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Abstract: In this study, we investigate the matrix representations of homeomorphism classes.
Considering well-known concepts such as the matrix of ones, column-sum, row-sum, one's
complement, Hadamard product, and regular addition for matrices, we explore binary matrices'
relationships with subsets of a finite set. The main results establish connections between
matrix operations and set operations, providing insights into the structure of homeomorphism
classes. The paper concludes with the formulation of a topology on a set based on specific
matrix conditions.

Homeomorfizm Simiflarinin Matris Gésterimleri Hakkinda

Anahtar Kelimeler
Matris

gosterimleri,
Homeomorfizm
siiflari,

Topoloji

Oz: Bu ¢alismada homeomorfizm smiflarinin matris temsillerini arastirdik. Birler matrisi,
siitun toplami, satir toplami, birin timleyeni, Hadamard ¢arpimi ve matrisler i¢in diizenli
toplama gibi iyi bilinen kavramlari g6z Oniinde bulundurarak ikili matrislerin sonlu bir
kiimenin alt kiimeleriyle iligkilerini arastirtyoruz. Ana sonuglar, matris islemleri ile kiime
islemleri arasinda baglantilar kurarak homeomorfizm siniflarinin yapisina iligkin bilgiler
saglar. Makale, belirli matris kosullarina dayali bir kiime tizerinde bir topolojinin

formiilasyonu ile sona ermektedir.

1. INTRODUCTION

R.E. Stong introduces the properties of topological
spaces with a finite number of points [5]. He examines
various aspects including homeomorphism classification,
point-set topology properties, classification by homotopy
type, and homotopy classes of mappings.

This article, which introduces a matrix representation
that is completely different from that defined by R.E.
Stong, aims to explore homeomorphism classes using
matrix representations. Homeomorphism is a concept in
mathematics that defines the transformability of
topological structures, and this study investigates how
these transformations can be understood through matrix
representations.

We consider well-known fundamental matrix concepts
such as the matrix of ones, column and row sums, and
the one’s complement will be introduced. These
concepts will be elucidated in terms of their applicability
to the analysis of homeomorphism classes. Additionally,
the association of binary matrices with subsets of a set

and the expression of this relationship through matrix
operations will be examined. Finally, we examine which
conditions the necessary and sufficient conditions for a
family to be a topology on a set depend on in the
corresponding incidence matrices.

2. PRELIMINARIES

Now we introduce some basic concepts (See [1-4,6] for
more detailed information).

A matrix of ones, denoted 1, is a matrix whose all entries
are 1. The column-sum of a n x m-matrix A is a row
matrix each entry of which is the sum of all entries in
corresponding column of A, and denoted by sum, (A).
Similarly, the row-sum of a n X m-matrix A is a column
matrix each entry of which is the sum of all entries in
corresponding row of A, and denoted by sum ,(A).
Then it is easy to see that

sum, (A) = 1'A and sum, (A) = Al

where 1° denotes the transpose of the n X m-matrix of
ones 1. The one's complement of a n X m-matrix A is
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defined by 1 — A and denoted by A°. We denote the
maximum (the minimum) of all entries in anxm-
matrix A by maxA(minA).

Let A and B be two n x m-matrices. The Hadamard
product C of A and B is defined by C;; = A;;B;; for
every i € {1,2,...,n} and every j€{1,2,..,m}, and
denoted by A © B, that is,

(A O B);; = Ay;By;.

Furthermore, the regular addition C of two column
matrices A and B is defined and denoted by

A®DB=(A+B)—-(AOB)

More generally, the regular addition of a n X m matrix
A, denoted by @A, is defined by @A = @;A,; where
A,; is the j-th subcolumn of A. To put it more explicitly,
®A =R, where R; =A,; and R, =Ry;_; @ A,; for
k>1.

Mwm (Z) denotes the set of all n X m-matrices over the
ring Z of integers. We consider M,,.,({0,1}) €
Msm (Z), that is, the class of all matrices with entries 0
and 1. A matrix M € M,,,»({0,1}) is called a binary
matrix.

Let X be a non-empty finite set. Consider integer-
indexed elements x;, x,, ..., x, of X. Then, to a subset
A S X, we can correspond the binary n-column matrix A
with the entries defined by

1 ifx;€A
A = i
i1 {0 otherwise

and called the incidence column matrix of A (with
respect to the given integer-indexed set X ).
Let Uy, U, ... U,n be integer-indexed elements of P(X).
To a subfamily § < P(X), we can correspond the binary
n X m-matrix § with the entries defined by

1
Sy = {0

and called the incidence matrix of § (with respect to the
integer-indexed set X and the integer-indexed power set
P(X)).

Since X can be integer-indexed in different ways, a
subset A corresponds different incidence matrices which
implies that a subset A of a non-indexed set X has
different incidence matrices. Similarly, by different
integer indexing of X and P(X), we obtain different
incidence matrices of a subfamily A4 € P(X). As a result
of this, if both a set X and its power set P(X) are not
integer-indexed, then a subfamily of A < P(X) has
different incidence matrices.

ifxl- € U} ES
otherwise

3. MAIN RESULTS

Proposition 1. Let A be a subset of a set X. If Ais an
incidence column matrix of A4, then A€ is an incidence
matrix of A°€.

Proof. Let A be an incidence column matrix of set A.
Then we have A;; =1 if x; € A, otherwise A;; =0.
From the definition of one's complement of a matrix, we
get A5, =1-A;=1-1=0 if x; €A, otherwise
Af, =1—-A; =1-0=1; or equivalently, we have
A, =1 if x; € A°, otherwise A, = 0. Thus A° is an
incidence column matrix of A°€.

Proposition 2. Let A, B be two subsets of a set X. Let
A,B be incidence column matrices of A and B ,
respectively. Then the following are equivalent:

1. AnB=2¢

2. A'B=0

Proof.

(1 = 2) : Assume that A’B # 0. Then

n n
0+A'B= Z AiB;, = Z A;1By
i=1 i=1

and so A;; =B;; =1 for some i€{l12,..,n} .
However, from the hypothesis AN B = @, for every i €
{1,2,...,n},A;; # B;;, which leads to a contradiction.
This contradiction arises from our assumption A*B # 0.
Thus A‘B = 0.

(2=>1): Assume that An B # @. Then, for some i €
{1,2,...,n}, we have A;; = 1and B;; = 1. On the other
hand, from the hypothesis A'B=0 , we have
Y, A;B;; =0. Then, there exists no i € {1,2,...,n}
such that A;; = 1 = B;; which leads to a contradiction.
This contradiction arises from our assumption AN B #
@. ThusAn B = @.

Conclusion 3. Let A, B be incidence column matrices of
subsets A and B of a set X, respectively. Then AN B #
@ if and only if A‘B > 1.

Proposition 4. Let A, B be incidence column matrices of
subsets A and B of a set X, respectively. Then the
Hadamard product A ® B is an incidence column matrix
of the intersection A n B.

Proof. Let A, B be incidence column matrices of subsets
A and B of a set X, respectively. If (A © B);; =1, then
the member of X corresponding (A © B);; belongs to
both A and B and so belongs to A n B. Otherwise, it
does not belong to at least one of A and B and so does
not belong to A N B. Thus, the proof is completed.

Proposition 5. Let A, B be incidence column matrices of
subsets A and B of a set X, respectively. Then an
incidence column matrix of the union AUB is the
regular addition A @ B.

Proof. Let A, B be incidence column matrices of subsets
A and B of a set X, respectively. If (A @ B);; = 0, then
the member of X corresponding (A @ B);; belongs to
neither A nor B and so does not belong to AUB .
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Otherwise, it belongs to at least one of A and B and so
belongs to A U B. Thus, the proof is completed.

Proposition 6. Let § be incidence matrix of a family s of
subsets of a set X. Then an incidence column matrix of
the union US is the regular addition @S.

Proof. Let § be incidence matrix of a family § of subsets
of a set X. If (®S);; =0, then the member of X
corresponding (@S);, belongs to no member of § and so
does not belong to US. Otherwise, it belongs to at least
one member of § and so belongs to US. Thus, the proof
is completed.

Proposition 7. Let A, B be two subsets of a set X. Let
A, B incidence column matrices of A and B, respectively.
Then the following are equivalent:

1. ACB

Proof.

(1=>2): Let A be a subset of B. Then we have An
= @. From Proposition 1 and Proposition 2, we have
A'B¢ = 0.

(2=1): Let A'B¢ = 0. Then From Proposition 1 and
Proposition 2, we yield An B¢ =@, or equivalently,
A € B.

Proposition 8. Let A, B be incidence column matrices of
subsets A and B of a set X, respectively. Then A = B if
and only if 1(A — B) = 0.

Proof.
A=Bo ACBABCcA
S A'B =0AB'A =0
S A(1-B)=0AB(1-A)=0
S A1-A'B=0AB!'1-B'A=0
< A'1 = A'BAB'1 = BA
< A'1 = A'B = B'A = Bf1

& A1 = B'1

o (A'—BHY1=0
& [(AY =BH1] =0
o 15(AF—BH)t =0

& 1/(A—B) = 0.

Proposition 9. Let A be a subset of a set X. Let A be an
incidence matrix of A, and let § be an incidence matrix
of a family § of subsets of X. Then the following are
equivalent:
1. A€sS
2. There exists U € § such that 1(A—U) =0
where U is an incident matrix of U.

Proof.

(1= 2): Let A be the incidence matrix of a member A
of S. Set U = A. Let U be an incident matrix of U. Then,
from Proposition 8, we have 1¢(A — U) = 0.

(2 = 1) : Let A be the incidence matrix of a subset A of
a set X. Consider a member U of § such that 1t(A —

U) = 0 where U is an incident matrix of U. Then, from
Proposition 8, we obtain A = U € S.

Theorem 10. Given a subfamily T of subsets of a set X.
Let T be an incidence matrix of 7. Then T is a topology
on X if and only if the following hold:

1. There exists G € T with an incidence column
matrix G such that 1‘G = 0.

2. There exists G € T with an incidence column
matrix G such that 1G¢ = 0.

3. If GH is incidence column matrices of
members G,H € T, respectively, then there
exists U € T with an incident matrix U such
that 1°(GO H - U) = 0.

4. IfGis an incidence matrix of a subfamily G
T, then there exists U € T with an incident
matrix U such that 1[G — U] = 0.

Proof. Let T be an incidence matrix of a subfamily T of
subsets of a set X.

(=) : Let T be a topology on a set X.

1. Since €T , we have 1'0 =0 for the
incidence column matrix 0 of the empty set @.

2. Since X €T, we get 1¢1¢ = 1Y0 = 0 for the
incidence column matrix 1 of the whole set X.

3. Let G,H € T have incidence column matrices
G,H , respectively. Then, from Proposition
4,G © H is an incidence column matrix of G N
H. Since G N H € T, from Proposition 9, there
exists U € 77 with an incidence column matrix
U such that 1*(G © H — U) = 0.

4. Let G be an incidence matrix of a subfamily
G S T. From Proposition 6, @G is an incident
column matrix of the union U G. Since U G € T,
by Proposition 9, there exists U € T with an
incident matrix U such that 1![@® G — U] = 0.

(<): (01) From the first item of the hypothesis, there
exists G € T, say G,, with an incidence column matrix G
such that 1*G = 0. It is clear that G, is the empty set @.
By Proposition 9, we have @ € T. From the second item
of the hypothesis, there exists G € T, say G,, with an
incidence column matrix G such that 1°G° = 0. It is
clear that G, is the whole set X. By Proposition 9, we
have X € T.

(0,) Let G, H be incidence column matrices of members
G,H € T, respectively. From the third item of the
hypothesis, there exists U € T with an incident matrix U
such that 1¢(G © H — U) = 0. Then, from Proposition 4
and Proposition 9, G O H is an incidence column matrix
of the intersection G N H andsowe have G N H € T.

(03) Let G be an incidence matrix of a subfamily G € 7.
From the fourth item of the hypothesis, there exists U €
T with an incident matrix U such that 1[G — U] = 0.
Then, from Proposition 6 and Proposition 9, G is an
incident column matrix of the union UG and so we have
UGET.
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4. CONCLUSION

We have presented a comprehensive exploration of
various concepts related to matrices and subsets of a set
X.

We show that it can be used the notion of incidence
matrix to represent the membership relations between
elements of X and subsets of X. Through propositions
and theorems, we established relationships between
these matrices and fundamental set operations such as
intersection,  union,  complement, and  subset
relationships.

Moreover, we extended our analysis to consider families
of subsets and their properties in the context of forming a
topology on X. Our results provide insights into the
structural properties of matrices representing subsets and
lay the groundwork for further investigation into
combinatorial and topological aspects of finite sets.
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