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Highlights 
• This paper focuses on fractal image compression method. 
• Unlike classical fractal image compression, images were decompressed by non-affine transformations. 
• Similar approach is applied for audio decompression.  
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Abstract 

In this study, considering the well-known fractal image compression, we introduce the image 
decompression method through non-affine contraction mappings. To achieve this, we convert 
affine contraction mappings into non-affine contraction mappings using Lipschitz continuous 
functions, subject to certain assumptions. Our expectation is to obtain decompressed images of 
superior quality compared to the classical fractal image compression method. We also apply our 
method for audio decompression. At the end, we illustrate the proposed method with some 
examples. 
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1. INTRODUCTION 

 

The concept of fractals was first introduced by B. Mandelbrot in 1975 as a way to describe the irregular 
shapes in the nature. However, the theory of iterated function system (IFS), which is the most well-known 

method to generate fractals, was developed by Hutchinson [1]. Thanks to this method, many classical 

fractals such as Cantor set, Sierpinski triangle, Koch curve, Sierpinski carpet, Box fractal, etc. which were 
also discovered earlier, can be obtained as an attractor of their related IFSs. On the other hand, as an 

application of IFS, Barnsley and Sloan presented a method to compress images, which is called fractal 

image compression [2, 3]. Since Hutchinson theory is based on Banach fixed point theory, fractal image 
compression relies on the concept of contractive mappings and the uniqueness of the fixed point. 

 

In recent years, analyzing digital images using algorithms and mathematical operations on computer vision, 

generally called image processing, has become quite popular [4-8]. There are various types of techniques 
in image processing, such as image segmentation, edge detection, image compression, etc. The fractal 

image compression method discussed in this study is one of the image compression techniques. The purpose 

of this method is to approximate the original images by storing less data for a given image, which involves 
contraction mappings of the associated IFSs rather than the data of the original image. 

 

If we were to summarize, fractal image compression is a technique used to represent and compress digital 

images by exploiting the self-similar properties of fractal geometry. Instead of storing pixel values directly, 
the method involves encoding the image as a set of affine contraction mappings within an IFS. These 

mappings transform blocks of pixels into approximate copies of other parts of the image. During the 

compression process, the algorithm identifies and stores the contraction mappings that best represent the 
image. In the decompression part, the original image is reconstructed by iteratively applying the stored 
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mappings. The goal is to achieve compression with reduced data storage while maintaining image quality 

[2, 3]. 
 

1.1.  Literature Review 

 

Fractal image compression methods given in [2, 3] have been improved over time. These studies can be 
exemplified by fractal block coding in [9]. Then Fischer advanced new techniques for image compression 

based on fractals in [10]. Using quadtree and adaptive quadtree partitioning methods, efficiency of the 

compression methods has been enhanced, notably by reducing encoding time [8, 11, 12].  Fractal image 
compression remains a popular research topic, with ongoing studies focused on improving compression 

performance, optimizing methods, and further reducing encoding time [5, 13]. 

 

In the present paper, by using non-affine contraction mappings, we aim to decompress the images, which 
are encoded in the classical way. Even though, our decompression can require a little more time, we expect 

to obtain better or at least similar-quality decompressed images. To achieve this goal, we utilize from non-

linear transformations compatible with contractions under some certain assumptions and related 
approximation theorem in [14]. 

 

2. PRELIMINARIES 

 

In this part, we give the basics of the fractal image compression. Thus, we first recall the theory of IFS, 

given in [1]. 

 

Definition 2.1. Let (X,d) be a complete metric space and fi : X → X (i ∈{1,2,...,n}) be the contraction 

mappings, that is, there exists a contractivity factor ri < 1 such that for all x,y ∈ X 

𝑑(𝑓𝑖(𝑥), 𝑓𝑖(𝑦)) ≤ 𝑟𝑖𝑑(𝑥, 𝑦) 

where 0 ≤ ri < 1 for all i ∈ {1,2,...,n}. Then {X;f1,f2,...,fn} is called the iterated function system (IFS). 

Theorem 2.2. Let (X,d) be a complete metric space and {X;f1,f2,...,fn} be an iterated function system. 

Then for every S ∈ ℋ(X), the function F : ℋ(X) → ℋ(X) defined by 

𝐹(𝑆) ≔ ⋃ 𝑓𝑖(𝑆)

𝑛

𝑖=1

 

is a contraction mapping on ℋ(X), which is set of all compact nonempty subsets of X and complete 

metric space with respect to Hausdorff metric h. Note that 

 

𝑟 = max
i ∈ {1,2,…,𝑛}

{𝑟𝑖 : 𝑟𝑖  is the contractivity factor of 𝑓𝑖} 

 

is called the contraction constant of F. 

 

Furthermore, F has a unique fixed point A such that F(A) = A. This fixed point is also called the attractor 

of the IFS, and for each S ∈ ℋ (X), F(k)(S):= (F ◦ F ◦ ... ◦ F)(S) converges to A as k → ∞. 

 

Now, we can give the details of the fractal image compression. 

Through the process of fractal image compression, the technique is mainly based on the Collage 

Theorem (see [2, 10]), which states that for a given set S, if there exist contraction mappings wi, whose 

attractor A is close enough to S, that is, 

ℎ (𝑆, ⋃ 𝑓𝑖(𝑆)

𝑁

𝑖=1

) < 𝜀, 
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then S is close enough to A, that is, 

ℎ(𝑆, 𝐴) <
𝜀

1 − 𝑟
 

where h is the Hausdorff metric and r is the contraction constant of the system. Therefore, instead of 

the original image, if we find the contraction mappings of an image, which is sufficiently close to the 

original one, then we obtain a very similar image to the original one. 

Now we can mention about the encoding process of a digital image. A gray-scale image can be 

represented by functions as follows: 

 

Let an n × n pixel resolution gray-scale image be given. Then taking I = [0,1], define f : I2 → I, such 

that 

𝑓(𝑥, 𝑦) ≔ ∑ ∑ 𝑝𝑖𝑗1𝑖𝑗,𝑛(𝑥, 𝑦)

𝑛

𝑗=1

𝑛

𝑖=1

 

where 

                                     1𝑖𝑗,𝑛(𝑥, 𝑦) ≔ {
1, (𝑥, 𝑦) ∈ (𝑖−1

𝑛
,
𝑖

𝑛
] × (𝑗−1

𝑛
,
𝑗

𝑛
]

0, (𝑥, 𝑦) ∈ 𝐼2\(𝑖−1

𝑛
,
𝑖

𝑛
] × (𝑗−1

𝑛
,
𝑗

𝑛
]
   (𝑖, 𝑗 = 1,2, … , 𝑛)                   (2.1) 

and pij corresponds to (i,j)’th normalized gray-scale levels of the given image. To measure the distances 

between two graphs of images f and g, the following metric 

𝑑𝐿2(graph(𝑓), graph(𝑔)) = ( ∫|𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)|2𝑑𝐴

𝐼2

)

1
2

 

=
1

𝑛
( ∑ |𝑝𝑖𝑗 − 𝑞𝑖𝑗|

2
𝑛

𝑖,𝑗=1

)

1
2

 

can be used, where pij and qij correspond to (i,j)’th normalized pixel value of f and g respectively. Here, 

the space of all graphs of images together with the above metric is a complete metric space. Using the 

definition in (2.1), the graph of “Lena” image is plotted in Figure 1 for n = 64. 

 

Every image (such as face, tree etc.) can not be obtained as an attractor of iterated function systems. 

Although such images are not self-similar, they have different type of self-similarity. For example, a 

piece of an image can be similar to different portion of its another piece (see Figure 2). There can also 

be similarities under the symmetries of the square, which are obtained by rotation and reflection. Now 

for a given n×n pixel resolution gray-scale digital image, divide I2 into m2 (m is a divisor of n) non-

overlapping blocks with equal area (inclusion or exclusion of borders do not change the area),  

 

(
𝑘 − 1

𝑚
,

𝑘

𝑚
] × (

𝑙 − 1

𝑚
,

𝑙

𝑚
] ⊆ 𝑅𝑘,𝑙 ⊆ [

𝑘 − 1

𝑚
,

𝑘

𝑚
] × [

𝑙 − 1

𝑚
,

𝑙

𝑚
] 

such that 

⋃ 𝑅𝑘,𝑙

𝑚

𝑘,𝑙=1

= 𝐼2 
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and, only p × p (p = n/m) pixel resolution parts of the image lie on each Rk,l. Moreover, divide I2 into 

all possible (overlapping) blocks with equal area Di,j such that q × q pixel parts of the image lie on Di,j  

(usually it is assumed that q = 2p), where q > p. 

 
Figure 1. Graph of 64 × 64 pixel Lena 

 

 
Figure 2. Some self-similar parts of Lena 

 

Here Rk,l and Di,j are called by range blocks and domain blocks respectively. For each Rk,l, we need to 

find Di,j and the contraction mappings 

 

𝑤𝑖𝑘,𝑙,𝑗𝑘,𝑙
: (𝐷𝑖,𝑗 × 𝐼) ∩ graph(𝑓) → 𝑅𝑘,𝑙 × 𝐼 

in the following form 

𝑤𝑖𝑘,𝑙,𝑗𝑘,𝑙
(𝑥, 𝑦, 𝑧) = (

𝑎𝑖𝑘,𝑙,𝑗𝑘,𝑙
𝑏𝑖𝑘,𝑙,𝑗𝑘,𝑙

0

𝑐𝑖𝑘,𝑙,𝑗𝑘,𝑙
𝑑𝑖𝑘,𝑙,𝑗𝑘,𝑙

0

0 0 𝑒𝑖𝑘,𝑙,𝑗𝑘,𝑙

) (
𝑥
𝑦
𝑧

) + (

𝑔𝑖𝑘,𝑙,𝑗𝑘,𝑙

ℎ𝑖𝑘,𝑙,𝑗𝑘,𝑙

𝑜𝑖𝑘,𝑙,𝑗𝑘,𝑙

)                      (2.2) 
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𝑤𝑖𝑘,𝑙,𝑗𝑘,𝑙
(𝑥, 𝑦, 𝑧) = (𝑎𝑖𝑘,𝑙,𝑗𝑘,𝑙

𝑥 + 𝑏𝑖𝑘,𝑙,𝑗𝑘,𝑙
𝑦 + 𝑔𝑖𝑘,𝑙,𝑗𝑘,𝑙

, 𝑐𝑖𝑘,𝑙,𝑗𝑘,𝑙
𝑥 + 𝑑𝑖𝑘,𝑙,𝑗𝑘,𝑙

𝑦 + ℎ𝑖𝑘,𝑙,𝑗𝑘,𝑙
, 𝑒𝑖𝑘,𝑙,𝑗𝑘,𝑙

𝑧 + 𝑜𝑖𝑘,𝑙,𝑗𝑘,𝑙
) 

such that the distance between 

𝑤𝑖𝑘,𝑙,𝑗𝑘,𝑙
((𝐷𝑖,𝑗 × 𝐼) ∩ graph(𝑓)) 

and 

(𝑅𝑘,𝑙 × 𝐼) ∩ graph(𝑓) 

is minimum. Here the mapping 𝑤𝑖𝑘,𝑙,𝑗𝑘,𝑙
 has both spatial part (first two components) and image part 

(third component), which are independent of each other. We first find the coefficients of the third 

component of 𝑤𝑖𝑘,𝑙,𝑗𝑘,𝑙
 (this actually means we seek Di,j, whose pixel values above is most similar to 

the pixel values on Rk,l). However, since the parts of the image, which lie on Di,j and Rk,l have different 
number of pixels, we divide Di,j into p2 equal size of non-overlapping sub-blocks having 2 × 2 pixels 

part of the image, and take one from each as a representative part. Subsequently, for a given Rk,l, using 

the least squares method, we can find the coefficients 𝑒𝑖𝑘,𝑙,𝑗𝑘,𝑙
 and 𝑜𝑖𝑘,𝑙,𝑗𝑘,𝑙  of 𝑤𝑖𝑘,𝑙,𝑗𝑘,𝑙

 for all i,j = 1,...,n. 

Then we compare the distance  

𝑑𝐿2 (𝑤𝑖𝑘,𝑙,𝑗𝑘,𝑙
((𝐷𝑖,𝑗 × 𝐼) ∩ graph(𝑓)) , (𝑅𝑘,𝑙 × 𝐼) ∩ graph(𝑓)) 

for all i,j, and store the coefficients �̃�𝑖𝑘,𝑙,𝑗𝑘,𝑙
 and �̃�𝑖𝑘,𝑙,𝑗𝑘,𝑙  of the map  

�̃�𝑖𝑘,𝑙,𝑗𝑘,𝑙
: (�̃�𝑖𝑘,𝑙,𝑗𝑘,𝑙

× 𝐼) ∩ graph(𝑓) → (𝑅𝑘,𝑙 × 𝐼) ∩ graph(𝑓), 

which gives the minimum distance for each k,l (we also consider the symmetry group of the domain 
block Di,j, which is obtained by reflections and rotations of itself). In addition, instead of finding the 

first two component �̃�𝑖𝑘,𝑙,𝑗𝑘,𝑙
, �̃�𝑖𝑘,𝑙,𝑗𝑘,𝑙

, �̃�𝑖𝑘,𝑙,𝑗𝑘,𝑙
, �̃�𝑖𝑘,𝑙,𝑗𝑘,𝑙

, �̃�𝑖𝑘,𝑙,𝑗𝑘,𝑙
 and ℎ̃𝑖𝑘,𝑙,𝑗𝑘,𝑙

 for 𝑤𝑖𝑘,𝑙,𝑗𝑘,𝑙
, it is enough to 

store the pairs (𝑖𝑘,𝑙 , 𝑗𝑘,𝑙), which tells us �̃�𝑖𝑘,𝑙,𝑗𝑘,𝑙  maps to Rk,l. It is worth mentioning that, since 

�̃�𝑖𝑘,𝑙,𝑗𝑘,𝑙
((�̃�𝑖𝑘,𝑙,𝑗𝑘,𝑙

× 𝐼) ∩ graph(𝑓)) 

is not exactly equal to 

(𝑅𝑘,𝑙 × 𝐼) ∩ graph(𝑓), 

we have to allow some error in this part. Once this process is applied for all Rk,l, we have the contraction 

mappings of all pieces of the image, which is called by encoding process. This process is time 

consuming, however, decoding process is faster and easier. 

Assume that f0 is any n × n pixel resolution gray-scale image. The contraction mapping of W of the 

image f is defined as follows: 

𝑊(graph(𝑓0)) = ⋃ �̃�𝑖𝑘,𝑙,𝑗𝑘,𝑙

𝑚

𝑘,𝑙=1

((�̃�𝑖𝑘,𝑙,𝑗𝑘,𝑙
 × 𝐼) ∩ graph(𝑓0)) , 

where the domain blocks Di,j correspond to the image 𝑓0. Then by iterating W, we can obtain the image 

f with some error, since 

𝑊(𝑛)(graph(𝑓0)) ≊ graph(𝑓). 

Remark 2.1. In the theory above, one question may arise that domains Di,j and ranges Rk,l may not be 

compact, which may result to the failure of Theorem 2.2. However, our aim is not exactly to obtain the 
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graphs of the given images, but to obtain the pixel values. Therefore, instead of the Di,j and Rk,l defined 

above, taking compact subsets of them can complete the theory literally. 
 

 

3. DECOMPRESSION BY NON-AFFINE CONTRACTION MAPPINGS 

 

In this section, we aim to decompress images compressed using FIC method, through non-affine 

contraction mappings. Our decompression method is mainly based on the following theorem. 

Theorem 3.1. ([14]). Let {X;f1,f2,...,fm} be an IFS and Hk : X → X is a sequence of Lipschitz continuous 

functions with Lipschitz constant M such that limk →∞ Hk (u) = u for all u ∈ X. Then for any S ∈ ℋ(X) 

lim
𝑘→∞

lim
𝑛→∞

𝐹𝑘
(𝑛)(𝑆) = lim

𝑛→∞
𝐹(𝑛)(𝑆) = 𝐴 

holds, where A is the attractor of  {𝑋; 𝑓1, 𝑓2, … , 𝑓𝑚}, 𝐹(𝑆) = ⋃ 𝑓𝑖
𝑚
𝑖=1 (𝑆) and 𝐹𝑘(𝑆) = ⋃ (𝐻𝑘 ∘𝑚

𝑖=1

𝑓𝑖) (𝑆). Here we assume M is sufficiently small such that M*r <1, where r is the contraction constant 

of {X;f1,f2,...,fm}. 

 

Remark 3.1. Note that the Lipschitz constant M ≥ 1, since  

|𝐻𝑘(𝑢) − 𝐻𝑘(𝑣)| ≤ 𝑀|𝑢 − 𝑣| 

for all u,v ∈ X  and k ∈ 𝑁 (where the Lipschitz constant is uniform w.r.t k) and  

lim
𝑘→∞

|𝐻𝑘(𝑢) − 𝐻𝑘(𝑣)| = |𝑢 − 𝑣| ≤ 𝑀|𝑢 − 𝑣|. 

We should also state that, sometimes the system can be non-contractive but eventually contractive (see 

page 52, [10]), that means w is not contractive but w(m) is contractive for larger values of m, in this case 

the theory still holds. Experiments show that, although contractivity factor r ∈ (1,1.2], the system can 

be eventually contractive [10]. 

This theorem allows us to approximate self-similar fractals with non-affine contraction mappings. 

Some examples of Hk functions satisfying the conditions of Theorem 3.1 can be found in [14]. 

Now, in this paper, using non-affine contraction mappings we aim to decompress images with better 

qualities with respect to classical FIC, which is given in detail above. The idea in this part is that, since 

we allow some error in the classical fractal image compression, choosing a suitable Hk, we can make 

it possible to overcome this error to some extent and may obtain better results. As it is common in the 

literature, in order to measure the quality of the decompressed n×n pixel resolution gray-scale image 

I1 with respect to original image I2, we will use PSNR (peak signal to noise ratio) metric 

PSNR = 20 log10 (
1

√MSE
) , 

where MSE (mean squared error) is given by 

∑ [𝐼1(𝑀, 𝑁) − 𝐼2(𝑀, 𝑁)]𝑛
𝑀,𝑁=1

2

𝑛2
 

and Ii(M,N) corresponds to (M,N)’th pixel of the image Ii  for i = 1,2. According to the above definition, 

higher PSNR values means better images. 

We remark that our method gives the possibility of having a higher quality image. In addition, since 

limk →∞ Hk (S) = S (see Lemma 2.1 in [14]), taking sufficiently large k ∈ N, we at least get the same 

quality image, which is obtained by classical FIC. Furthermore, if we assume Hk(u) = u for all k ∈ N, 

then our decompression method reduces to the classical case. 

We assume that p = 8 and q = 16 in the above method and compress “Lena”’s 256 × 256 pixels image 

given in Figure 4f using the FIC method. Now, we obtain two 32 × 32 matrices and one 2 × 32 × 32 

matrix, which correspond to coefficients of the contraction mappings and the places of the domain and 
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range blocks. This means that we compress Lena at a 1/16 ratio. In the decoding process we will use 

non-affine contraction mappings, which are obtained by applying Hk to third component of each 

contraction mappings (�̃�𝑖𝑘,𝑙,𝑗𝑘,𝑙
)

3
= �̃�𝑖𝑘,𝑙,𝑗𝑘,𝑙

𝑧 + �̃�𝑖𝑘,𝑙,𝑗𝑘,𝑙
  (see (2.2)), i.e., 

𝐻𝑘 ((�̃�𝑖𝑘,𝑙,𝑗𝑘,𝑙
)

3
) = 𝐻𝑘(�̃�𝑖𝑘,𝑙,𝑗𝑘,𝑙

𝑧 + �̃�𝑖𝑘,𝑙,𝑗𝑘,𝑙
). 

Here we assume that 

𝐻𝑘(𝑢) =
𝑘𝑢3

𝑘𝑢2 − 0.0116
. 

 

whose Lipschitz constant is M ≈ 1.1 (see Remark 3.1). In this application, we start with the well-known 

“Baboon” image given in Figure 3. Using non-affine mappings for k = 64, we iterate the “Baboon” 

image for 9 times and obtain the following images given in Figure 4. The PSNR value obtained using 

our method was slightly higher than the classical method. Some comparisons of the PSNR values can 

also be found in Table 1. 

 

 
Figure 3. Initial Image (Baboon) 

 

As shown in Table 1, our method performs better than the classical decompression method. Based on 

Table 1, for each iteration, we select the optimal integer 𝑘 that yields the best PSNR. To this end, we 
considered the interval [1,150] (to determine the interval [1,150] for each iteration, we first checked 

where the PSNR was increasing and decreasing with a step size of 50 unit and decided to focus on this 

interval) and, after obtaining the contraction constants, determined the 𝑘 parameter for the given 𝐻𝑘  

using Matlab. This step can be considered part of the encoding process. The computational time (in 

seconds) required to find the parameter 𝑘, is shown in Figure 5. The encoding time using the classical 

encoding method for the 256 × 256 pixels Lena image is approximately 7 minutes. If we also consider 

the time needed to determine the parameter 𝑘, the total time is roughly 7-8 minutes. On the other hand, 
since this is a compression method, all quadtree partitioning techniques or other methods can be used 

to reduce the computational complexity of the encoding time.  

 



Nisa ASLAN, Ismail ASLAN/ GU J Sci, 38(1): x-x (2025) 

 

 

 (a) 1st iteration  (b) 2nd iteration 

 

 (c) 3rd iteration (d) 4th iteration 

 

                    (e) 9th iteration (PSNR=29.3483)            (f) Original Image (Lena) 

                   Figure 4. Non-affine iterations of Baboon for k = 64 
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Table 1. Comparison of PSNR values of the images 

PSNR PSNR iteration k 

(classical 

decompression) 

(non-affine 

decompression) 

number  

15.4755 15.5077 2 101 

19.3177 19.3296 3 80 

23.3928 23.4170 4 50 

26.4164 26.4353 5 50 

27.3533 27.3647 6 57 

29.0256 29.0317 7 50 

29.2631 29.2671 8 90 

29.3467 29.3483 9 64 

 

 

Figure 5. Elapsed time for finding the best parameter 𝑘 

We show that this method can also be useful for audio compression. It is worth mentioning that a digital 

audio signal is actually a 1×n matrix, whose components correspond to the amplitude of the audio 
signal. Similar to the images, audio signals can also be resresented by a function. Since the idea behind 

FIC is the existence of self-similar parts of the image in itself, we think that the same theory can also 

be applied for audio compression. As we check on Matlab, many sounds contain self-similar parts in 
itself. Therefore, we apply our method to audio compression and compare the sound’s quality with the 

classical method using PSNR metric that is modified for digital audios. 

The definition of the utilized PSNR metric for audios is taken as follows: 

PSNR ≔ 20 log10(maxval/√MSE) 

MSE =
∑ [signal1(i) − signal2(i)]𝑛

𝑖=1
2

𝑛
 

where signal1 and signal2 are the given audio signals, 

maxval = max{ max
𝑖=1,…,𝑛

|signal1(i)| , max
𝑖=1,…,𝑛

|signal2(i)|} 

and n is the sample number of the digital audio signal. 

Now, let us analyze the famous quote of Mustafa Kemal Atatürk, the founder of Türkiye: “Peace at 
home, peace in the world”. We had the computer say “Peace at home, peace in the world” sentence 

and then we obtain the signal in Figure 6a. When we import the audio file into Matlab, we see that the 

audio file has n = 106800 sample points, that is, it is stored by 1 × 106800 matrix. In the encoding 
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process, as a domain Di, we take (overlapping) line blocks, which contain 30 elements of the original 

audio and as a range Rk, we take (non-overlapping) line blocks containing 10 elements. Similar to the 
FIC, we also consider the reflection of the audio file in encoding process. When we applied the 

compression method, we store the audio signal by two 1 × 10680 matrices and one 2 × 10680 matrix, 

which correspond to the coefficients of the contraction mappings and the places of domain and range 

blocks. As can be seen from this, the given audio file can be obtained by half time elements of the 
original one. After obtaining the contraction mappings, we compare the classical method with non-

affine iteration method to bring the audio file back. For this aim, we consider a random audio file with 

106800 sample points. When we iterate the random audio file 1500 times, taking Hk  as 

 

           𝐻𝑘(𝑢) =
𝑘𝑢3

𝑘𝑢2+1.7
                                                                (3.1) 

 

with a Lipschitz constant of M ≈ 1.12, through non-affine contractions, we successfully recover the 

original audio file for k = 6000. The obtained signal is plotted in Figure 6b. 

 
(a) Signal of the original speech “Peace at home, peace in the world” 

 

 
(b) Signal of the speech decompressed by non-affine iteration 

Figure 6. Original audio and decompressed audio 
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We also compare the PSNR values, which are obtained by non-affine and affine methods. PSNR of the 

non-affine decompression method is evaluated by 56.9228, while PSNR of the classical method is 50.2436. 
Therefore, in this specific case our method gives less noisy audio file than the classical one. We should also 

note that 1500 times iteration does not take much time, which is computed by a regular computer in almost 

20 seconds. In addition, if we iterate the system for 10 times, we still get an understandable audio file in 

almost 0.2 seconds with more noise. Moreover, we still get better PSNR value with respect to classical 
method in this case.  

 

4. RESULTS AND CONCLUSION 

 

In this study, we explored a novel approach to decompress images encoded using classical fractal image 

compression (FIC) methods by employing non-affine contraction mappings. The primary aim was to assess 

whether these non-affine mappings could yield better decompressed image quality compared to the classical 
affine-based FIC techniques. We assessed the quality of decompressed images using the Peak Signal-to-

Noise Ratio (PSNR), a widely used metric in image processing for quantifying image fidelity. While the 

improvement in PSNR may appear modest, it is significant that the new method could be useful for 
obtaining better images with different kind of Lipschitz functions Hk.  

 

We also remark that a smaller contractivity factor leads to faster convergence. Since M ≥ 1 holds in all 

cases, it is advantageous to select the 𝐻k functions with a smaller Lipschitz constant, ideally close to or 

equal to 1. However, it is equally important to ensure that the choice of 𝐻k disrupts linearity, particularly 

within the interval [0,1] as pixel values of images are normalized within this range. This approach enables 

the system to better tolerate the approximation error introduced by the Collage Theorem.  

 

Now, we compare the computational time of the proposed method with classical decompression method. 

Here, we utilized from the contraction mapping of the 256 × 256 pixel Lena image. We used the same Hk 

as the one mentioned above for Lena image for k=100. From 1 to 100 iterations, as shown in Figure 7, 

although our method takes more time, the difference in computational times is sufficiently slight. 

 

 
Figure 7. A comparative analysis of the computational time for decompression methods 

 

The results demonstrate that even though the computational complexity of the decompression process 
increases slightly, we can get better-quality images.  
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