
137 

 Koc. J. Sci. Eng., 7(2): (2024) 137-150                                  https://doi.org/10.34088/kojose.1426751 
                                                                     

 
 

Kocaeli University 

 

  Kocaeli Journal of Science and Engineering 

 
http://dergipark.org.tr/kojose 

 

 

 

 

A Remaining Useful Life Approach using an Ensemble Regressor enhanced with 

Hilbert Transform and CNN-LSTM Model 
 

F. Azeez ADEBAYO 1, *         , Kaplan KAPLAN 2        , H. Metin ERTUNC 3                      
 
1 Department of Mechatronics Engineering, Kocaeli University, Kocaeli, 41001, Turkey, ORCID: 0000-0002-8160-6949 
2 Department of Software Engineering, Kocaeli University, Kocaeli, 41001, Turkey, ORCID: 0000-0001-8036-1145 
3 Department of Mechatronics Engineering, Kocaeli University, Kocaeli, 41001, Turkey, ORCID: 0000-0003-1874-3104 
 

 

 
Article Info 

  

Research paper 

  

Received : January 27, 2024 

Accepted : April 25, 2024 

 

Keywords 
 

Predictive Maintenance 

CNN-LSTM 

Feature Extraction 

RUL 

Hilbert Transform 

 
 

 

   Abstract 
 

In this study, we propose a hybrid approach that integrates signal-driven and knowledge-based 

techniques to estimate the Remaining Useful Life (RUL) of bearings. The experimental data for this 

research is sourced from the FEMTO-ST Institute. Firstly, the horizontal and vertical acceleration 

data is ordered chronologically by time, and a band-pass filter is used for early-stage preprocessing 

of the vibration signals below 20 kHz. Then, the overall behavior of the signal is characterized by 

Hilbert-Transform. For the feature extraction scheme, a model that integrates Convolutional Neural 

Networks (CNN) and Long Short-Term Memory (LSTM) networks is implemented. These features 

form historical data on health indexes describing fault stages and are as such used to fit a voting 

regressor yielding an extrapolated future. The voting regressor is based on support vector regression 

(SVR) and linear regressor methods and a fault threshold is determined as 0.8 based on prior 

experiments. Finally, the proposed methodology distinguishes itself by recording the smallest 

average percentage error on the FEMTO dataset. This method proves that early-stage predictions are 

possible with run-to-failure data provision ranging from 60% and above, averaging some 1400 

seconds into the future implying its suitability and effectiveness for real industrial applications. 

 
 

 

 

1. Introduction1 

 

Various Modern industrial machines predominantly 

operate using rotational motion, where bearings play a 

pivotal role. Bearings are important components of these 

machines, and their reliable operation is essential for the 

overall performance and longevity of the systems. Despite 

being relatively low-cost elements, any failure in these 

components can lead to catastrophic damage to the entire 

system. The health and uninterrupted performance of 

mechanical systems depend on identifying potential 

malfunctions at an early stage, enabling predictive 

maintenance. To achieve this, substantial efforts have 

focused on precisely estimating the Remaining Useful Life 

(RUL) of rolling bearings, which is fundamental for 

efficient predictive maintenance [1-4]. 

Methods for predicting RUL can be generally divided 

into two categories: those based on knowledge or 

 

1 Corresponding Author: hazeezadebayo@gmail.com 

 

analytical approaches [1,2] and those that rely on data 

[3,4]. By combining physical and dynamic phenomena 

with system measurements such as parameter estimation, 

state observer, and system identification, analytical-based 

techniques use mathematics to simulate the actual behavior 

of the system. For instance, in a study by Lei et al., a novel 

health indicator named the weighted minimum 

quantization error was introduced, and the maximum-

likelihood prediction algorithm helped to initialize the 

model parameters. They used finally a particle filtering-

based algorithm for predicting RUL [9]. Analytical-based 

approaches are the least used techniques as they involve 

heavy mathematical computation and as such involve a lot 

of linear approximations of non-linear real systems which 

in turn introduces some errors in their results making them 

not suitable for large industrial plants. Also, defining a 

precise and convenient model is a hard process and 

requires prior knowledge and equipment of the history of 

the mechanical system. Defining a Health Indicator (HI) 

and predicting model parameters from real-time 

information are the two main problems of model-based 
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solutions [10-12]. 

On the other hand, the data-based approach uses 

online monitored sensor data or signals and tries to imitate 

the reasoning of humans in fault diagnostics rather than the 

mathematical modeling of the system. Increasing learning 

capabilities, the development of sensor technologies, and 

the development of signal processing techniques have 

made data-based methods more applicable and studies on 

them have increased. It includes methods such as fuzzy 

systems [13], neural networks [14], and signal processing 

methods. This approach can be used in various industry 

applications. Data-driven approaches are typically 

bifurcated into two steps: feature extraction and model 

development. Obtaining characteristic and representative 

features is a challenging problem in this approach. Features 

derived from time-domain statistics, frequency-domain 

analysis, and time-frequency domain analysis are 

commonly used in contemporary studies. Chen et al. 

utilized five energy values from specific frequency bands 

as features. They developed a recurrent neural network 

model based on an encoder-decoder architecture, 

supplemented with an attention mechanism, to predict the 

Health Index (HI). According to the result, their study 

achieved the best performance among the studies they 

compared [15]. Yan et al. proposed two measures based on 

the Root Mean Square (RMS): the Inertial Relative Root 

Mean Square (IRRMS) and the Relative Root Mean 

Square (RRMS). They employed a machine learning 

technique known as the support vector machine to 

categorize the degradation stage of the bearing. According 

to their finding, they obtained effective results for 

classifying the degradation process [16]. Wu et al. derived 

features from the time and frequency domains of acoustic, 

current, vibration, and temperature sensor data to estimate 

the RUL of the shaft production system. They utilized a 

multi-stage approach, which was based on models for 

classification and regression. They noted an improvement 

in accuracy by 6.5% [17]. Li et al. utilized the Root Mean 

Square (RMS) and kurtosis as features to characterize the 

state of degradation. They implemented a multilayer 

artificial neural network (ANN) and a regression model to 

forecast the RUL of rolling element bearings [18]. Wu et 

al. obtained statistical features, intrinsic energy features, 

and frequency features of fault using Hilbert–Huang 

transforms (HHT) methods and ensemble empirical mode 

decomposition (EMD). They employed dynamic principal 

component analysis and Mahalanobis distance methods to 

select important features. They predicted the degradation 

process using exponential regression-based and empirical 

Bayesian algorithms [19]. Meng et al. analyzed 

degradation trends using gray markov model and empirical 

mode decomposition based on differential (DEMD). They 

reported that by using mathematical morphology fractal 

spectrum parameters they obtained a 4% decrease in the 

root mean square error (RMSE) value of degradation trend 

[20]. Ahmad et al. used Relative Root Mean Square 

(RRMS) as the HI indicator, and they predicted RUL using 

a dynamic regression model [21]. Soualhi et al. combined 

the Hilbert-Huang transform (HHT) and the Support 

Vector Regression (SVR) for bearing RUL prediction. 

[22]. 

The models mentioned so far use manual 

computation or signal processing to obtain the features. 

The computation of these features is very time-consuming 

and needs theoretical background. Today, deep learning 

algorithms that do not contain these problems have been 

developed. One of these model implementation fields is the 

detection, diagnostic, and prognostic of the bearing 

degradation process. Ren et al. proposed a hybrid 

algorithm utilizing deep neural networks (DNN) and 

autoencoders. To illustrate the degradation process, they 

utilized a unique eigenvector that was derived from joint 

features in the time-frequency-wavelet domain. They 

compressed features by using a deep autoencoder.  They 

employed DNN for RUL prediction [23]. Lu et al. 

extracted bearing features based on the Autoencoder (AE). 

Subsequently, they employed a Gated Recurrent Unit 

(GRU) for the RUL prediction. [24]. Peng et al. presented 

an unsupervised health indicator using a deep belief 

network with a particle filter for the prediction of the RUL 

[25]. Zhao et al. developed a unique two-channel hybrid 

model for RUL prediction, which was based on a Capsule 

Neural Network and a Long Short-Term Memory Network 

(Cap-LSTM). They extracted spatial feature data from 

multivariate time-series sensory data. They observed 

superior success in their study [26]. Li et al. 

used information from the time-frequency domain 

and CNN to predict the degradation process of bearings 

[27]. Wang et al. Introduced a novel deep learning 

algorithm named deep separable convolutional network 

(DSCN) [28].  

In the context of this analysis, the Hilbert Transform 

is employed to derive an envelope signal from the 

vibration data with a CNN-LSTM sub-model learning the 

signal features and forming a fault index representation. 

The learned features are fitted into a voting regressor 

which then helps to extrapolate into the future, based on 

the fitted data.  

The key contributions of this research can be outlined 

as follows: 

A novel hybrid approach for remaining useful life 

estimation is introduced, aiming to predict the onset of 

degradation in a precise and prompt manner. 

. The health indicator of the study can illustrate the 

phase of regular operation and the phase of hastened 

degradation of the bearings based on the degradation initial 
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time. 

The proposed method is benchmarked against other 

cutting-edge methods using the dataset to validate its 

effectiveness and fitness for the industry. 

The flexibility of the algorithm suggests its potential 

for application to other types of machinery and under 

varying operating conditions. ultimately, it ensures a 

possible application to other domains. 

The proposed method harnesses the strengths of its 

constituent models: it employs CNN for effective feature 

extraction, leverages LSTM for capturing temporal 

dependencies, and utilizes voting regressors to achieve a 

balance between overestimation and underestimation 

through consensus-based extrapolation. 

The rest of this research paper is as follows: Section 2 

provide overview of the theoretical background. Section 3, 

the dataset is described. Section 4 illustrates the proposed 

methodology. Section 5 gives equations of performance 

metrics. Section 6 gives the results of experimental studies 

and comparative findings. Section 7 draws some 

discussions, Sections 8 and 9 present the conclusions and 

future work, respectively. 

 

2. Theoretical Background 

 

2.1. Band Pass Filtering via Finite Impulse 

Response (FIR) Method 

 

The periodic signal, x(t), can be expressed as a linear 

combination of complex exponential functions, each 

multiplied by its frequency response. This concept, 

represented in Eq. (1)-(6), underscores the idea of filtering, 

where we convolute the signal with an impulse response 

function to selectively attenuate or pass specific signal 

frequencies by setting certain frequency components to “0” 

or “1”. 

 

 (1) 

 (2) 

  (3) 

 (4) 

 (5) 

 

which can be also re-written as a sum involving Fourier 

series coefficients: 

 

  (6) 

 

where  is the Fourier series co-efficient and can be found 

using the Fourier analysis equation,  is the fundamental 

frequency,  accounts for the frequency response at 

each harmonic, and where  represents the filtered 

output signal. FIR bandpass filters, which are typically 

below 20 kHz, are used in bearing life prediction to obtain 

the frequency components of the vibration signal that are 

most informative for predicting bearing failure. The ideal 

filter response amplitude is a rectangular function with a 

passband centered on the bearing's natural frequency. In 

this study, the ideal filter response is defined as in Figure 1 

with the Nyquist frequency,  normalized to "1". 

 

         
   Figure 1. Ideal filter response. 

 

However, to avoid ringing in the output signal, it is 

important to have a smooth shift between the pass band 

and stop band of the filter. In this study, we use a transition 

zone of 20% of the cutoff frequency between the points 

representing upper and lower bounds. The number of time 

points in the filter kernel, also referred to as filter order, is 

calculated using Eq. (8): 

 

 (7) 

 (8) 

 (9) 

 

where the   is sampling rate defined as the frequency at 

which the vibration signal is sampled.  is filter order,   

is lower filter bound,   is upper filter bound, and  is 

transition width. 

 

2.2. The Hilbert Transform 

 

The use of the FIR bandpass filter facilitates narrow 

band isolation, enabling the extraction of the analytic-

complex (real and imaginary) valued time series- signal. 

The resulting envelope signal has extreme values for phase 

and amplitude. Generally, for a given time series signal 
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, the Hilbert transform,  is given as in Eq. (10). 

 

               (10) 

 

Here,  and  constitute a pair of complex 

conjugates. Hence, we may define the analytic signal as in 

Eq. (11). 

                  (11) 

The polar coordinate expression can be described as 

the optimal local approximation of a trigonometric 

function,  as in Eq. (12)-(13) which exhibits variations 

in amplitude and phase. 

                                    (12) 

                                             (13) 

Here,  represents the instantaneous amplitude and 

 signifies instantaneous phase. The definition of the 

instantaneous frequency is provided in Eq. (14) and the 

Hilbert envelope spectrum is given by Eq. (15) [30]. 

  (14) 

                  (15) 

 

2.3. Development of a model architecture 

combining Convolutional Neural Network (CNN) 

and Long Short-Term Memory (LSTM). 

 

It is helpful to think of the CNN + LSTM as defining 

two sub-models. CNNs are good at feature extraction and 

hence are naturally used as image encoders. The 2D 

Convolution network as used in this study comprises of the 

application of 2D kernel, or stacks of kernels as in filter as 

seen in Eq. (16), to capture certain features, and followed 

by MaxPooling2D layer organized into a layered structure 

of the necessary depth. This ensures that the information 

being abstracted is greatly reduced in size and yields an 

efficient interpretation as the internal matrix or vector 

representation. 

 (16) 

 

where  represents the output value after convolution, tanh 

is the activation function,  is the vector of the input 

values,  is the weight of the convolution kernel, and  is 

the bias of the convolution kernel. 

In this bearing RUL prediction algorithm, portions of 

the processed 1D vector representing vibration 

measurements (i.e. acceleration records) are transformed 

into interpretable 2D images using spectrograms. A 

spectrogram serves as a graphical illustration of a signal’s 

frequency content over a period of time. The x-axis 

denotes time (in seconds), while the y-axis signifies 

frequency (in Hz). Each pixel in the spectrogram 

represents the energy or power at a specific frequency and 

time. The resulting spectrogram is normalized to ensure 

consistent intensity levels across different signals. 

The output generated by the CNN encoder is 

channeled into the LSTM decoder. The LSTM serves to 

interpret the features across time steps and generates a fault 

index. The fault index represents values between "0" and 

"1", indicating the probability of the bearing being faulty. 

However, we can only achieve this transfer from CNN to 

LSTM by encapsulating the entire CNN input model 

within a time-distributed layer, enabling the desired 

outcome to be achieved.  

. This layer functions as if the same layer is applied 

multiple times, which is necessary due to the time step 

variable required by the LSTM. Or we may reshape the 

output of the CNN model to the required or desired 

number of time steps as we have done in this study. The 

LSTM memory cell consists of four parts: the forget gate, 

Eq. (17), the input gate, Eq. (18), cell state, Eq. (20), and 

the output gate, Eq. (21) assembled as depicted in Figure 2 

[31]. 

 

 
  Figure 2. The structural design of the LSTM model. 

 

 (17) 

 (18) 

  (19) 
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 (20) 

 (21) 

 (22) 

 

Here the value range of , , ,  is “ ”, with 

values closer to zero implying to be unimportant or 

dropped and closer to one implying to be important or 

kept. The  represents candidature in which values are 

regulated between “ ” to help regulate the network. 

The weight matrix is represented by , , ,  and 

the bias vectors are denoted by , , , . The current 

time’s input value is represented , and  is the output 

value of the previous time or previous hidden state. While 

 is the output value of the current time or current hidden 

state. The subscripts , ,  and  represent forget gate, 

input gate, cell state, and output gate. 

 

2.4. The voting regressor model 

 

The primary objective of employing a voting 

regressor model is to facilitate the extrapolation of future 

fault indices. The Convolutional Neural Networks (CNN) 

and Long Short-Term Memory (LSTM) networks are 

utilized for feature extraction from the vibration signals, 

which are subsequently transformed into spectral images. 

These images, representing varying stages of bearing 

faults, serve as training data for the CNN-LSTM model to 

generate a fault index, a vector mapping that reflects the 

degradation state of the bearing based on the spectral 

image analysis. 

However, the CNN-LSTM model, while adept at 

generating a fault index, does not inherently possess 

predictive capabilities. Consequently, when the objective is 

to predict future states, particularly when the available data 

does not encompass a run-to-failure sequence, 

extrapolation becomes necessary. This is achieved through 

the voting regressor, which, based on SVR and linear 

regression methods, extrapolates and reaches a consensus 

on the potential failure point of the bearing. This is 

accomplished by fitting the CNN-LSTM output data (the 

fault indices) and the respective index of the data files. 

Each base regressor within the voting regressor 

model independently fits the dataset, and the final 

prediction is computed using a weighted average. This 

approach enables the prediction of future fault indices, 

thereby facilitating the estimation of the bearing’s failure 

point. 

 

2.4.1. Support Vector Regression (SVR) 

 

SVR is a powerful regression technique rooted in the 

theory of Support Vector Machines (SVMs). SVR operates 

by mapping input data into a high-dimensional feature 

space using a kernel function and then finding a 

hyperplane [32] that fits the data in this space. The 

objective of SVR is to find a function , defined in Eq. 

(23) that has at most  deviation from the actually obtained 

targets  for all the training data, and at the same time is as 

flat as possible. 

 

 (23) 

 

Here, ⟨w,x⟩ denotes the dot product of the weight 

vector w and the predictor or feature vector x, and b is a 

bias term. The “flatness” of the function f(x) which 

describes the hyperplane, as measured by the norm of the 

weight vector w, is crucial in this context because it 

determines the generalization capability of the model. In 

the context of this study, the weight vector w corresponds 

to the coefficients of the SVR model that are learned from 

the features extracted from the health index and data 

mapping. The constraints for the SVR problem are defined 

in Eq. (24) as:   

 

 (24) 

 

Where  is deviation or threshold value, and  

represents actual targets. 

 

2.4.2. Linear Regressor (LR) 

 

Linear Regression (LR) is a statistical technique that 

involves fitting a linear equation to minimize the overall 

distance measured as the sum of squares between the 

observed target values and the predicted values of the 

approximation. If we denote the dependent variable as  

and the independent variable as , the linear regression 

model [33] can be expressed in Eq. (25) as 

 

 (25) 

 

Where is the y-intercept,  is the slope of the 

regression line (regression coefficient), and ϵ is the error 

term.  

  

3. Dataset 

 

To validate our hypothesis and facilitate performance 

comparison, we utilized the FEMTO-bearing public 

dataset, obtained from a test rig, illustrated in Figure 3. The 

experiment encompassed three distinct operating 

conditions, detailed in Table 1. 
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Table 1. An overview of the dataset from the IEEE 2012 

PHM prognostic challenge. 

Operation 

conditions 
Conditions 1 Condition 2 

Condition 

3 

Rotation 

speed 
1800 rpm 1650 rpm 1500 rpm 

Loading 

force 
4000 N 4200 N 5000 N 

Training set Bearing1_1 Bearing2_1 
Bearing3_

1 

 Bearing1_2 Bearing2_2 
Bearing3_

2 

Test set Bearing1_3 Bearing2_3 
Bearing3_

3 

 Bearing1_4 Bearing2_4  

 Bearing1_5 Bearing2_5  

 Bearing1_6 Bearing2_6  

 Bearing1_7 Bearing2_7  

 

This dataset contains run-to-failure tests of 17 

bearings, 6 for the purpose of training, and 11 sets for 

testing. The vibration data is then captured by 

accelerometers installed on one or more orthogonal axes. 

The signal was sampled at 25.6 kHz enabling it to be 

digitally reconstructed for vibration analysis. Vibration 

samples were collected every 10 seconds, for a period of 

0.1 seconds. More detailed information experiments are 

given in [34]. 
 

 
Figure 3. The PRONOSTIA experimental setup  
 

4. Proposed Methodology 
 

In the literature, there are many monitoring condition 

techniques, including vibration, temperature, chemical, and 

current monitoring. In the case of vibration, the analysis is 

typically performed directly on the time waveforms of the 

vibration signal, or alternatively, on the frequency 

spectrum., or sometimes a combination of both time and 

frequency spectrum. In chronologically recorded vibration 

waveform analysis in the time domain, parameters such as 

RMS, standard deviation, kurtosis, skewness, and others 

are analyzed to detect abnormal vibration events. This 

approach can generally assess the fault condition. In 

contrast, especially in rotating machinery, a waveform 

does not display the individual frequencies at which 

vibration occurs. It is thus not as easy to diagnose bearing 

problems using waveforms. The usual step is to perform a 

Fast-Fourier Transform (FFT), or other different advanced 

signal processing techniques such as Short-Time-Fourier-

Transform (STFT), Wigner–Ville distribution (WVD), 

Hilbert Transform (HT), Hilbert–Huang Transform (HHT) 

and Wavelet Packet Transform (WPT) algorithm to 

convert the time waveform into a vibration frequency 

spectrum i.e., the energy distribution of the signal over the 

frequency domain at every instant of time describing the 

repetitiveness of vibration patterns [35]. 

The proposed technique to predict bearings RUL is a 

hybrid approach that combines both signal-based and 

knowledge-based techniques to analyze vibration patterns. 

Chronologically ordered acceleration data undergoes 

preprocessing, including bandpass filtering and Hilbert 

Transform for enveloping signal derivation. The resulting 

signal feeds into a CNN-LSTM model, predicting fault 

indices based on indicative degraded condition features. In 

Figure 4 and Figure 5, some sample of run-to-failure 

horizontal vibration signals of bearing is illustrated. 

 

   
             Total number of files 

Figure 4. Run-to-failure horizontal vibration signals of 

bearing B1_1 in FEMTO dataset. 

 

   
              Total number of files 

Figure 5. Run-to-failure vertical vibration signals of 

bearing B1_1 in FEMTO dataset. 

 

However, since our data is in the time domain, we 

first output a real-valued narrowband signal to serve as the 

expected HT input through the computation of filter 

coefficients for the least square linear-phase finite impulse 

response (FIR) filter, we achieve an optimal approximation 

to the anticipated frequency response, as delineated by our 

H
o

rizo
n

tal  

A
cceleratio

n
 

V
ertical  A

cceleratio
n

 



F. Azeez ADEBAYO et al. / Koc. J. Sci. Eng., 7(2): (2024) 137-150 

143 

Frequency (Hz) 

desired band in the temporal domain. In essence, the 

frequency and amplitude attributes of the resultant filter 

align with the specifications of our original design. The 

resulting filter, its frequency, and time-domain 

representation plot and the generated narrowband data are 

given in Figure 6. 

 

  
Figure 6. (a). Filter kernel representation frequency-

domain, (b). Filter kernel representation in time-domain 

(c). Filtered Signal. 

 

The Filter-Hilbert approach is next and is selected for 

its superior control over frequency filtering, shape 

flexibility, and high stability. With HT being used here for 

signal demodulation, a section of the modulated fault 

signals of bearing B1_1 shown in Figure 7(d) (solid orange 

curve) which are separated, and a carrier envelope obtained 

by HT plotted in blue curve better summarizes the signal. 

                
                                                

       

Figure 7. (a). Filter frequency response (b). Hilbert 

analytic signal real (c.) instantaneous phase plot (d). 

Envelope function and narrowband signal -cut section-. 

A frequency spectral image of the nature given in 

Figure 8 is also generated per data file i.e., data collected 

in one single sampling. The FEMTO data files are 10 

seconds apart and a file is recorded for 0.1 second. The 

red/blue color varies relative to the damage intensity.   

 

        
                  

   Figure 8. Frequency spectral image. 

 

Table 2 delineates the structural composition of the 

CNN-LSTM model. Batch normalization is also used to 

maintain the distribution of the data and as such improves 

model performance, and mitigates internal co-variate shift, 

while also applying a regularization effect in the CNN sub-

model.  Conversely, random unit dropout is implemented 

in the LSTM sub-model to prevent over-fitting by 

selectively deactivating a predetermined proportion of 

network units. The final output shape of the CNN-LSTM 

model is “1” representing the fault index. 

 

Table 2. The hybrid CNN-LSTM model architecture  

Layer Type Output Shape Number of  

Parameters 

Convolution 124×191×8 152 

Batch 

normalization 

124×191×8 32 

Max Pooling 62×95×8 0 

Convolution 60×93×16 1168 

Batch 

normalization 

60×93×16 64 

Max Pooling 30×46×16 0 

Convolution 28×44×24 3480 

Batch 

normalization 

28×44×24 96 

Max Pooling 14×22×24 0 

Convolution 12×20×24 5208 

Batch 

normalization 

12×20×24 96 

Max Pooling 6×10×24 0 

Flatten 1440 0 

Dense Layer 256 368896 

Dropout Layer 256 0 
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no_of_files B1_1 

Table 2. (Cont.) The hybrid CNN-LSTM model 

architecture  

Layer Type Output Shape Number of  

Parameters 

Reshape Layer 256×1 0 

LSTM Layer 256×60 14880 

Dropout Layer 256×60 0 

LSTM Layer 60 29040 

Dropout Layer 60 0 

Dense Layer 30 1830 

Dropout Layer 30 0 

Dense Layer 10 310 

Dense 1 11 

 

The proposed model was trained using 3000 epochs 

upon which a training loss value of 1.7906e-04 was 

obtained. The model, when evaluated against the training 

data, again yielded the results depicted as blue for 

predicted values and orange for actual values in Figure 9: 

 

               
 

  Figure 9. Model’s performance on training data  

 

An algorithm breakdown is given in Table 3 showing 

how the input, being data files of real-time measured 

horizontal and vertical frequencies, is processed, learned 

and converted to fault indexes before being extrapolated to 

any desired time instance in the future. 

 

Table 3. Algorithm breakdown of the bearing RUL 

prediction 

Algorith

m step 
Explanation 

Initialize: 

Set data points per one data file, sampling 

frequency, root file director, and FIR bandpass 

filter parameters. 

Input: Get current training data. 

Compute

: 

Determine the data order by date/time and 

sort, apply FIR band pass filter and calculate 

the filter Hilbert envelope of the narrowband 

signal. 

For i in data_files: 

 

Table 3. (Cont.) Algorithm breakdown of the bearing RUL 

prediction 

Algorith

m step 
Explanation 

Input: Obtain the horizontal and vertical envelope 

signal. 

Compute

: 

Generate the frequency spectral image matrix. 

 Create train data from image matrix as X and 

assign a label i/data files as Y. 

End For  

Repeat  

Start Train CNN LSTM model with X and 

corresponding Y 

Until A satisfactory number of epochs 

Examine Make predictions with CNN LSTM model 

with Test Set. 

Examine Fit (predictions, data file index) to the Voting 

Regressor model and make new predictions on 

any length. i.e., informed extrapolation. 

Visualize Prediction graph: CNN LSTM in red, Voting 

Regressor model in blue, Highest point on 

Voting Regressor model in green (vertical), 

and fixed fault threshold in green (horizontal). 

 

5. Performance Metrics 

 

To evaluate the forecasting effect of CNN-LSTM, the 

Huber loss is selected as it is a combination of the mean 

square error (MSE) and absolute value loss. It tries to 

highlight the best of both losses and combines them in a 

differentiable way, making for a good evaluation criterion. 

The Huber calculation formula is shown in Eq. (26), for 

each error value . 

 

          (26) 

  

where  is a float chosen as the point where the Huber loss 

function changes from quadratic to linear. 

First, the percentage error in prediction is defined in 

Eq. (27). 

 

   (27) 

 

where  is the actual remaining useful life of the 

bearing to be predicted, and  is the algorithm’s 

estimated or predicted value. 

Then a score,  which is a measure of the early 

prediction capability of the prediction is defined in Eq. 

F
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(28). It ensures that underestimates are considerably 

weighted more and as such represent good performance in 

RUL prediction (i.e., where >0), while overestimates 

are weighted less and are regarded as late predictions. (i.e., 

where <0). As such, the total score for the experiment is 

an average and is also given in Eq. (29). 

 

    (28) 

                                                                (29) 

 

where , represents the aggregate count of test instances.  

However, the score defined above is not a measure of 

the algorithm’s prediction accuracy as it only favors cases 

of early prediction. For this reason, two other measures are 

further defined; the mean error and the mean absolute error 

as a measure of the prognosis method’s accuracy, Eq. (30) 

and precision, Eq. (31) respectively as defined in [15]. 

 

                                                    (30) 

                                                 (31) 

 

where  defined previously, is the total number of test 

cases. Other important performance metrics [36] that have 

been used on FEMTO dataset are Mean Absolute Error 

(MAE), Root Mean Square Error (RMSE), Symmetric 

Mean Absolute Percentage Error (SMAPE), and Relative 

Accuracy (RA). 

 

6. Experimental Results 

 

Overall, results obtained from the experiment on the 

test data in the first operating condition are also depicted in 

Figures 10-14. In the figures, the CNN LSTM model 

outputs are shown in red, the Voting Regressor model 

output is shown in blue, the Highest point on the voting 

regressor is shown as a green vertical line, and the fixed 

fault threshold is shown in a green horizontal line. 
 

 
Figure 10. B1_3 (pred 2088, actual 1802) 

 
Figure 11. B1_4 (pred 1376, actual 1139) 
 

 
 Figure 12. B1_5 (pred 2073, actual 2302) 
 

 
 Figure 13. B1_6 (pred 2354, actual 2302) 
 

 
 Figure 14. B1_7 (pred 545, actual 1502) 
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The results obtained from the experiment on test data 

in the second operating condition can be seen in Figures 

15-19. 

 

 
 Figure 15. B2_3 (pred 1250, actual 1202) 

 

 
 Figure 16. B2_4 (pred 547, actual 612) 

 

 
 Figure 17. B2_5 (pred 1737, actual 2002) 

 

 
 Figure 18. B2_6 (pred 743, actual 572) 

 

 
 Figure 19. B2_7 (pred 139, actual 172) 

 

Lastly, the results obtained from the experiment on 

test data in the third operating condition is depicted in 

Figure 20. 

 

 
 Figure 20. B3_3 (pred 419, actual 352) 

 

The algorithm's performance across all test sets is 

presented in Table 4. While it can be seen that this study 

provides a more accurate and precise RUL prediction 

solution, it scores lower than [15] and [37] for early 

predictions. This is so because, it achieves a reasonable 

balance between overestimation and underestimation, 

thereby making it more reproducible and trustworthy. 
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Table 4. The comparative finding of the study. 

Error This paper [15] [37] [38] [39] [40] [41] 

B1_3 -15.8 7.62 43.28 37.0 54.73 -0.35 -1.04 

B1_4 -20.8 -157.71 67.55 80.0 38.69 5.6 -20.94 

B1_5 9.94 -72.57 -22.98 9.0 -99.4 100 -278.26 

B1_6 -2.25 0.93 21.23 -5.0 -120.07 28.08 19.18 

B1_7 63.7 85.99 17.83 -2.0 70.65 -19.55 -7.13 

B2_3 -3.9 81.24 37.84 64.0 75.53 -20.19 10.49 

B2_4 10.62 9.04 -19.42 10.0 19.81 8.63 51.8 

B2_5 13.2 28.19 54.37 -440.0 8.2 23.3 28.8 

B2_6 -29.8 24.92 -13.95 49.0 17.87 58.91 -20.93 

B2_7 19.18 19.06 -55.17 -317.0 1.69 5.17 44.83 

B3_3 -19.03 2.09 3.66 90 2.93 40.24 -3.66 

Er 2.278 2.62 12.20 -38.64 6.42 20.89 -16.08 

|Er| 18.929 44.49 32.48 100.27 46.32 28.18 44.28 

Score 0.3871 0.4384 0.2631 0.3066 0.3829 0.4285 0.3550 

 

7. Discussions 

 

To check to what length into the future the algorithm 

will be accurate. We provide 1400 data files, as shown in 

Figure 21, from B1_3 representing over 70% of its run-to-

failure data, to the model, which predicted 1704 as its 

failure point. This is relatively close, as the run-to-failure 

data is 1802. Similarly, B1_5 depicted in Figure 22, was 

also tested with 1550 data files, i.e., over 60% of its run-to-

failure data, wherein 2050 was predicted, for an actual 

failure at 2302. Further experimentation showed that the 

algorithm is accurate for approximately 1400 seconds into 

the future, indicating that 140 data files were predicted 

accurately. Recall that each data file is 10 seconds apart. 

 

          

Figure 21. B1_3 with over 70% of its run-to-failure 

data (980Secs) 

 

 

Figure 22. B1_5 with over 60% of its run-to-failure 

data (2520 seconds) 

 

The effectiveness of this approach is substantiated 

through the results as they validate the key contributions of 

this research:  

The approach’s success in safely predicting an 

average of 1400 seconds into the future underscores its 

potential for industrial applications. Even more generally, 

the results above show that; early-stage predictions are 

possible with run-to-failure dataset provision ranging from 

60% and above. 

Also, while the current study focuses on the RUL of 

bearings, the algorithm’s reliance on historical data 

suggests its applicability to similar predictive maintenance 

problems in other domains. 

Lastly, the balance between overestimation and 
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underestimation achieved by the Voting Regressors is 

particularly noteworthy, as it contributes to the algorithm’s 

minimal error in its predictions. 

 

8. Conclusions  

 

For an accurate RUL prediction, the dependency on 

historical information or data cannot be overestimated. 

This research has made significant contributions to the 

literature by introducing a novel Hilbert Transform data-

driven hybrid approach using deep learning for the 

prediction of the Remaining Useful Life (RUL) of 

bearings. The proposed method integrates signal-based and 

knowledge-based techniques, employing the Hilbert 

Transform for initial signal processing, a CNN-LSTM 

model for feature extraction and sequence memorization, 

and a voting regressor for extrapolation into the future. 

The unique combination of these techniques allows 

for a more accurate and precise RUL prediction, as 

validated against other cutting-edge methods using the 

FEMTO dataset. The proposed method achieves a balance 

between overestimation and underestimation, enhancing its 

reproducibility and reliability. A threshold value of 0.8, 

determined based on prior knowledge, enables us to 

validate the practical knowledge with contemporary data-

driven processes, illustrating the close alignment between 

theory and practice. Furthermore, the algorithm 

demonstrates that early-stage predictions are feasible with 

run-to-failure data provision ranging from 60% and above, 

averaging 1400 seconds into the future. Ultimately, during 

the validation phase, the method put forth attains the 

minimal mean percentage discrepancy on the FEMTO 

dataset when compared with other methods. This implies 

that in an actual industry, the usage of the proposed 

method is feasible. 

 

9. Future Work  

 

The proposed method has shown promising results. 

However, further research is necessary to enhance its 

performance and expand its applicability. 

Anomaly Detection: Future work could explore the 

integration of anomaly detection techniques to improve 

feature extraction. Anomaly detection could help identify 

unusual patterns in the vibration signals that may indicate 

the onset of bearing faults, thereby enhancing the 

predictive capabilities of the model. 

Language Models: The use of language models could 

be explored to generate proposed behaviors based on 

trends in the data. Language models have been successful 

in capturing temporal dependencies in time-series data, and 

their application to vibration signals could provide new 

insights into the degradation process of bearings. 

Adaptive Thresholding: The concept of thresholds 

could be further developed to be more adaptive and data-

dependent not set to a fixed value as it was noted that some 

bearings failed having never crossed it. This could 

potentially improve the accuracy of early-stage predictions. 

Applications to other domains: Future research could 

explore these applications, further validating the 

effectiveness of the method and broadening its scope of 

application. 
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