

Remark 4.2. As a consequences of theorem 4.1, we can obtain the Ulam—Hyers stability (U-H).
While ¢ is increasing function for any 1 € J, the inequality (4.14) reduce to

| (w(1) = w(0) " (w(1) = v(V)| < crmoe(9(b) +6), 1EJ.

Therefore
[(w(1) = w(0)" T(w) —v(1)| <cpe, 1€,
where ¢y = ¢y (¢ (b)+0), and problem (1.1) is Ulam-Hyers stable.
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5. Example
Example 5.1. Taking the following problem:

4 2 () = w(0)* (1+|w(v)[ +w( = 3)I)
H®g+zW<H©g+,qL"’+l)W(l)— 30e(v(1)—w(0)) +2(\w( )|+|W(l—%§|)

! 1
! 43 (1 + ’HDSLZ;W (Hggi«i;WJrl) W(l)D , 1€(0, 1}\{2} )

()=
11|w( )|’

I Yw(0) =1, y=B+(pi+p2)(1—0q),

w(1)=0, 1€[-1,0].

Define f: (0,1] x R® — R by

(v(1) —w(0)) (1+IWI+IVI)jL 1

l777 7
Fwv ) = S OO 2 (£ ) A3 Tl)

and I : R — R by
1+ |u|

]1(14) = 11|u| .

For1 € (0,1], we have

‘f(l,W],V],M[)—f(l,W27V2,M2)‘
- () =) [L+lwi+ 1| 14[wa|+][v] 1 1

43’1+|u1_1+|u2|

= 30200242 | |wi|+|v] lwal =+ [v2]
1) —y(0))? 1
< )~ y(0) >30el’2/( ) (lw1 = wa|+» —vZ|)+ |u1 — U]
1) — y(0))7+! - 1
< WO VAT 4 0) — y0)) ' (ol + s — vl 5 o~
(w(1) — y(o)r! - 1
< - v - —up|.
< W VIO ) — yr0)) 7 (s —wal vt — )+ 55 i
This implies that f satisfies (H,) with & = W and L5 = 35
Also,
LT+ w 14
mw>nww—n(lw| D) < -
Therfore, (H,) is satisfied with £;, = £ =
Now, take p; = 2,P2 47q—1k 2andl//(): . Theny=1, and & = 3>
2x L !
Asm =1, we have X = 11 + € 4%)319( ) + e +1) =0,652593 < 1 and (H3) is satisfied.

Furthermore, by selecting ¢ (1) = 12, for any 1 € (0,1], we have

l 16

16 3 16
%S“%<>I4wu

ar() 21r(%)ﬂ¢(l) = 211(3)

-~
SN

¢(1).

By setting Ay = ﬁ?%), we get (Hy). So all conditions of theorem 4.1 are satisfied. Hence, (5.1) has a unique solution and is

Ulam-Hyers-Rassias stable.
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6. Conclusion

During this paper, we have examined the existence and uniqueness of a class of fractional implicit y-Hilfer Langevin
equations with time delay and impulsive. The obtained results are proven using Banach’s fixed-point theorem. Additionally, the
Ulam-Heyrs-Rassias stability for problem (1.1) is considered via a novel form of generalized Gronwall inequality and Picard
operator theory. Finally, we provide an example to show how the theoretical findings stated previously are valid.
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