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• Trajectory tracking control of a two wheeled self-balancing robot by using Sliding Mode Control 

(SMC) was realized. 

• The performance of the SMC controller has been examined under five different cases including 

external disturbance and various parameter uncertainties and compared with PID and LQR methods.  

• Chattering problem inherent in the SMC method was eliminated by employing tangent hyperbolic 

(tanh) switching function instead of signum function. 

• Results showed that, PID control is extremely sensitive to disturbance inputs and parameter changes, 

and the LQR controller provides a much better performance than the PID control in terms of response 

speed and robustness. The results also showed that the proposed SMC controller not only offer as 

good performance as the LQR controller in terms of response speed, but it is extremely robust and 

almost insensitive to disturbance inputs and excessive parameter changes. 
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ABSTRACT: Two-Wheeled Self-Balancing Robots are widely used in various fields today. These systems 

have a highly unstable nature due to their underactuated structures. On the other hand, parameter 

uncertainties and external disturbances significantly affect their control performance. The best way to deal 

with parameter uncertainties that can easily lead controllers to instability is to use robust control methods. 

Dealing with these uncertainties is particularly crucial in control of underactuated and unstable systems 

such as Two-Wheeled Self-Balancing Robots. In this study, trajectory tracking control of a two wheeled 

self-balancing robot by using Sliding Mode Control (SMC) was realized. The chattering problem inherent 

in the SMC method was eliminated by employing tangent hyperbolic (tanh) switching function instead of 

signum function. The performance of the SMC controller has been examined under five different cases 

including external disturbance and various parameter uncertainties and compared with PID and LQR 

methods. The results showed that the SMC method is much more insensitive to parameter changes than 

the PID and LQR methods. It has also been observed that all three controllers maintain their stability 

against disturbance inputs, but the SMC method offers a better control performance. 

 

Keywords: Sliding Mode Control, Two Wheeled Self Balancing Robot, Trajectory Tracking 

 

ÖZ: İki Tekerlekli Kendini Dengeleyen Robotlar günümüzde çeşitli alanlarda yaygın olarak 

kullanılmaktadır. Bu sistemler eksik tahrikli yapıları nedeniyle oldukça kararsız bir yapıya sahiptirler. Öte 

yandan parametre belirsizlikleri ve dış etkenler, kontrol performanslarını önemli ölçüde etkilemektedir. 

Kontrolcüleri kolayca kararsızlığa sürükleyebilecek parametre belirsizlikleri ile başa çıkmanın en iyi yolu 

gürbüz kontrol yöntemleri kullanmaktır. Bu belirsizliklerle başa çıkmak, özellikle İki Tekerlekli Kendini 

Dengeleyen Robotlar gibi eksik-tahrikli ve kararsız sistemlerin kontrol problemlerinde çok önemlidir. Bu 

çalışmada, bozucu giriş ve parametre belirsizliklerine karşı Kayan Kipli Kontrol (KKK) yöntemi ile 

yörünge takibi üzerinde çalışılmıştır. KKK yönteminin yapısından kaynaklanan çatırtı problemi, işaret 

fonksiyonu yerine tanjant hiperbolik (tanh) anahtarlama fonksiyonu kullanılarak ortadan kaldırılmıştır. 

KKK kontrolcünün performansı, bozucu giriş ve farklı parametre belirsizliklerini içeren beş farklı senaryo 

için incelemiş, PID ve LQR yöntemleri ile karşılaştırılmıştır. Sonuçlar, KKK yönteminin parametre 

değişimlerine karşı PID ve LQR yöntemlerinden çok daha duyarsız olduğunu göstermiştir. Ayrıca bozucu 

girişlere karşı üç kontrolcünün de kararlılığını koruduğu ancak KKK yönteminin daha iyi bir kontrol 

performansı sunduğu görülmüştür. 

 

Anahtar Kelimeler: Kayan Kipli Kontrol, İki Tekerlekli Denge Robotu, Yörünge Takibi. 

 

1. INTRODUCTION 

Underactuated systems refer to systems equipped with a limited number of actuators or sensors. In 

such systems, the number of degrees of freedom is greater than the number of actuators or sensors used. 

Despite their advantages such as low cost, energy efficiency and simplicity, underactuated systems have 

some disadvantages in terms of control.  
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Two-wheeled self-balancing robots have a highly unstable dynamics with their nonlinear structure. 

In addition, other factors such as parameter changes, damping, friction, external disturbances make the 

control of such systems more difficult. The best way to overcome these challenges is to use robust 

controllers. In the relevant literature, several different approaches have been proposed for the control of 

two-wheeled self-balancing robots.  

Linear control methods with simple mathematical models are frequently preferred due to their easy 

applicability. Linear controllers such as PID controller  [1], Linear Quadratic Regulator (LQR) [2], Linear 

Quadratic Gaussian (LQG) [3], State-Feedback [4], Cascade controller [5] can be used to control two-

wheeled self-balancing robots. These controllers can provide very satisfactory performance in some 

systems under certain conditions. However, since these controllers use linearised models, they are very 

sensitive to parameter uncertainties. In addition, due to their structure, they may be insufficient against 

external disturbances. 

As an alternative to classical linear controllers, smart control methods such as Fuzzy Logic Controller 

(FLC) [6], FLC-PID [7], FLC-LQR [8] are widely using. Smart control methods can provide more adaptivity 

than classic approaches. However, they still cannot provide robustness in parameter uncertainty 

conditions.  

Adaptive control algorithms have been presented to adapt to changing conditions over time. Various 

adaptive control methods such as Reinforcement Learning [9], Machine Learning  [10], Artificial Neural 

Networks [11], Fuzzy Logic Neural Networks NN-FLC [12] stand out with less model dependency and 

adaptive structure. Despite their advantages, design and training of large networks in these approaches 

can be quite complex. High computational power and large data set requirements during training of 

artificial neural networks make it difficult to apply these methods. 

Model Predictive Control (MPC) [13] which is based on predicting system behaviour using system 

models, can provide robustness against system uncertainties in the control of complex systems. However, 

the success of this approach depends on very precisely modelled system dynamics. Difficulties in 

modelling complex and nonlinear systems limit the success of the controller. Optimisation-based H2 [14], 

H∞ [15] approaches can provide robustness against the disturbances and parameter uncertainties with an 

accurate model. The biggest disadvantage of these controllers is that they can be effective in a limited 

working area with defined cost functions. 

Lyapunov Controllers [16] are successful in stability; however, they may not be satisfactory enough 

to meet performance expectations for systems that require precise control. Backstepping Control [17] and 

Active Disturbance Rejection Control (ADRC) [18] are also have robust characteristics. 

The Sliding Mode Control (SMC) approach is a control method known for its robustness against the 

disturbances and system uncertainties. Although the Conventional SMC method is insensitive to matched 

disturbances, but it is sensitive to unmatched disturbances. The state observer-based SMC [19] can ensure 

the robustness of the controller against the unmatched disturbances. The major disadvantage of the SMC 

is chattering problem. In the most general definition, chattering is the rapid changes of the control signal 

in high-frequency sawtooth form. This is caused by the switching function in the structure of the SMC. 

The chattering problem can be eliminated with Neural Network based SMC [20]. However, high 

computational demanding and the need for a comprehensive dataset are disadvantages of this approach. 

In this study, the trajectory tracking control of a two-wheeled self-balancing robot was discussed. First, 

kinematic and dynamic models of the system are presented. Then, a Sliding Mode controller with tangent 

hyperbolic switching function was designed.  In order to evaluate the response speed and robustness of 

the designed controller, simulation studies were carried out using five different scenarios with different 

disturbance inputs and parameter changes. For comparing the performance of the SMC controller, PID 

and LQR control were also applied to the system and the results were presented comparatively. 

2. MATERIAL AND METHODS 

Simplified model of a two-wheeled self-balancing robot is seen in Figure 1. The system consists of a 

chassis and a pendulum-shaped body balanced by two wheels. It is an underactuated system with two 
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inputs and three outputs. The right and left wheel torques are the system inputs while the x - y coordinates 

and θ angle of the body relative to vertical (z) axis are the system outputs. This system is quite difficult to 

control since the position, orientation and vertical angle of the body must be controlled only by the torques 

applied to wheels. In order to achieve a precise control, the kinematic and dynamic models of the system 

must be obtained accurately. 

 
Figure 1. Simplified model of a two-wheeled self-balancing robot 

 

2.1. Kinematic Model of The Two-Wheeled Self-Balancing Robot 

In order to describe all movements of the system, generalized coordinates can be selected as follows. 

  
𝑞 = [𝑋𝑐    𝑌𝑐    𝜑   𝜃   𝜃𝑅    𝜃𝐿]

𝑇 
 

(1) 

In this expression, XC and YC, are the position of the centre of mass, 𝜑 is the angle of the robot in the 

x-y plane, 𝜃 is the angle between the body and the vertical (z) axis, 𝜃𝑅 and 𝜃𝐿 are the right and left wheel 

angles, respectively. These coordinates are clearly seen in Figure 2. 
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Figure 2. Generalized coordinates of the two-wheeled self-balancing robot 

 

There are two different constraints for the system considered in this study. First, the wheels do not 

slide laterally. Secondly, the wheels are in pure rolling, that is, the entire rotational movement turns into 

translation. Therefore, by defining l=L/2, the constraint equations can be written as follows. 

 
�̇� 𝑐𝑜𝑠𝜑 − �̇� 𝑠𝑖𝑛𝜑 = 0 (2) 

 

�̇� 𝑐𝑜𝑠𝜑 − �̇� 𝑠𝑖𝑛𝜑 + 𝑙�̇� − 𝑟𝜃�̇� = 0 

�̇� 𝑐𝑜𝑠𝜑 − �̇� 𝑠𝑖𝑛𝜑 − 𝑙�̇� − 𝑟𝜃�̇� = 0 
(3) 

 

Linear and angular velocities of the system can be defined respectively as; 𝑣 = 𝑟(�̇�𝑟 + �̇�𝑙)/2 and 𝜔 =

𝑟(�̇�𝑟 − �̇�𝑙)/𝐿. If the necessary arrangements are made in (2) and (3) using these definitions, the kinematic 

model of the system is obtained as follows. 

 

[

�̇�
�̇�
�̇�
] = [

cosφ
sinφ     

0
0

0         1
] [

𝑣
𝜔

] 
(4) 

 
2.2. Dynamic Model of The Two-Wheeled Self-Balancing Robot 

 

In this study, the dynamic model of two-wheeled self-balancing robot presented by Junfeng and 

Wangying [21] was used. State-space representation of the system can be defined as �̇� = 𝐴𝑥 + 𝐵𝑢 and 

shown as follow, 

 

𝑥 =

[
 
 
 
 
 
�̇�𝑟

�̈�𝑟

�̇�
�̈�
�̇�
�̈� ]

 
 
 
 
 

=

[
 
 
 
 
 
0 1 0
0 0 𝐴23

0 0 0
    

0 0 0
0 0 0
1 0 0

0 0 𝐴43

0 0 0
0 0 0

    
0 0 0
0 0 1
0 0 0]

 
 
 
 
 

[
 
 
 
 
 
𝑥𝑟

�̇�𝑟

𝜃
�̇�
𝜑
�̇� ]

 
 
 
 
 

+

[
 
 
 
 
 
0
𝐵2

0
𝐵4

0
𝐵6]

 
 
 
 
 

[
𝐶𝑙

𝐶𝑟
] 

(5) 

 

where 𝐶𝑙 and 𝐶𝑟 are the left end right wheel torques respectively. This wheel torques can be 

transformed into the 𝐶𝜃 and 𝐶𝜑 for decoupling purpose as follow. 

  

[
𝐶𝑙

𝐶𝑟
] = [

0.5   0.5

0.5 −0.5
] [

𝐶𝜃 + 𝑢𝑑

𝐶𝜑
] 

(6) 
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In this equation, 𝑢𝑑 is the external disturbance. The matrix elements in Equation (5) can be defined as 

follows: 

 

𝐴23 = 𝑔 (1 −
4

3
𝑑

𝑀𝑝

𝑄
),     𝐴43 = 𝑔

𝑀𝑝

𝑄
 

 

𝐵2 =
4𝑑𝑃

3𝑄
−

1

𝑀𝑝𝑑
 , 𝐵4 = −

𝑃

𝑄
   

 

𝐵6 =
6

(9𝑀𝑟 + 𝑀𝑝)𝑅𝐿
 

(7) 

 

where 

 

𝑄 =
1

3

𝑀𝑝(𝑀𝑝 + 6𝑀𝑟)𝑑

(𝑀𝑝 +
3
2

𝑀𝑟)𝑅
, 𝑃 =

1

𝑑
+

𝑀𝑝

𝑀𝑝 +
3
2

𝑀𝑟

 

 

In these equations, 𝑀𝑤and 𝑀𝑝 is the mass of the wheel and body respectively, 𝑅 is the wheel radius, d 

is the distance between the wheel axis and centre of mass and L is the distance between wheels. 

2.3. Kinematic Controller 

Controllers that calculate the kinematic movements required for a robot to reach the desired position 

are called kinematic controllers. A kinematic controller is needed to perform of trajectory control. The 

kinematic controller calculates the movements required for a robot to reach the desired position by 

converting the desired trajectory motions into new outputs in terms of angular and linear velocity. 

Kinematic controller design is based on the kinematic model. Equation (4) can be rearranged as follows: 

 

[
𝑣
𝜔

] = [

cosφ

−
1

𝑑
 sinφ

      

sinφ
1

𝑑
 cosφ

] [
�̇�
�̇�
] 

(8) 

 

By defining �̃� = 𝑥𝑑 − 𝑥 and �̃� = 𝑦𝑑 − 𝑦 and adding the controller gains 𝑘𝑥, 𝑘𝑦 > 0 and saturation 

constants 𝐼𝑥 , 𝐼𝑦 ∈ ℝ into equation, the kinematic controller can be obtained as below [22]. 

 

[
𝑣𝑑

𝜔𝑑
] = [

cosφ

−
1

𝑑
 sinφ

      

sinφ
1

𝑑
 cosφ

]

[
 
 
 
 �̇�𝑑 + 𝐼𝑥 tanh (

𝑘𝑥

𝐼𝑥
�̃�)

�̇�𝑑 + 𝐼𝑦 tanh (
𝑘𝑦

𝐼𝑦
�̃�)

]
 
 
 
 

 

(9) 

 

2.4. Sliding Mode Controller 

 

In applied control problems, there is always mismatching between the real system and the 

mathematical model. It’s caused by factors such as unmodelled system dynamics, uncertainties in system 

parameters and disturbing external forces. In addition to model mismatches, if the system is exposed to 

intense disturbing forces, it will be very difficult to control such systems with classical closed-loop 

methods. At this point, robust controllers come into play [23]. 

SMC is a robust control approach that can provide stability guarantee against system uncertainties 

and disturbances. Before starting the SMC design, some arrangements should be made on the system 

model. By defining 𝑓1 = 𝐴23,   𝑓2 = 𝐴43, 𝑓3 = �̇�, 𝑔1 = 𝐵2, 𝑔2 = 𝐵4, 𝑔3 = 𝐵6, 𝑇𝑣 = 𝐶𝜃 ,   𝑇𝜔 = 𝐶𝜑 in Equation 



Trajectory Tracking Control of A Two Wheeled Self-Balancing Robot by Using Sliding Mode Control 657 

    

    

 

(5) and making the necessary arrangements, the dynamic equation of the system can be written in a new 

form as follows. 

 
�̈� = 𝑓1𝜃 + 𝑔1𝑇𝑣

�̈�𝑝 = 𝑓2𝜃 + 𝑔2𝑇𝑣

�̈� = 𝑓3 + 𝑔3𝑇𝜔   

 
(10) 

 

Where 𝑇𝑣 and 𝑇𝜔 corresponds to control inputs for separated subsystems, and 𝑥𝑑, 𝑦𝑑 , 𝜑𝑑 are desired 

positions, so the error dynamics of the system can be expressed as follows: 

 
�̇�1 = 𝑒2

�̇�2 = �̈� − �̈�𝑑

�̇�3 = 𝑒4

�̇�4 = �̈� − �̈�𝑑

�̇�5 = 𝑒6

�̇�6 = �̈� − �̈�𝑑

 

(11) 

 

The SMC method will move the system dynamics towards the defined sliding surface. This movement 

of the controller is called reaching mode. The time until the reaching mode is called the reaching time. As 

soon as the system dynamics reaches the sliding surface, it starts the sliding motion. Sliding motion is 

called sliding mode. Sliding surfaces that move 𝑒2, 𝑒2 and 𝑒3 errors towards to zero when t→∞ can be 

defined as follows. 

 
𝑠1 = 𝑐1𝑒1 + 𝑒2

𝑠2 = 𝑐2𝑒3 + 𝑒4

𝑠3 = 𝑐3𝑒5 + 𝑒6

 
(12) 

 

The coefficients 𝑐1, 𝑐2, 𝑐3 > 0 in the defined sliding surfaces are called slope constants. The reaching 

time is related to the slope of the sliding surfaces. Therefore, these coefficients directly affect the control 

performance and should be chosen carefully. In order to obtain control signals, derivation of the Equation 

(12) can be written as follow. 

 
�̇�1 = 𝑐1�̇�1 + �̇�2 = �̈� − �̈�𝑑 + 𝑐1�̇�1

�̇�2 = 𝑐2�̇�3 + �̇�4 = �̈� − �̈�𝑑 + 𝑐2�̇�3

�̇�3 = 𝑐3�̇�5 + �̇�6 = �̈� − �̈�𝑑 + 𝑐3�̇�5

 

(13) 

 

A SMC consists of two parts which called switching and equivalent. Switching part is a signum 

function, and is responsible for moving the system variables towards to sliding surface.  �̇�1, �̇�2, �̇�3 terms in 

Equation (13) correspond to switching function. Switching function can be premised with defining 

controller gains as 𝜂1, 𝜂2, 𝜂3 > 0 as follow. 

 
𝑢𝑠𝑤1 = �̇�1 = −𝜂1𝑠𝑔𝑛(𝑠1)
𝑢𝑠𝑤2 = �̇�2 = −𝜂2𝑠𝑔𝑛(𝑠2)

𝑢𝑠𝑤3 = �̇�3 = −𝜂3𝑠𝑔𝑛(𝑠3)
 

(14) 

 

Equivalent control occurs in condition when the system has reached to the sliding phase. This 

condition can be also defined as �̇�1, �̇�2, �̇�3 = 0. Equation (11) and Equation (13) can be re-written as follow. 

 
𝑐1�̇�1 + �̈� − �̈�𝑑 = 0

𝑐2�̇�3 + �̈� − �̈�𝑑 = 0
𝑐3�̇�5 + �̈� − �̈�𝑑 = 0

 

(15) 
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If Equation (15) arranged by using the Equation (10) then, 

 
𝑐1�̇�1 + 𝑓1𝜃 + 𝑔1𝑇𝑣1 − �̈�𝑑 = 0

𝑐2�̇�3 + 𝑓2𝜃 + 𝑔2𝑇𝑣2 − �̈�𝑑 = 0
𝑐3�̇�5 + 𝑓3𝜑 + 𝑔3𝑇𝜔 − �̈�𝑑 = 0

 

(16) 

 

where 𝑇𝑣1 and 𝑇𝑣2 corresponds to torque forces related with coupled 𝑥 and 𝜃 inputs. The equivalent control 

term can be obtained by re-arranging Equation (16) as follows, 

 

𝑢𝑒𝑞1 =
�̈�𝑑 − 𝑐1�̇�1 − 𝑓1𝜃

𝑔1

𝑢𝑒𝑞2 =
�̈�𝑑 − 𝑐2�̇�3 − 𝑓2𝜃

𝑔2

𝑢𝑒𝑞3 =
�̈�𝑑 − 𝑐3�̇�5 − 𝑓3𝜑𝑝

𝑔3

 

(17) 

 

Finally, SMC control signal can be obtained with re-arrange Equation 10, 13 and 15 as follow. 

 

𝑇𝑣1 =
�̈�𝑑 − 𝑐1�̇�1 − 𝜂1𝑠𝑔𝑛(𝑠1)−𝑓1𝜃

𝑔1

⬚

𝑇𝑣2 =
�̈�𝑑 − 𝑐2�̇�3 − 𝜂2𝑠𝑔𝑛(𝑠2)−𝑓2𝜃

𝑔2

⬚

𝑇𝜔 =
�̈�𝑑 − 𝑐3�̇�5 − 𝜂3𝑠𝑔𝑛(𝑠3)−𝑓3�̇�

𝑔3

 

(18) 

 

Control signals with control gains  𝜂1, 𝜂2, 𝜂3 > 0 can be obtained as above. It can be expressed as 𝑇𝑣 =

𝑘𝑉𝐶𝑆𝑀𝐶
(𝑇𝑣2 - 𝑇𝑣1) and 𝑇𝜔 = 𝑘𝜔𝐶𝑆𝑀𝐶

𝑇𝜔 where 𝑘𝑉𝐶𝑆𝑀𝐶
 and 𝑘𝜔𝐶𝑆𝑀𝐶

 are the controller gain constants.  Tangent 

hyperbolic (tanh) function is used instead of sign to prevent chattering. The obtained control signals can 

be modelled on Simulink as shown in Figure 3. 

A Lyapunov function candidate in the form of 𝑉 =
1

2
𝑠 is defined to perform stability analyse. 

According to the Lyapunov theorem, for a system to be stable, the condition �̇� ≤ 0 must be ensured. 
 

�̇�1 = 𝑠1�̇�1 = 𝑠1(�̈� − �̈�𝑑 + 𝑐1�̇�1) = −𝜂1|𝑠1| ≤ 0

�̇�2 = 𝑠2�̇�2 = 𝑠2(�̈� − �̈�𝑑 + 𝑐2�̇�3) = −𝜂2|𝑠2| ≤ 0

�̇�3 = 𝑠3�̇�3 = 𝑠3(�̈� − �̈�𝑑 + 𝑐3�̇�5) = −𝜂3|𝑠3| ≤ 0

 

(19) 

 

Equation (19) shows that all three controller signals ensure the Lyapunov stability condition. In other 

words, the designed controllers will lead the error signal in the system to zero in time. Sliding Mode 

Control strategy and general schematic of the closed loop system is given in Figure 3. 
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Figure 3. SMC - Closed Loop Block Diagram of the System 

 

�̇�, 𝜃, and 𝜑 control variables are controlling respectively with SMC 1, SMC 2 and SMC 3 given in 

Figure 3. Detailed block diagram for SMC 1, SMC 2 and SMC 3 can be seen in Figure 4. 

 
Figure 4. SMC Control Scheme 

 

2.5. PID Control 

PID is the abbreviation of “Proportional-Integral-Derivative” terms. While PID control can give good 

control performance in linear systems, it is not very satisfactory in dealing with non-linear systems. 

However, it is one of the most frequently used methods due to its easy design and applicability. The 

mathematical representation of the PID controller can be expressed as follows [24]. 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫𝑒(𝑡)𝑑𝑡 + 𝐾𝑑

𝑑𝑒

𝑑𝑡
 

(20) 

In the Eq. 21. 𝐾𝑝, 𝐾𝑖  ve 𝐾𝑑 gains respectively corresponds to proportional, integral and derivative 

part of the controller. 𝑒(𝑡) corresponds to error inputs by time. The integral term corresponds to the 

integral of the error value and produces a control signal that corrects the total error. The term derivative 

refers to the derivative of the error value and produces a control signal that responds to rapidly changing 

errors. In other words, the proportional term refers to the current error, the integral term refers to the sum 

of past errors, and the derivative term refers to the prediction of future errors [25]. PID controller 

schematics can be seen in Figure 5. 
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Figure 5. PID Closed Loop Control Schematic 

 

2.6. LQR Control 

The Linear Quadratic Regulator (LQR) is one of the optimal control methods frequently used 

today. In the LQR method, it is aimed to obtain an optimum control signal by using the performance index 

and the state variables of the system [26].  

𝐽 =
1

2
∫(𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)

∞

0

𝑑𝑡 
(21) 

Performance index J which obtained using system state variables as �̇� = 𝐴𝑥 + 𝐵𝑢 and 𝑢 = −𝐾𝑥 system 

inputs is given in Eq. 21. 𝐾 is gain matrice and define as 𝐾 =  𝑅−1𝐵𝑇𝑃.  Q and R diagonal matrices and P 

is a symmetrical matrix which can be obtained from Ricatti Equation given in Eq. 22. 

𝑃𝐴 + 𝐴𝑇 − 𝑃𝐵𝑅−1𝑃 + 𝑄 = 0 (22) 

The aim of the LQR method is to minimize the performance index J with using Q and R parameters. The 

Q matrix represents the speed of reaching the reference and the R parameter represents the amount of 

energy to be consumed. LQR control schematics can be seen in Figure 6.  

 
Figure 6. LQR Closed Loop Control Schematic 

 



Trajectory Tracking Control of A Two Wheeled Self-Balancing Robot by Using Sliding Mode Control 661 

    

    

 

3. RESULTS AND DISCUSSION 

In order to evaluate the response speed and robustness of the designed controller, simulation 

studies were carried out using five different scenarios having different disturbance inputs and parameter 

changes. PID and LQR control are also applied to the system to compare the performance of the proposed 

SMC controller. Simulation studies were carried out in MATLAB/Simulink. An infinite type of trajectory 

was used as a reference and the simulation time was determined as 150 seconds. System parameters are 

given in Table 1. All the SMC, PID and LQR controller parameters are determined by using trial-and-error 

method and given in Table 2. 

Table 1. Physical Parameters of the System 

Parameter Description Value 

R Wheel diameter 0.1 m 

L Distance between wheels 0.3 m 

D Distance of pendulum centre of gravity to shaft 0.45 m 

g Gravity force 9.8 m/s2 

Mp Mass of the pendulum 3 kg 

Mw Mass of the wheels 0.5 kg 

 

Table 2. Controller Parameters 

Kinematic 

Controller 
kx, ky = 4, Ix, Iy  = 0.025 

SMC kVCSMC = 50, kωCSMC = 1 C1 = 1, C2 = 10, C3 = 5 η1 = 3.5, η2 = 11, η3 = 1 

PID KP1 = -2, KI1 = -4, KD1 = -4 KP2 = -2, KI2 = -4, KD2 = -4 KP3 = -2, KI3 = -4, KD3 = -4 

LQR K = [
−27
0

−51
0

−334
0

−23
0

0
10

0
1
] 

Case 1: In the first simulation study, performances of the controllers are tested under ideal 

conditions without any disturbance or parameter changes and the results are given in Figure 5 – Figure 8. 

All the controllers showed a successful trajectory tracking performance by quickly providing the desired 

position and orientation as seen in Figure 7 and Figure 8. However, while the SMC and LQR controllers 

reached the reference velocity quickly at the beginning of the movement, the PID controller gave a very 

oscillatory and late response as seen in Figure 9. For the PID control, this fluctuation in the velocity caused 

the body to make an oscillatory movement and reach the equilibrium quite late as seen in Figure 10. 

Although the LQR control gave a successful result in terms of body angle, the SMC control showed the 

best performance. On the other hand, the SMC control produced much more aggressive torques than the 

others at the beginning of the movement, but it quickly stabilized as seen in Figure 10. Moreover, thanks 

to tanh switching function, there is no chattering in the SMC control signal.  
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Figure 7. Velocity and movement angle (φ) of the robot (Case 1) 

 

 
Figure 8. Trajectory tracking (Case 1) 

 

 
Figure 9. Body (θ) Angle (Case 1) 

 

 
Figure 10. Wheel torques (Case 1) 
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In the following cases, disturbance input and parameter changes were applied to the system to 

examine the robustness of the controllers.  

Case 2: In this case, only the 0.5 Nm impulse signal seen in Figure 11 was applied to the control input 

of the system for 1 second as a disturbance and no changes have been made to the system parameters. 

Disturbance input applied in coupled �̇� and �̇� control output and can be seen in Figure 3.  

 
Figure 11. Disturbance signal applied to the system 

 

In the presence of the disturbance, the trajectory tracking performance of the SMC and LQR control 

methods are quite close to each other. It can be seen from Figure 13 that the SMC and LQR controllers are 

much more insensitive to disturbance input than the PID controller. Additionally, while a limited speed 

fluctuation occurs in the LQR and SMC controllers after the disturbance input, these fluctuations are quite 

high in the PID controller as seen in Figure 12. As a result of velocity fluctuations, the maximum body 

angle reaches 1.5 degrees in the PID control, while it is around 0.25 degrees in the LQR control. 

Furthermore, the proposed SMC controller is almost not affected by the disturbance input. 

 
Figure 12. Velocity and movement angle (φ) of the robot (Case 2) 

 

 
Figure 13. Trajectory Tracking (Case 2) 
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Figure 14. Body (θ) Angle (Case 2) 

 

As seen in Figure 15, although the SMC controller applies much higher torques at the beginning of the 

movement, it applies much less torque than the PID and LQR controllers against the disturbance input. 

 

 
Figure 15. Wheel torques (Case 2) 

 

Parameter uncertainty is a factor affecting the stability of many controllers. In order to test the 

robustness of the controllers against to parameter uncertainties, simulations were performed by changing 

the body mass MP in three different ways, 6 kg, 10 kg, 50 kg respectively.  

Case 3: In this case, the body weight Mp was increased from 3 kg to 6 kg. The PID controller is 

negatively affected by parameter changes, and it almost lost its stability. Large oscillations in speed, 

trajectory, and body angle for PID control can be seen in Figure 16- Figure 18.  
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Figure 16. Velocity of the robot (Case 3) 

 

 
Figure 17. Body (θ) Angle (Case 3) 

 

 
Figure 18. Trajectory Tracking (Case 3) 

 

Case 4: Body weight Mp increased to 10 kg. In this case the PID control response became completely 

unstable and was therefore not shown in the graphs. On the other hand, it can be seen in Figure 19-Figure 

21 that SMC and LQR controllers continue to maintain their stability and offer successful trajectory 

tracking performance. However, SMC control offers a much more successful performance than LQR in 

balancing the body angle as seen in Figure 21. 
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Figure 19. Velocity and movement angle (φ) of the robot (Case 4) 

 

 
Figure 20. Trajectory Tracking (Case 4) 

 

 
Figure 21. Body (θ) Angle (Case 4) 

 

Case 5: In this case the robustness of the proposed controller against to parameter variations was 

tested under an extreme condition by increasing the body weight Mp from 3 kg to 50 kg. Under these 

conditions, it is seen in Figure 22 – Figure 25 that the LQR controller begins to become unstable and 

excessive oscillations occur in trajectory tracking and body angle. On the other hand, it is seen that the 

proposed SMC controller maintains its stability even in this extreme case and provides a very successful 

response in trajectory tracking and balancing the body angle. 
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Figure 22. Velocity and movement angle (φ) of the robot for SMC (Case 5) 

 

 
Figure 23. Velocity and movement angle (φ) of the robot for LQR (Case 5) 

 

 
Figure 24. Trajectory Tracking (Case 5) 

 

 
Figure 25. Body (θ) Angle (Case 5) 
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4. CONCLUSIONS 

Parameter uncertainties and external disturbances negatively affect the stability of controllers. In this 

study, a robust SMC method against to uncertainties and disturbances for trajectory tracking of a two-

wheeled self-balancing robot is investigated. In the proposed method, the chattering problem is eliminated 

by using a tangent hyperbolic switching function. The performance of the proposed method is tested for 

five different scenarios having different disturbance inputs and parameter changes and compared with 

LQR and PID controllers. The results showed that the PID control is extremely sensitive to disturbance 

inputs and parameter changes, and the LQR controller provides a much better performance than the PID 

control in terms of response speed and robustness. The results also showed that the proposed SMC 

controller not only offer as good performance as the LQR controller in terms of response speed, but it is 

extremely robust and almost insensitive to disturbance inputs and excessive parameter changes. 
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