

49

Volume Special Issue, Issue 1, Page 49-60, 2024 https://doi.org/10.46810/tdfd.1425959 Research Article

Performance Analysis of Compression Algorithms on Matrix Data: Data Transfer

Optimization in Microservices Architectures

Faruk ATASOY1* , Alper AKKAYA1 , Nadir KOCAKIR1 , Önder KARADEMİR1

1 Özdilek Ev Tekstil San. ve Tic. AŞ, Özveri Ar-Ge Merkezi, Bursa, Türkiye

Faruk ATASOY ORCID No: 0009-0005-4177-9852

Alper AKKAYA ORCID No: 0009-0007-1927-6989

Nadir KOCAKIR ORCID No: 0000-0001-7421-0631

Önder KARADEMİR ORCID No: 0000-0001-5757-7335

*Corresponding author: faruk.atasoy@ozdilek.com.tr

(Received: 26.01.2024, Accepted: 17.04.2024, Online Publication: 01.10.2024)

Keywords

Data

Compression

Algorithm,

Data Transfer,

Gzip,

Deflate,

Deflate,

Bz2

Abstract: With the rapid proliferation of microservices architectures these days, the efficient and

fast transfer of large matrix data between services has become a significant challenge. This study

presents an analysis aimed at finding solutions to this challenge. The analysis addresses the

compression and decompression of large matrix data, focusing on lossless compression

algorithms to optimize data transfer without data loss. The study is implemented on an example

scenario. This scenario is taken from a project with a microservice architecture. In the example

scenario, an image processing service developed in Python programming language generates

640x480 matrix data. After going through a compression algorithm, this data is periodically

transferred to a backend service developed in C# programming language. This data is then stored

in a database. In the final stage, decompression operations are performed so that this data can be

used for reporting. The performance of various compression algorithms in the data compression,

database storage and report generation stages is extensively tested. Within the scope of the study,

tests were performed using five different compression algorithms (Gzip, Zlib, Deflate, Brotli and

Bz2). The results are obtained through performance tests aimed at determining the most

optimized end-to-end solution. Analyzing the performance of the compression algorithms on the

example scenario, the Brotli algorithm gives the most optimal result in terms of both speed and

compression size. This work makes an important contribution to data transfer optimization in

microservice architectures and provides a reference for research in this area by presenting the

performance analysis of various compression algorithms.

Veri Sıkıştırma Algoritmalarının Matris Verileri Üzerindeki Performans Analizi

Anahtar

Kelimeler

Kayıpsız

Veri

Sıkıştırma

Algoritmaları,

Veri

Transferi,

Microservices,

Matris Verisi

Öz: Son zamanlarda mikroservis mimarilerinin hızla yayılmasıyla birlikte, büyük matris

verilerinin hızlı ve verimli bir şekilde servisler arasında transferi, önemli bir zorluk haline

gelmiştir. Bu çalışma, bu zorluğa çözüm bulmayı amaçlayan bir analiz sunmaktadır. Analiz,

büyük matris verilerinin sıkıştırma ve açma işlemlerini ele almakta ve veri transferini optimize

etmek için veri kaybı olmadan çalışan sıkıştırma algoritmalarına odaklanmaktadır. Çalışma, bir

örnek senaryo üzerinde uygulanmıştır. Bu senaryo, mikroservis mimarisine sahip bir projeden

alınmıştır. Örnek senaryoda, Python programlama dili ile geliştirilmiş bir görüntü işleme servisi,

640x480 boyutunda bir matris verisi üretmektedir. Bu veri, bir sıkıştırma algoritmasından

geçtikten sonra periyodik olarak C# programlama dili ile geliştirilmiş bir back-end servise

transfer edilmektedir. Bu veri daha sonra bir veritabanında depolanmaktadır. Son aşamada, bu

verinin raporlama için kullanılabilmesi için açma işlemleri gerçekleştirilmektedir. Çeşitli

sıkıştırma algoritmalarının performansı, veri sıkıştırma, veritabanı depolama ve rapor oluşturma

aşamalarında detaylı bir şekilde test edilmiştir. Çalışma kapsamında beş farklı sıkıştırma

algoritması (Gzip, Zlib, Deflate, Brotli ve Bz2) kullanılarak testler gerçekleştirilmiştir. Sonuçlar,

en optimize edilmiş end-to-end çözümü belirlemeye yönelik performans testleri ile elde

www.dergipark.gov.tr/tdfd

http://www.dergipark.gov.tr/tdfd
http://www.dergipark.gov.tr/tdfd
https://orcid.org/0009-0005-4177-9852
https://orcid.org/0009-0007-1927-6989
https://orcid.org/0000-0001-7421-0631
https://orcid.org/0000-0001-5757-7335
http://www.dergipark.gov.tr/tdfd
http://www.dergipark.gov.tr/tdfd

Tr. J. Nature Sci. Volume Special Issue, Issue 1, Page 49-60, 2024

2

50

edilmiştir. Örnek senaryo üzerinde sıkıştırma algoritmalarının performansını analiz ederken,

Brotli algoritması hem hız hem de sıkıştırma boyutu açısından en optimal sonucu vermektedir.

Bu çalışma, mikroservis mimarilerinde veri transferi optimizasyonuna önemli bir katkı

sağlamakta ve çeşitli sıkıştırma algoritmalarının performans analizini sunarak bu alandaki

araştırmalara referans oluşturmaktadır.

1. INTRODUCTION

The rapid evolution of information technology is

replacing traditional monolithic structures with

microservice architectures that seek more agile and

scalable systems. By decomposing software applications

into small, independent services, microservice

architectures aim to accelerate development processes,

provide scalability and increase flexibility.

While the rise of microservice architectures has made

software applications more flexible and scalable, this

transformation has also brought with it the need to

efficiently transfer large data sets. The fast and efficient

transfer of large data sets between services has become

critical. Problems such as bandwidth consumption,

latency and storage costs arise during the transfer of big

data. These problems are optimized through a number of

methods such as data compression and coding, protocol

optimization, cache utilization, parallel processing,

distributed storage, etc.

This paper aims to optimize the problems that arise

during the transfer of large matrix data between

microservices by using compression algorithms. It

focuses on the performance of Gzip, Zlib, Bz2, Deflate

and Brotli lossless compression algorithms in the

compression and decompression processes of matrix data

transfer between Python and C# based applications with

a message broker in between. It examines data transfer at

each step of the process and provides detailed

performance analysis. It also discusses their performance

on matrix variants with different types of data sets. The

results were obtained in the context of a real-life project.

In addition, this study aims to shed light on the

optimization of other microservices projects with large

data transfers in different data types by using

compression algorithms.

The rest of the paper is organized as follows: Section 2

summarizes the literature review. Section 3 discusses the

problem definition, information about compression

algorithms, information about the algorithms that will be

tested to solve the problem, and the types of matrices

used in the testing. Section 4 presents the results of the

performance tests. Section 5 contains the evaluation and

comments on the final results.

2. LITERATURE REVIEW

With the rapid deployment of microservice architectures,

the fast and efficient transfer of large matrix data

between services emerged as a major challenge. In this

context, a survey of the existing literature was conducted

to gain various perspectives. Research on topics such as

microservice architecture, lossless compression

algorithms, matrix data, inter-service communication,

etc., guided this review. Specifically, the realization of a

gap in the literature concerning the optimization of large

matrix data transmission between microservices

motivated the investigation to fill this void. Enliçay et al.

[1] undertook a study on the optimization of large

datasets between microservices using the Deflate and

Gzip algorithms. It was observed that no significant

differences existed between the two algorithms, leading

to the continued preference for the more prominent Gzip

algorithm. Öztürk et al. [2] conducted tests on various

NoSQL database technologies utilizing LZ4 and Zlib

algorithms, finding that the Zlib algorithm, when used

with MongoDB, achieved the best compression ratio.

Conversely, when Snappy was employed, LevelDB

yielded the fastest compression results. Deorowicz [3]

provided a comprehensive examination of globally

utilized compression algorithms, elucidating the

differences and usage directions of these algorithms,

along with underlying strategies and methods. This

comparison facilitated an understanding of the

appropriateness of each algorithm based on different

scenarios.

Ramu [4] asserted that the adoption of microservice

architecture has led to significant advancements in

building scalable and flexible software systems. The

study examined and evaluated the impact of

microservices architecture on performance, focusing on

vital elements such as inter-service communication,

service discovery, data management, fault tolerance, and

scalability. The findings contributed to the understanding

of microservices and offered practical recommendations

for architects and developers to optimize the

performance of their applications. Kodituwakku and

Amarasinghe [5] investigated and compared the

performance of lossless data compression algorithms,

evaluating their efficacy in compressing text data. The

entropy of these algorithms was discussed, and an

experimental comparison was conducted. Tapia et al. [6]

described the transition of a project developed in

monolithic architecture to the microservice level, noting

the absence of mention regarding data optimization.

Somashekar [7] presented effective solutions for

optimizing data across microservices, focusing on

optimizing the setup and layout of systems rather than

the data itself. Semunigus and Pattanaik [8] analyzed

differences between Huffman encoder, LZW encoder,

and Arithmetic encoder, which was deemed insufficient

for addressing both the analysis of matrix defects and the

control of foundation disassembly. The blocks suitable

for the project were identified as the high-level changes

constructed with these blocks.

Tr. J. Nature Sci. Volume Special Issue, Issue 1, Page 49-60, 2024

51

The mentioned studies above provide a comprehensive

overview of matrix data transfer in microservices

architectures. However, it is crucial to consider the

limitations and gaps in the existing research in this area.

This article focuses on existing studies to understand the

shortcomings in the current literature and highlight how

its own research aims to contribute to filling these gaps.

3. LITERATURE REVIEW

3.1. Problem Description

The system we are working on is built within the

microservices architecture. The system architecture is

shown in Figure 1. The end user completes the setup of

the artificial intelligence service by selecting one of the

previously registered cameras in the system. In the

subsequent process, the Angular-based front-end

communicates the necessary configuration to the .NET

Core-based back-end service through APIs. After the

writing process to the database, the same configurations

are stored on Redis, a discrete cache mechanism, in a

key-value format. Simultaneously, the service

responsible for coordinating Python-based artificial

intelligence services is notified using Redis's pub-sub

mechanism. Once the coordinating service is notified, it

retrieves the settings from the relevant Redis key and

initiates the process of the heat map module based on

these settings. The artificial intelligence service now

monitors camera recordings via the stream URL of the

relevant camera within the specified time period in the

settings. At the end of the period, it publishes the

movement data of detected individuals to the relevant

queue in RabbitMQ, which serves as a message broker.

Another C#-based back-end service, listening to this

queue, receives the relevant report and writes it to the

PostgreSQL database.

The journey of the data necessitating performance

optimization within the architecture is addressed in

Figure 1. The artificial intelligence service monitors the

camera, sends the acquired data to the back-end service

through RabbitMQ. Here, the data is later written to the

database for use during report preparation.

All these operations are conducted to monitor, analyze,

and generate reports on the movements of people visiting

social areas, primarily malls and hypermarkets. The

obtained data is stored in the database for later reporting.

If desired, data sets are presented to end users on a daily,

monthly, or yearly basis. The visualization of these data

sets benefits from the heat map method.

The periodic data obtained by the artificial intelligence

service is of a two-dimensional integer array type.

Therefore, we can refer to it as a two-dimensional

matrix. The first dimension of this matrix has a size of

640, and the second dimension has a size of 480

characters. The majority of matrix data consists of 0

parameters. Other parameters different from 0 represent

the number of people passing through that point. The

reason for the matrix size being 640x480 is due to the

camera resolution. Due to the excess of matrix elements,

the size of the data sometimes reaches megabytes. The

largeness of the data has made it essential to optimize the

process in terms of delays in transfer, storage costs, and

resource consumption. Especially in the preparation of

heat map reports, pulling, summing, and serving matrix

data of 640x480, which can be tens or hundreds, from

the database will result in significant resource

consumption and delays.

Research has concluded that utilizing compression

algorithms would be beneficial to optimize the process.

Figure 2 shows that the data needs to be optimized at 4

different points.

Figure 1. The journey of matrix data on the project architecture.

Figure 2. Showing the stages where matrix data is processed on the architecture.

Tr. J. Nature Sci. Volume Special Issue, Issue 1, Page 49-60, 2024

52

3.2. Compression Algorithms

A data compression algorithm is a software or hardware

method used to process data more efficiently during

storage or transmission. Data compression algorithms

are typically divided into two main categories. [10]

Figure 3. Behavior of compression algorithms.

The first consideration when determining algorithms to

be considered for evaluation is to prefer lossless

compression algorithms, as each parameter in the matrix

is deemed to be highly significant. The second condition

is to select algorithms that can be used in both the C#

and Python programming languages. After making this

distinction, the final condition to consider is the active

preference and usage of algorithms in the software

industry. Through literature reviews and research, we

have decided to evaluate five different algorithms. Five

compression algorithms (Gzip, Zlib, Deflate, Brotli, and

Bz2) have been examined for data transfer optimization

in micro services architectures.

3.2.1. Gzip

Gzip [11] is an algorithm developed for data

compression purposes. It primarily operates using the

Lempel-Ziv (LZ77) compression algorithm and Huffman

coding. LZ77 analyzes the data and provides

compression by identifying consecutive repeating

patterns. Huffman coding adds an extra compression step

by providing a shorter representation for more frequently

occurring symbols. The main features of Gzip include:

• Effective Compression: It efficiently compresses data,

reducing file sizes effectively.

• LZ77 and Huffman Coding: It performs compression

using LZ77 and Huffman coding as fundamental

algorithms.

• Usage in Web Pages: It is commonly used, especially

on web servers, to compress text-based data sent to

browsers. This enables faster loading of web pages.

Gzip is a widely used compression algorithm across

various applications and is preferred for tasks such as

data transfer over the internet and file archiving.

3.2.2. Zlib

Zlib [9] is a data compression library developed based

on the Deflate algorithm. Zlib is commonly used for

compression and archiving operations in the "gzip"

format, although Zlib itself only encompasses

compression features. The key features of Zlib include:

• Fast and Efficient Compression: Zlib reduces file sizes

by compressing data quickly and efficiently.

• Portability: Zlib can be used on many different

platforms and operating systems, allowing for a wide

range of applications.

• Ease of Use: The Zlib library provides an easy-to-use

API, facilitating the integration of compression

operations for developers.

Zlib is widely utilized for data compression and

archiving by web browsers, servers, databases, and many

other applications.

3.2.3. Deflate

Deflate [13] is an effective algorithm used for data

compression, combining two fundamental components:

the LZ77 (Lempel-Ziv 1977) compression algorithm and

Huffman coding.

• LZ77 (Lempel-Ziv 1977): This algorithm analyzes the

data and provides compression by identifying

consecutive repeating patterns. It encodes new blocks by

referencing previous data blocks.

• Huffman Coding: It ensures symbols in the compressed

data are represented with shorter codes. Frequently used

symbols have shorter codes, while less frequently used

symbols have longer codes.

The Deflate algorithm is widely used for compression

and decompression operations. File formats like Gzip,

Zip, and PNG can utilize the Deflate compression

algorithm. Deflate is known for its fast operation, high

compression ratios, and broad usability. Web browsers,

file archiving, databases, and many applications prefer

Deflate to optimize data transfer.

3.2.4. Brotli

Brotli [9] is a data compression algorithm developed by

Google. It is designed to replace other popular

compression algorithms and is specifically used to speed

up the loading of web pages. Brotli aims to achieve

higher compression ratios and better performance than

Deflate algorithms (such as gzip and zlib). Some of its

features include:

•High Compression Ratios: Brotli provides high

compression ratios, especially for text-based content.

This helps in delivering web pages faster and more

efficiently.

• Adaptive Algorithm: Brotli uses an adaptive algorithm

that can adjust the compression strategy based on the

type and structure of the content. This results in more

effective compression for various data types.

• Support for Web Browsers and Servers: Brotli is

supported by modern web browsers and web servers.

This enables faster loading of web pages, enhancing the

overall user experience.

Compressed

Compressed

Restored Original

LOSSLESS

Restored Original

LOSSY

Tr. J. Nature Sci. Volume Special Issue, Issue 1, Page 49-60, 2024

53

• Platform-Independent: Brotli can be used on different

platforms and operating systems, offering a wide range

of usability.

The use of Brotli plays a significant role, particularly in

data transfer over the internet and web performance

optimization. Faster loading of web pages contributes to

an improved user experience.

3.2.5. Bz2

Bz2 is a compression algorithm and accompanying

program used for data compression, also known as

"bzip2." It was developed by Julian Seward. Unlike

traditional compression algorithms like ZIP and Gzip,

bz2 combines techniques such as Burrows-Wheeler

Transform (BWT) and Huffman coding. Some of its

features include:

• High Compression Ratios: Bz2 typically provides

higher compression ratios compared to some other

compression algorithms.

• Burrows-Wheeler Transform (BWT): This

transformation reorganizes the data, highlighting

repeated patterns and leading to more effective

compression.

• Huffman Coding: It ensures symbols in the compressed

data are represented with shorter codes. This involves

shorter codes for frequently used symbols and longer

codes for less frequently used symbols.

• Platform-Independent: Bz2 can be used on different

platforms and operating systems.

• Data Archiving: It is commonly used for file archiving

and distribution.

The bz2 compression algorithm is widely used,

especially in UNIX and Linux-based systems, and users

often prefer the command-line tool named "bzip2" for

compression tasks.

3.3. Matrix Types Examined

The performances of these algorithms have been

measured on three different large-sized matrix data sets

in processes such as compression, compressing and

writing to the database, compressing, writing to the

database, and then reading, as well as compressing,

writing to the database, reading again, and

decompressing. Although the type of matrix that solves

our problem is a matrix containing a large number of

zeros, to shed light on and assist in future studies related

to the subject, we did not limit our tests to a single type

of matrix but conducted tests on various matrix types.

The general format of the examined large-sized matrix

data is as follows:

• Random Matrix

Elements are randomly chosen integers. Example:

[{1896322487, 423, 837, 29895, 5, ...}, {284997874,

5713597144, 77, 6852, ...}, ...]

• Sequential Elements Matrix

Elements are consecutively repeating integers. Example:

[{11, 11, 22, 11, 11, 22, ...}, {11, 11, 22, 11, 11, 22, ...},

...]

• Matrix with Many Zeros

Matrix with mostly zero elements, and integers.

Example: [{0, 0, 598, 0, 0, 0, 85479, ...}, {0, 0, 8, 0, 0,

923559, 0, ...}, ...]

4. EXPERIMENTAL RESULTS AND DISCUSSION

Within the scope of the study, five different compression

algorithms (Gzip, Zlib, Deflate, Brotli, and Bz2)

underwent performance testing. These tests were focused

on data compression ratios as well as compression and

decompression times. All operations were performed

according to the hardware and software standards shared

in Table 1.

Table 1. Test Environment Components.

4.1. Experimental Results

The numbered figures in Figure 4 represent the

operations that will be subjected to performance testing.

The location of these operations in the architecture can

be found in Figure 2 in Section 3.1. The first numbered

figure represents compressing the matrix, the second

numbered figure represents writing the compressed

matrix to the database, the third figure represents reading

the compressed matrix data from the database, and the

Sistem Windows 11

(10.0.22000.2295/21H2/SunValley)

12th Gen Intel Core i7-1260P, 1 CPU,

16 logical and 12 physical cores,

Kingston SSD snv2s2000g

.NET SDK 7.0.400

Database PostgreSQL 15.3, compiled by

Visual C++ build 1914, 64-bit

Measurement

Tool

BenchmarkDotNet v0.13.7

Figure 4. Operations included in the test and their numbers.

Matrix
[640x480]

Compressed
Matrix

1

DB

3 2 4

Matrix
[640x480]

Compressed
Matrix

Tr. J. Nature Sci. Volume Special Issue, Issue 1, Page 49-60, 2024

54

fourth and last figure represents restoring the

compressed matrix data.

4.1.1. Complex matrix performance measurements

Graphs in Figure 5 compare the performance of five

different compression algorithms in terms of two key

metrics: processing speed and memory usage. The first

graph shows the average processing time of each

algorithm in milliseconds, showing that Gzip, Zlib and

Deflate have similar and relatively low processing times.

In contrast, Brotli's processing time is higher than all

three, while BZ2 has by far the slowest processing time.

The second graph compares memory consumption in

megabytes. Here again, Gzip, Zlib and Deflate show

similar and quite low values in terms of memory

consumption, while Brotli uses slightly more memory

than these three, but the BZ2 algorithm requires a much

larger amount. These results emphasize the need for an

in-depth evaluation of compression processes in terms of

time and memory efficiency.

These data suggest that the choice of compression

algorithm should be carefully tailored to the application

requirements. For example, it can be concluded that Gzip

or Zlib may be preferable when speed is critical, while

Brotli or BZ2 may be more appropriate in scenarios

where compression ratio is more important. However,

the high memory consumption and low speed of BZ2

can be a significant disadvantage, especially for real-

time systems or resource-constrained environments.

Graphs in Figure 6; The first graph depicts the mean

time taken by each algorithm to compress a dataset,

measured in milliseconds (ms). Here, Gzip, Zlib, and

Deflate show relatively similar and modest compression

times at 60.44 ms, 46.65 ms, and 46.28 ms respectively,

suggesting efficient performance in time-sensitive

applications. Brotli, however, takes substantially longer

at 498.63 ms, which may be a trade-off for better

compression ratios. BZ2 is significantly slower at 182.75

ms, indicating that while it may offer high compression

ratios, it is less suitable for scenarios where time

efficiency is critical.

The second graph compares the algorithms based on the

amount of memory allocated during compression,

measured in megabytes (MB). Gzip, Zlib, and Deflate

again cluster closely together, with each requiring just

over 5 MB of memory, pointing towards a low memory

footprint. Brotli's memory allocation is marginally

higher at 5.11 MB, which could be justified by its

potentially better compression efficiency. However, BZ2

stands out with a substantially higher memory

requirement of 735.03 MB, which is orders of magnitude

greater than the others. This suggests that BZ2's

compression technique, while perhaps yielding high

compression ratios, is extremely memory-intensive,

making it less feasible for systems with limited memory

resources.

In summary, when considering a compression algorithm

for practical use, it's crucial to weigh the trade-offs

between compression time, memory usage, and

compression efficiency. Gzip, Zlib, and Deflate present

themselves as balanced choices for general purposes. In

contrast, Brotli may be more suitable when compression

efficiency outweighs the need for speed, and BZ2 might

only be practical when memory resources are abundant,

and compression ratio is the paramount concern.

Graphs in Figure 7; In the first graph, we examine the

mean compression time in milliseconds (ms) for each

algorithm. Gzip shows a mean time of 72.91 ms, Zlib at

50.21 ms, and Deflate at 49.12 ms, which are fairly close

Figure 5. Complex matrix performance measurements belong to just first operation in Figure 4.

Figure 6. Complex matrix performance measurements belong to first and second operations in Figure 4.

Tr. J. Nature Sci. Volume Special Issue, Issue 1, Page 49-60, 2024

55

in performance, indicating they could be suitable for

tasks where moderate compression speed is required

without significant time constraints. Brotli dramatically

increases to 462.35 ms, suggesting a possible preference

for a higher compression ratio at the cost of time

efficiency. BZ2 is notably quicker than Brotli at 187.62

ms, but still substantially slower compared to Gzip, Zlib,

and Deflate, which may make it less ideal for time-

critical applications.

The second graph shows memory allocation during the

compression process in megabytes (MB). Gzip, Zlib, and

Deflate maintain a low memory footprint at

approximately 6.45 MB each, making them practical for

environments with memory usage constraints. Brotli has

a similar memory requirement at 6.4 MB, slightly less

than the others, which is impressive considering its

compression time. BZ2, however, requires a staggering

736.62 MB of memory, which is an order of magnitude

higher than its counterparts. This high memory demand

could severely limit BZ2's usability, especially in

systems where memory is a scarce resource.

In conclusion, while Gzip, Zlib, and Deflate offer

balanced performance with low memory consumption,

Brotli might be considered when the compression ratio is

more important, provided that the longer compression

time is acceptable. BZ2, despite its moderate

compression time, may only be viable in systems where

ample memory is available and the highest possible

compression ratio justifies its significant memory

allocation. These insights are critical when selecting an

algorithm for specific use cases, particularly when

balancing the need for speed, efficiency, and available

system resources.

Graphs in Figure 8; The first graph details the mean

compression time, revealing that Gzip, Zlib, and Deflate

take 2,422.40 ms, 2,693.30 ms, and 499.9 ms

respectively. These times suggest that while Gzip and

Zlib have slower compression rates, Deflate is

significantly faster, almost five to six times quicker than

its counterparts. Brotli and BZ2 offer even better

performance at 354.2 ms and 335.8 ms, respectively,

which might make them preferable in time-sensitive

scenarios where efficiency is paramount.

In the second graph, memory allocation is depicted, with

Gzip, Zlib, and Deflate all showing minimal differences

in their memory usage, ranging between 7.63 MB to 7.62

MB. Brotli's allocation is marginally lower at 7.57 MB,

which could be considered negligible in most cases.

However, BZ2 demonstrates a substantial increase in

memory requirements, utilizing 742.29 MB. This

considerable memory usage implies that BZ2 might only

be suitable in situations where memory resources are

abundant and a high compression ratio is required,

despite its good performance in terms of compression

speed.

Overall, the graphs suggest that while Brotli and BZ2

offer the best compression times, the latter does so at a

significantly higher memory cost. This data is vital when

considering the operational context of these algorithms,

as it highlights the need to balance compression speed

with resource consumption according to specific

application needs.

4.1.2. Sequential elements matrix performance

measurements

Graphs in Figure 9; In the first graph, the mean

compression times are relatively low for Gzip, Zlib, and

Deflate, recorded at 24.46 ms, 22.99 ms, and 22.62 ms,

respectively. These figures suggest a high level of

efficiency, with little to differentiate between the three in

Figure 7. Complex matrix performance measurements belong to first, second and third operations in Figure 4.

Figure 8. Complex matrix performance measurements belong to first, second, third and fourth operations in Figure 4.

Tr. J. Nature Sci. Volume Special Issue, Issue 1, Page 49-60, 2024

56

terms of speed. Brotli shows a higher time of 46.46 ms,

which could be attributed to its more complex

compression algorithms designed for better compression

ratios. BZ2, however, shows a significantly higher mean

time of 1,108.02 ms, indicating that it is considerably

slower than its counterparts. This would likely make

BZ2 less suitable for applications where time efficiency

is critical.

The second graph is particularly revealing regarding

memory allocation. Gzip, Zlib, and Deflate use similar

and minimal amounts of memory, with allocations at

6752 bytes, 6760 bytes, and 6392 bytes, respectively,

which demonstrates their suitability for memory-

constrained environments. Brotli has a slightly higher

allocation at 649 bytes, which remains relatively modest.

However, BZ2’s memory allocation is an outlier,

requiring a colossal 12,291,200 bytes. This is orders of

magnitude greater than the other algorithms, suggesting

it may be impractical for most applications due to its

high memory demands, despite any potential benefits in

compression ratio.

In summary, these visual data points emphasize the

importance of considering both compression speed and

memory usage when selecting an algorithm. While Gzip,

Zlib, and Deflate offer the best balance for general use,

Brotli might be an alternative for specific use cases that

can tolerate slightly longer compression times. BZ2's

high resource consumption makes it suitable only for

niche applications where its compression benefits

outweigh the significant memory requirements.

Graphs in Figure 10; From the first graph, we observe

that Gzip, Zlib, and Deflate have quite competitive mean

compression times of 25.76 ms, 23.58 ms, and 23.3 ms

respectively. These small differences are unlikely to

impact the choice of algorithm in scenarios where

compression time is somewhat flexible. Brotli's mean

time is slightly higher at 34.87 ms, which is still within

an acceptable range for many applications, considering

that it typically achieves better compression ratios. BZ2,

however, has a mean time of 1,153.63 ms, which is

substantially higher than the others. This may limit its

use to non-time-sensitive processes where compression

efficiency is more critical.

In the second graph, memory allocation in kilobytes

(KB) is represented, showing that Gzip, Zlib, and

Deflate all have modest memory requirements at 65.13

KB, 65.1 KB, and 64.78 KB, respectively. Brotli is

slightly more efficient at 59.28 KB. In stark contrast,

BZ2 requires a dramatically higher amount of memory at

12,063.71 KB, which is nearly 200 times greater than its

nearest competitor. This high memory allocation

suggests that BZ2's use cases might be very specialized,

where the benefits of its compression outweigh the cost

in terms of memory usage.

The data from these graphs suggest that for most general

purposes, Gzip, Zlib, and Deflate offer a good balance of

speed and memory efficiency. Brotli stands out as a

strong candidate when slightly higher compression times

are acceptable, and memory efficiency is a priority. BZ2

appears to be a specialized tool that might be reserved

for unique situations where its heavy memory use can be

justified, likely in environments where memory is not a

constraint and maximum compression is the primary

goal.

Figure 11; From the compression time perspective, Gzip

and Zlib are the quickest, with times of 26.51 ms and

21.89 ms, respectively, making them suitable for

applications where speed is essential. Deflate and Brotli

exhibit slightly longer compression times at 24.7 ms and

35.29 ms, respectively, with Brotli's longer time possibly

Figure 9. Sequential elements matrix performance measurements belong to just first operation in Figure 4.

Figure 10. Sequential elements matrix performance measurements.

Tr. J. Nature Sci. Volume Special Issue, Issue 1, Page 49-60, 2024

57

reflecting its focus on achieving higher compression

ratios. BZ2 is the outlier, taking considerably longer at

1,127.31 ms, suggesting it might be less suited for time-

sensitive processes.

The memory allocation chart shows that Gzip, Zlib,

Deflate, and Brotli have similar and relatively low

memory footprints, all under 1.3 MB. This is beneficial

in resource-constrained environments where maintaining

a small memory usage is crucial. In stark contrast, BZ2

requires a substantially larger amount of memory, at

17.27 MB, which may hinder its practicality in systems

with limited memory availability.

Figure 12; Gzip and Zlib demonstrate relatively

moderate compression times at 1,842.34 ms and

1,975.51 ms, respectively. Deflate follows closely,

showing a time of 69.66 ms, suggesting a faster

performance that could be beneficial in time-sensitive

applications. Brotli shows a compression time of

1,502.17 ms, which is slower compared to Gzip and Zlib

but faster than BZ2, which has the highest mean time at

11,879.34 ms, indicating it may be less efficient for rapid

compression needs.

When examining memory allocation, Gzip, Zlib, Deflate,

and Brotli are quite efficient, each requiring slightly over

1 MB of memory. This low memory footprint is

advantageous for environments where resource

conservation is essential. However, BZ2's memory

requirement is much higher at 17.36 MB, making it

potentially impractical for memory-constrained systems

despite its slower compression time.

In an academic context, these findings would suggest

that while Brotli and BZ2 have slower compression

times, they might offer better compression ratios, which

could be a trade-off depending on the application's

requirements. However, the significantly higher memory

usage of BZ2 could limit its use to systems where

memory resources are not a concern.

4.1.3. Matrix With Many Zero Performance

Measurements

Graphs in Figure 13; For compression time, Gzip is the

fastest at 34.46 ms, closely followed by Zlib and Deflate

at 29.32 ms and 30.61 ms respectively. Brotli is slightly

slower at 56.54 ms, while BZ2 is the slowest at 67.27

ms.

Memory allocation shows Gzip, Zlib, and Deflate using

less than 4 KB of memory, indicating high efficiency.

Brotli requires slightly more at 671 bytes. BZ2, however,

requires a much larger memory size of 12,197,576 bytes,

which is substantially more than its counterparts.

In summary, Gzip, Zlib, and Deflate are efficient in both

time and memory usage, suitable for most applications.

Brotli trades off some speed for compression quality,

while BZ2, due to its high memory demand, may only be

practical for specific use cases where its compression

benefits outweigh its resource usage.

Figure 11. Sequential elements matrix performance measurements belong to first, second and third operations in Figure 4.

Figure 12. Sequential elements matrix performance measurements belong to first, second, third and fourth operations in Figure 4.

Tr. J. Nature Sci. Volume Special Issue, Issue 1, Page 49-60, 2024

58

Graphs in Figure 14; The mean compression times are

fairly close for Gzip, Zlib, and Deflate, recorded at 36.23

ms, 32.45 ms, and 31.22 ms respectively, which suggests

these algorithms are quite efficient. Brotli shows a

higher time at 46.32 ms, and BZ2 is the slowest at 68.76

ms, which could be a drawback for rapid compression

needs.

On the memory allocation front, Gzip, Zlib, and Deflate

are comparable, requiring between 61.77 KB to 61.41

KB. Brotli is slightly more efficient at 59.29 KB.

However, BZ2's memory requirement is exceptionally

high at 11,970.11 KB, which may render it less practical

for environments with limited memory resources.

In essence, Gzip, Zlib, and Deflate are suitable for

general use, offering a good balance of speed and low

memory usage. Brotli stands out as a slightly less

efficient option in terms of speed but still maintains low

memory use. BZ2, while slowest, may offer better

compression ratios at the cost of significantly higher

memory usage.

Graphs in Figure 15; Gzip has a compression time of

37.33 ms, Zlib is faster at 26.32 ms, and Deflate is very

close to Zlib at 32.96 ms. Brotli is slower at 55.22 ms,

and BZ2 is the slowest at 71.6 ms.

For memory usage, Gzip, Zlib, and Deflate are nearly

identical, ranging from 115.23 MB to 115.02 MB. Brotli

is marginally more efficient at 111.79 MB. BZ2's

memory allocation is significantly higher at 12,023.52

MB, suggesting it is less efficient in terms of memory

usage.

Overall, Zlib and Deflate are the most efficient in both

time and memory usage, while BZ2's high memory

allocation could limit its practicality despite its

compression capability.

Graphs in Figure 16; In terms of compression time,

Gzip, Zlib, and Deflate exhibit high performance, with

mean times of 9,452.95 ms, 11,166.46 ms, and 10,679.48

ms, respectively, indicating they are quite fast. Brotli has

a lower time at 575.5 ms, and BZ2 is the most time-

efficient at 62.98 ms.

Memory allocation shows that Gzip, Zlib, Deflate, and

Brotli have similar low memory usage, around 1.29 MB

to 1.28 MB. In stark contrast, BZ2 requires significantly

more memory at 17.27 MB.

Figure 14. Matrix with many zero performance measurements belong to first and second operations in Figure 4.

Figure 13. 4.2.3. Matrix with many zero performance measurements belong to just first operation in Figure 4.

Figure 15. Matrix with many zero performance measurements belong to first, second and third operations in Figure 4.

Tr. J. Nature Sci. Volume Special Issue, Issue 1, Page 49-60, 2024

59

BZ2 stands out with the lowest compression time but

requires more memory, while Brotli offers a balance

between efficient compression time and low memory

usage. Gzip, Zlib, and Deflate, while slower, also

maintain a low memory footprint.

4.2. Compression Performance Measurements

Figure 17 covers the performance of compression

algorithms in minimizing the 63,684-byte matrix. As

observed, the Brotli algorithm demonstrates a clear

superiority compared to the others. Brotli, being the

overall winner in performance tests, owes its distinction

to its high compression ratio.

Figure 17. Compression ratios of algorithms.

5. DISCUSSION

The results of the experimental studies have shown that

the Brotli algorithm provides the best performance.

Brotli offers both a high compression ratio and fast

compression and decompression times. Other algorithms

either have a low compression ratio or slow processing

times. These results provide a framework for the

effective transfer of large matrix data in microservices

architectures. An overall evaluation of the obtained

results is presented below:

• Gzip, Zlib, and Deflate have been the most performant

in the first three periods, providing similar results to each

other.

• Brotli, despite lagging behind in performance in the

first three measurements, has been the most efficient

algorithm in the end-to-end test.

• While the BZ2 algorithm exhibited the worst

performance in the first three periods, it yielded good

results in the later periods; however, it did not meet the

expected memory usage.

• The ultimate reason for Brotli being the optimal

algorithm is its high compression ratio compared to

others.

• Brotli algorithm provided the most optimal results for

all types of matrices.

6. CONCLUSION

This study focuses on optimizing data transfer in

microservices architectures and evaluates the

performance of compression and decompression

processes for large matrix data. The results obtained

indicate that the Brotli algorithm provides the best

solution in this context. It has been the most performant

algorithm for three different types of matrices subjected

to testing. This study serves as a reference for

researchers and industry professionals interested in data

transfer in microservices architectures. The provided

information should not be limited to matrix-specific

evaluations but should also be considered for other data

formats.

Looking ahead, further research can expand upon this

work by exploring a broader range of data formats such

as text, JSON, and XML to determine the most effective

compression algorithms for diverse data types.

Additionally, investigating the distribution of

compression and decompression tasks in distributed

systems could offer insights into enhancing performance

for large-scale data transfers. Embracing adaptive

compression techniques and exploring hardware

acceleration are promising directions that could lead to

significant improvements in real-time data processing

and efficiency. These future endeavors will build on the

foundation laid by this study, offering a comprehensive

understanding of data optimization in microservices

architectures across various contexts and technologies.

Acknowledgement

This study was presented as an oral presentation at the

"6th International Conference on Life and Engineering

Sciences (ICOLES 2023)" conference.

REFERENCES

[1] Enliçay M, Şahin Ö, Ülger İ, Balçiçek ÖE,

Baydarman MV, Taşdemir Ş. Veri Sıkıştırma

Algoritmalarının Karşılaştırılması: Katılım Bankası

Örneği. Konya: Selçuk Üniversitesi; 2014.

Figure 16. Matrix with many zero performance measurements belong to first, second, third and fourth operations in Figure 4.

Tr. J. Nature Sci. Volume Special Issue, Issue 1, Page 49-60, 2024

60

[2] Öztürk E, Mesut A, Diri B. The performance

analysis of data compression algorithms used in

NoSQL databases. In: Proceedings of the

International Conference on Computer Science and

Engineering (UBMK 2016); 2016 Oct; Tekirdağ.

[3] Deorowicz S. Universal lossless data compression

algorithms [dissertation]. Gliwice: Silesian

University of Technology; 2003.

[4] Ramu V. Performance impact of microservices

architecture. Rev Contemp Sci Acad Stud. 2023;3.

[5] Kodituwakku SR, Amarasinghe US. Comparison of

lossless data compression algorithms for text data.

Indian J Comput Sci Eng. 2010;1(4):416-25.

[6] Tapia F, et al. From monolithic systems to

microservices: a comparative study of performance.

Appl Sci. 2020;10(17):5797.

[7] Somashekar G. Performance management of large-

scale microservices applications [dissertation].

Stony Brook (NY): Stony Brook University; 2023.

[8] Semunigus W, Balachandra P. Analysis for lossless

data compression algorithms for low bandwidth

networks. J Phys Conf Ser. 2021;1964(4).

[9] Alakuijala J, et al. Brotli: A general-purpose data

compressor. ACM Trans Inf Syst. 2018;37(1):1-30.

[10] Bulut F. Huffman algoritmasıyla kayıpsız hızlı

metin sıkıştırma. El-Cezeri. 2016;3(2).

[11] Gailly J-l, Adler M. gzip [Internet]. Available from:

http://ftp.gnu.org/gnu/gzip/gzip-1.6.tar.gz .

[12] Zlib Compression Library [Internet]. Available

from: http://www.zlib.net/ [cited 2024 Jan 10].

[13] Deutsch P. Deflate compressed data format

specification version 1.3. RFC 1951

(Informational). IETF; 1996.

