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Abstract
This research examines the relationship between banking activities and provincial economic development. 
In particular, the study offers insight on the nature of the regional economic development discrepancies 
in Turkiye. The study finds that, despite the trend towards decentralisation that takes place in regional 
economic policies, the banking system adopts centralisation policies. Using dynamic generalised method of 
moment (GMM) estimates, a unique data set including 39 years of provincial demographic, socioeconomic, 
and financial factors in Türkiye is evaluated. The study demonstrates that the banking intermediation 
is detrimental to provincial development. The Turkish banking system’s hierarchical structure prevents 
financial intermediaries from fulfilling their role in fostering development. Consolidation and 
concentration strategies must be reassessed, since they tend to favour centralisation, which has been shown 
to be inefficient for regional convergence. The results also suggest that branch managers should be granted 
greater decision-making authority to make better use of locally produced information when approving or 
rejecting projects, which would eventually lead to a reduction in provincial disparities.
Keywords: Financial intermediation, branch banking, provincial economic growth, dynamic GMM, soft 
& hard information
JEL classification: G21, L2, O16, R11

Öz
Bu araştırma, bankacılık faaliyetleri ile illerin ekonomik kalkınması arasındaki ilişkiyi incelemektedir. 
Çalışma özellikle Türkiye’deki bölgesel ekonomik kalkınma farklılıklarının doğasına ışık tutmaktadır. 
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Araştırma, bölgesel ekonomi politikalarında gerçekleşen adem-i merkeziyetçi eğilime rağmen, bankacılık 
sisteminin merkezileşme politikalarını benimsediğini belirlemiştir. Çalışmada “Dynamic Generalised 
Method of Moments (DGMM)” tahminleri kullanarak Türkiye’deki 39 yıllık demografik, sosyoekonomik 
ve finansal faktörleri içeren benzersiz bir veri setini değerlendirilmiştir. Çalışma, bankacılık aracılığının 
il kalkınması için negatif etkisi olduğunu göstermektedir. Türk bankacılık sisteminin hiyerarşik yapısı, 
finansal aracıların gelişmeyi teşvik etme rolünü yerine getirmesini engellediği ortaya konmuştur. 
Bankaların birleşme ve konsantrasyon stratejileri tekrar değerlendirilmelidir, çünkü bunların genellikle 
bölgesel yakınsama için etkisiz olduğu gösterilmiştir. Sonuçlar ayrıca şube müdürlerine, projeleri onaylama 
veya reddetme konusunda daha fazla karar alma yetkisi verilmesi gerektiğini, bunun da nihayetinde iller 
arasındaki farklılıklarının azaltılmasına yol açacağı ön görülmüştür.
Keywords: Finansal Aracılık, Şube Bankacılığı, Kentsel Ekonomik Kalkınma, Dinamik GMM,
JEL classification: G21, L2, O16, R11

1. Introduction

There is substantial empirical evidence to support a positive causal link running from finance 
to economic growth at the national level (see, e.g., Levine, 2005, for a survey). However, such an 
outcome at the national level might be consistent with a range of financial development and growth 
experiences across a country’s regions, depending in part on banks’ organizational structures. This 
paper investigates whether hierarchical branch banking, while facilitating financial deepening and 
accelerating national economic growth, can also contribute to uneven development across different 
regions. This might occur, for example, because informational asymmetries lead hierarchical banks to 
ignore or reject profitable local investment opportunities or to use scarce resources in unproductive 
local investments (Alessandrini and Zazzaro, 1999; Klagge and Martin, 2005), or because agency 
problems worsen as the distance between local branches and head offices lengthens (Berger and 
DeYoung, 2001). In contrast, locally-based financial intermediaries (such as unit banks) may have 
superior knowledge about investment opportunities in their region and may be more willing to 
invest locally, and thus be more consistent with balanced growth across a country’s regions. Previous 
empirical studies of the regional finance-growth nexus have focused mainly on the importance 
for growth of bank efficiency (Hasan et al. 2009; Lucchetti et al. 2001), levels of local financial 
development (Guiso et al, 2002; Hao 2006; Carbo-Valverde et al. 2007), the health of local financial 
institutions (Samolyk 1994), and bank size (Hakenes et al. 2015). An exception is Degryse et al. 
(2015), who report that the credit supply to SMEs decreases as the functional distance between UK 
bank branches and headquarters increase. For two centuries, a local, decentralised banking system 
enabled Germany’s SMEs to upgrade technology and maintain high output. (Mear and Werner, 
2021).

Dynamic GMM panel analysis of finance-growth link stands out as a superior method comparing 
traditional time series and cross-sectional analyses. By incorporating lagged variables and 
instrumental variables, dynamic GMM allows for a more robust examination of the finance-growth 
nexus. Unlike static analyses, dynamic GMM accounts for potential endogeneity and omitted 
variable biases, thereby enhancing the accuracy and reliability of the findings. This approach not 
only provides deeper insights into the relationship between financial development and economic 
growth but also ensures the validity and credibility of the study’s conclusions.
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Using dynamic GMM methods, several studies (Greenwald et al., 1993; Guiso et al., 2004; Hao, 2006; 
Hasan et al., 2009) demonstrate a positive correlation between municipal financial development 
and real development in both developed and developing nations. Particularly, branch banking 
has been viewed as a solution to the issue of restricting the free flow of capital between regions. 
In a seminal study, Levine et al. (2000) examined the finance-growth link across 74 countries by 
constructing three financial indicators, which were refinements of previous parameters to enhance 
accuracy. Employing dynamic panel GMM and cross-country IV methods, their analysis contributed 
significantly to understanding the finance-growth relationship, offering superior insights compared 
to traditional time series and cross-sectional analyses.

Moreover, studies like Önder and Özyıldırım (2010) have delved deeper into the impact of bank 
ownership on regional growth dynamics. Utilizing the dynamic GMM method, they revealed that 
state-owned bank credit significantly fosters growth in more developed provinces but has limited 
effect on less developed ones. Conversely, credit extended by private banks positively influences 
per capita real GDP across all provinces. These findings shed light on the nuanced effects of bank 
ownership on regional economic disparities within countries.

The model is tested employing Dynamic GMM regressions, controlling for various province and bank 
level characteristics. The reliability of the results is then checked by applying several robustness tests, 
incorporating a number of macroeconomic and regional variables. Tests are carried out using bank 
– and provincial-level data from Türkiye; the country provides an appropriate setting to analyze the 
role of hierarchically structured banks in regional growth as there are no regional banks and private 
banks are operated through branches located in different provinces with lending decisions made at 
the head offices located mainly in the city of Istanbul. How provincial GDP growth is impacted by 
measures of bank intermediation focusing on the transformation of deposits to loans at the bank, 
provincial, and national levels is examined while controlling for a variety of province-level economic 
and social indicators and bank-level characteristics.

2. Model and data

Methodology Framework for Dynamic Panel Data Analysis

Panel data econometrics involves the analysis of a pooling of observations on N cross-sectional units 
(individuals, firms, countries) over T time periods. Panel data comprise information across both 
space and time. Hence, a panel data analysis may be capable of producing richer conclusions than 
either a ‘pure’ cross-sectional or a ‘pure’ time series analysis. Moreover, the use of panel data allows 
an increase in the size of the data set.

Econometrically, the specification of a panel data set can be presented as follows:
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producing richer conclusions than either a ‘pure’ cross-sectional or a ‘pure’ time series 
analysis. Moreover, the use of panel data allows an increase in the size of the data set.  

Econometrically, the specification of a panel data set can be presented as follows: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖 (2.1)  

For 𝑖𝑖 = 1, … , 𝑁𝑁 and 𝑡𝑡 = 1, … , 𝑇𝑇 

In the equation (2.1), yit is the dependent variable, 𝛼𝛼 is the intercept term, 𝑥𝑥𝑖𝑖𝑖𝑖  is a 1 × 𝑘𝑘 
vector of observations on the explanatory variable, and 𝛽𝛽 is 𝑘𝑘 × 1 vector of parameters 
to be estimated for the explanatory variables. �̅�𝑦 =  ∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖 𝑁𝑁𝑇𝑇⁄𝑇𝑇

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1  denotes the sample 

mean of the dependent variable across all observations, and �̃�𝑦 = ∑ 𝑦𝑦𝑖𝑖𝑖𝑖 𝑇𝑇⁄𝑇𝑇
𝑖𝑖=1  denotes the 

sample mean of entity 𝑖𝑖 across time. 

The method used in the analysis is the dynamic panel data and generalised method of 
moments, which captures autocorrelations by the presence of a first order autoregressive 
process AR(1). This means that the specification includes a lagged dependent variable 
among the explanatory variables: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑦𝑦𝑖𝑖𝑖𝑖−1 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖  
(2.2)  

For 𝑖𝑖 = 1, … , 𝑁𝑁; 𝑡𝑡 = 1, … , 𝑇𝑇 

Equation (2.1) assumes that uit follows a one-way error component model: 



Şefika Betül ESEN

236

In the equation (2.1), yit is the dependent variable, is the intercept term, xit  is a 1 X k vector of 
observations on the explanatory variable, β and is k X 1 vector of parameters to be estimated for the 
explanatory variables. 
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Where 𝐸𝐸(𝜇𝜇𝑖𝑖) = 0 and 𝑣𝑣𝑣𝑣𝑣𝑣(𝜇𝜇𝑖𝑖) = 𝜎𝜎𝜇𝜇
2, 𝐸𝐸(𝑣𝑣𝑖𝑖𝑖𝑖) = 0 and 𝑣𝑣𝑣𝑣𝑣𝑣(𝑣𝑣𝑖𝑖𝑖𝑖) = 𝜎𝜎𝑣𝑣

2, and 𝐸𝐸(𝜇𝜇𝑖𝑖, 𝑣𝑣𝑖𝑖𝑖𝑖) = 0. 

The dynamic panel data model is characterised by the first autocorrelation described by 
the first order autoregressive process and heterogeneity among entities characterised by 
individual effects,  𝜇𝜇𝑖𝑖.  

The models described in (2.1) and (2.2) imply that yit is correlated with μi, hence the 
correlation between 𝑦𝑦𝑖𝑖𝑖𝑖−1 and 𝜇𝜇𝑖𝑖. Therefore, the lagged dependent variable 𝑦𝑦𝑖𝑖𝑖𝑖−1 is 
correlated with the error term. This violates one of the assumptions of the OLS, and the 
OLS estimators are no longer the best linear unbiased estimators. 

As mentioned above, estimating dynamic panel data model is inconsistent due to existing 
correlation between the lagged variables and the disturbance term. A solution suggested 
by Anderson and Hsiao (1982) consists of eliminating μi by differentiating the model, as 
follows: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑦𝑦𝑖𝑖𝑖𝑖−1 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 +  𝜇𝜇𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖  
(2.4)  

becomes 

∆𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛿𝛿∆𝑦𝑦𝑖𝑖𝑖𝑖−1 + 𝛽𝛽∆𝑥𝑥𝑖𝑖𝑖𝑖 + ∆𝑣𝑣𝑖𝑖𝑖𝑖  
(2.5)  

where ∆yit = yit − yit−1. Similarly ∆yit−1 = yit−1 − yit−2 and ∆vit = vit − vit−1. 
Since yit is a function of vit , yit−1 is a function of vit−1. It follows then that  ∆yit−1 is 
correlated with ∆vit. The method suggests using instrumental variables (IV) to correct 
this correlation. The two conditions for the validity of IV are: firstly, they must be 
correlated with the explanatory variable as mentioned; and, secondly, they must be 
uncorrelated with the disturbance term. 

Anderson and Hsiao (1982) recommend the second lag (yit−2) as an IV, assuming that 
the   vit are not serially correlated. E(yit−2∆vit) = 0, since yit−2 is realised two periods 
before vit, and there is a zero correlation between vit and its lagged values.  The first 
difference iv method is only efficient if homoscedasticity is verified. In such a case, 
Anderson and Hsiao (1982) present the most efficient estimation procedure. 

Arellano and Bond (1991) suggest a different GMM procedure that is more efficient than 
Anderson and Hsiao’s (1982). Blundell and Bond (1998) suggest a system GMM 
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GMM.  

Consider the following dynamic panel data model:  

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑦𝑦𝑖𝑖𝑖𝑖−1 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 +  𝜇𝜇𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖  
(2.6)  

The specific effects are eliminated using the first difference of (2.6): 

𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖−1 = 𝛿𝛿(𝑦𝑦𝑖𝑖𝑖𝑖−1−𝑦𝑦𝑖𝑖𝑖𝑖−2) + 𝛽𝛽(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖−1) + (𝑣𝑣𝑖𝑖𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑖𝑖−1) 
(2.7)  

where (vit − vit−1) is a first order moving average process with unit roots.2 The first 
period difference for t = 3 is:  

𝑦𝑦𝑖𝑖3 − 𝑦𝑦𝑖𝑖2 = 𝛿𝛿(𝑦𝑦𝑖𝑖2−𝑦𝑦𝑖𝑖1) + 𝛽𝛽(𝑥𝑥𝑖𝑖3 − 𝑥𝑥𝑖𝑖2) + (𝑣𝑣𝑖𝑖3 − 𝑣𝑣𝑖𝑖2) 
(2.8)  

Here, yi1 is a valid instrumental variable because it is highly correlated with (𝑦𝑦𝑖𝑖2−𝑦𝑦𝑖𝑖1) 
and independent from (vi3 − vi2), assuming no serial correlation of the disturbance. 
Similarly, in time 𝑡𝑡 = 4, 𝑦𝑦𝑖𝑖2, along with 𝑦𝑦𝑖𝑖1, are valid instrumental variables 
for (𝑦𝑦𝑖𝑖4−𝑦𝑦𝑖𝑖2). Hence, for time t = T, the set of valid instrumental variables 
is (𝑦𝑦𝑖𝑖1, 𝑦𝑦𝑖𝑖2, … , 𝑦𝑦𝑖𝑖𝑖𝑖−2). 

Unlike Anderson and Hsiao (1982), Arellano and Bond (1991) argue that more 
instrumental variables can be identified if the orthogonality conditions between lagged 
values of yit and the error terms vit are utilised. They argue that the IV procedure does 
not take into account the differenced error term in (2.6). In fact, there is a matrix of 
instrumental variables M = [W1

′, … , WN
′ ] , such as for an entity i: 

𝑀𝑀𝑖𝑖 = [
[𝑦𝑦𝑖𝑖1, 𝑥𝑥𝑖𝑖1

′ , 𝑥𝑥𝑖𝑖2
′ ] 0 … 0

0 [𝑦𝑦𝑖𝑖1, 𝑦𝑦𝑖𝑖2, 𝑥𝑥𝑖𝑖1
′ , 𝑥𝑥𝑖𝑖2

′ , 𝑥𝑥𝑖𝑖3
′ ] … 0

⋮ … ⋱ ⋮
0 0 … [𝑦𝑦𝑖𝑖1, … , 𝑦𝑦𝑖𝑖𝑖𝑖−2, 𝑥𝑥𝑖𝑖1

′ , … , 𝑥𝑥𝑖𝑖𝑖𝑖−1
′ ]

] 
(2.9) 

2 Moving average process is one where the current value of the independent variable is a linear 
combination of white noise process. First order moving average process MA (1) is 𝑦𝑦𝑖𝑖 = 𝜇𝜇 + 𝑢𝑢𝑖𝑖. A 
moving average is always stationary. 
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combination of white noise process. First order moving average process MA (1) is 𝑦𝑦𝑖𝑖 = 𝜇𝜇 + 𝑢𝑢𝑖𝑖. A 
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Unlike Anderson and Hsiao (1982), Arellano and Bond (1991) argue that more instrumental variables 
can be identified if the orthogonality conditions between lagged values of 

𝑢𝑢𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖  
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Where 𝐸𝐸(𝜇𝜇𝑖𝑖) = 0 and 𝑣𝑣𝑣𝑣𝑣𝑣(𝜇𝜇𝑖𝑖) = 𝜎𝜎𝜇𝜇
2, 𝐸𝐸(𝑣𝑣𝑖𝑖𝑖𝑖) = 0 and 𝑣𝑣𝑣𝑣𝑣𝑣(𝑣𝑣𝑖𝑖𝑖𝑖) = 𝜎𝜎𝑣𝑣

2, and 𝐸𝐸(𝜇𝜇𝑖𝑖, 𝑣𝑣𝑖𝑖𝑖𝑖) = 0. 

The dynamic panel data model is characterised by the first autocorrelation described by 
the first order autoregressive process and heterogeneity among entities characterised by 
individual effects,  𝜇𝜇𝑖𝑖.  

The models described in (2.1) and (2.2) imply that yit is correlated with μi, hence the 
correlation between 𝑦𝑦𝑖𝑖𝑖𝑖−1 and 𝜇𝜇𝑖𝑖. Therefore, the lagged dependent variable 𝑦𝑦𝑖𝑖𝑖𝑖−1 is 
correlated with the error term. This violates one of the assumptions of the OLS, and the 
OLS estimators are no longer the best linear unbiased estimators. 

As mentioned above, estimating dynamic panel data model is inconsistent due to existing 
correlation between the lagged variables and the disturbance term. A solution suggested 
by Anderson and Hsiao (1982) consists of eliminating μi by differentiating the model, as 
follows: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑦𝑦𝑖𝑖𝑖𝑖−1 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 +  𝜇𝜇𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖  
(2.4)  

becomes 

∆𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛿𝛿∆𝑦𝑦𝑖𝑖𝑖𝑖−1 + 𝛽𝛽∆𝑥𝑥𝑖𝑖𝑖𝑖 + ∆𝑣𝑣𝑖𝑖𝑖𝑖  
(2.5)  

where ∆yit = yit − yit−1. Similarly ∆yit−1 = yit−1 − yit−2 and ∆vit = vit − vit−1. 
Since yit is a function of vit , yit−1 is a function of vit−1. It follows then that  ∆yit−1 is 
correlated with ∆vit. The method suggests using instrumental variables (IV) to correct 
this correlation. The two conditions for the validity of IV are: firstly, they must be 
correlated with the explanatory variable as mentioned; and, secondly, they must be 
uncorrelated with the disturbance term. 

Anderson and Hsiao (1982) recommend the second lag (yit−2) as an IV, assuming that 
the   vit are not serially correlated. E(yit−2∆vit) = 0, since yit−2 is realised two periods 
before vit, and there is a zero correlation between vit and its lagged values.  The first 
difference iv method is only efficient if homoscedasticity is verified. In such a case, 
Anderson and Hsiao (1982) present the most efficient estimation procedure. 

Arellano and Bond (1991) suggest a different GMM procedure that is more efficient than 
Anderson and Hsiao’s (1982). Blundell and Bond (1998) suggest a system GMM 
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are utilised. They argue that the IV procedure does not take into account the differenced error term 
in (2.6). In fact, there is a matrix of instrumental variables 

procedure in order to correct the weak instrument problem encountered in difference 
GMM.  

Consider the following dynamic panel data model:  

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑦𝑦𝑖𝑖𝑖𝑖−1 + 𝛽𝛽𝑥𝑥𝑖𝑖𝑖𝑖 +  𝜇𝜇𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖  
(2.6)  

The specific effects are eliminated using the first difference of (2.6): 

𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖−1 = 𝛿𝛿(𝑦𝑦𝑖𝑖𝑖𝑖−1−𝑦𝑦𝑖𝑖𝑖𝑖−2) + 𝛽𝛽(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖−1) + (𝑣𝑣𝑖𝑖𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑖𝑖−1) 
(2.7)  

where (vit − vit−1) is a first order moving average process with unit roots.2 The first 
period difference for t = 3 is:  

𝑦𝑦𝑖𝑖3 − 𝑦𝑦𝑖𝑖2 = 𝛿𝛿(𝑦𝑦𝑖𝑖2−𝑦𝑦𝑖𝑖1) + 𝛽𝛽(𝑥𝑥𝑖𝑖3 − 𝑥𝑥𝑖𝑖2) + (𝑣𝑣𝑖𝑖3 − 𝑣𝑣𝑖𝑖2) 
(2.8)  

Here, yi1 is a valid instrumental variable because it is highly correlated with (𝑦𝑦𝑖𝑖2−𝑦𝑦𝑖𝑖1) 
and independent from (vi3 − vi2), assuming no serial correlation of the disturbance. 
Similarly, in time 𝑡𝑡 = 4, 𝑦𝑦𝑖𝑖2, along with 𝑦𝑦𝑖𝑖1, are valid instrumental variables 
for (𝑦𝑦𝑖𝑖4−𝑦𝑦𝑖𝑖2). Hence, for time t = T, the set of valid instrumental variables 
is (𝑦𝑦𝑖𝑖1, 𝑦𝑦𝑖𝑖2, … , 𝑦𝑦𝑖𝑖𝑖𝑖−2). 

Unlike Anderson and Hsiao (1982), Arellano and Bond (1991) argue that more 
instrumental variables can be identified if the orthogonality conditions between lagged 
values of yit and the error terms vit are utilised. They argue that the IV procedure does 
not take into account the differenced error term in (2.6). In fact, there is a matrix of 
instrumental variables M = [W1

′, … , WN
′ ] , such as for an entity i: 

𝑀𝑀𝑖𝑖 = [
[𝑦𝑦𝑖𝑖1, 𝑥𝑥𝑖𝑖1

′ , 𝑥𝑥𝑖𝑖2
′ ] 0 … 0

0 [𝑦𝑦𝑖𝑖1, 𝑦𝑦𝑖𝑖2, 𝑥𝑥𝑖𝑖1
′ , 𝑥𝑥𝑖𝑖2

′ , 𝑥𝑥𝑖𝑖3
′ ] … 0

⋮ … ⋱ ⋮
0 0 … [𝑦𝑦𝑖𝑖1, … , 𝑦𝑦𝑖𝑖𝑖𝑖−2, 𝑥𝑥𝑖𝑖1

′ , … , 𝑥𝑥𝑖𝑖𝑖𝑖−1
′ ]

] 
(2.9) 

2 Moving average process is one where the current value of the independent variable is a linear 
combination of white noise process. First order moving average process MA (1) is 𝑦𝑦𝑖𝑖 = 𝜇𝜇 + 𝑢𝑢𝑖𝑖. A 
moving average is always stationary. 
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When implementing the GMM procedures described above, it may be necessary to find the 
appropriate number of instrumental variables to include in the estimation. Since instruments tend 
to improve the efficiency of the estimation, it can be argued the more the better. However, increasing 
the number might cause the loss of degrees of freedom.

In this current study, the main methodology consists of GMM techniques. However, in addition to GMM 
estimations, to carry out robustness checks, other methods are also employed, including: random effects 
(RE), fixed effects (FE), autoregressive random effects (ARRE) and autoregressive fixed effects (ARFE).

For the empirical analysis, the following model is specified:

The idea here is that the set of instrumental variables described above are given by the 
moment conditions of exogeneity E(Mi

′, ∆vi) = 0. 

When implementing the GMM procedures described above, it may be necessary to find 
the appropriate number of instrumental variables to include in the estimation. Since 
instruments tend to improve the efficiency of the estimation, it can be argued the more 
the better. However, increasing the number might cause the loss of degrees of freedom. 

In this current study, the main methodology consists of GMM techniques. However, in 
addition to GMM estimations, to carry out robustness checks, other methods are also 
employed, including: random effects (RE), fixed effects (FE), autoregressive random 
effects (ARRE) and autoregressive fixed effects (ARFE). 

For the empirical analysis, the following model is specified: 

ΔGDP𝑗𝑗,𝑡𝑡 = 𝛼𝛼𝑗𝑗 + 𝛽𝛽0 ΔGDP𝑗𝑗,𝑡𝑡−1 + 𝛽𝛽1 INTPR𝑖𝑖𝑗𝑗,𝑡𝑡 + 𝛽𝛽2 INTBR𝑖𝑖,𝑡𝑡
+ 𝛽𝛽3 INTNATR𝑡𝑡 + 𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝑖𝑖,𝑡𝑡 + 𝛿𝛿𝑃𝑃𝛾𝛾𝛾𝛾𝑗𝑗,𝑡𝑡 + 𝜀𝜀𝑗𝑗,𝑡𝑡 (2.10)  

The dependent variable is the growth rate of provincial GDP, ΔGDP𝑗𝑗,𝑡𝑡, the subscripts i, j 
and t denote bank, province and time, respectively, 𝛼𝛼𝑗𝑗 is the intercept term for each 
province, and 𝜀𝜀𝑗𝑗,𝑡𝑡 is the error term. The first financial intermediation variable, INTPR𝑖𝑖𝑗𝑗,𝑡𝑡, 
captures each bank’s contribution to intermediation and is defined by the ratio to 
provincial GDP of bank loans less bank deposits.3 The second intermediation variable, 
INTBR𝑖𝑖,𝑡𝑡, measures each bank’s intermediation efficiency and is defined by the ratio to 
total assets of each bank’s deposits less its loans. The final intermediation variable, 
INTNATR𝑡𝑡, captures intermediation at the national level and is defined by the ratio to 
total GDP of the sum of all bank loans less all banks. The objective underlying these 
measures is to capture the local effect of the ratio of the transformation of deposits into 
loans where 𝛽𝛽1 , 𝛽𝛽2 , and 𝛽𝛽3  are the coefficients of provincial, bank and national level 
financial intermediation, respectively. The remaining independent variables are the 
lagged dependent variable, ΔGDP𝑗𝑗,𝑡𝑡−1, to allow for persistence in the behaviour of the 
dependent variable, and vectors of control variables at the provincial level, 𝑃𝑃𝛾𝛾𝛾𝛾𝑗𝑗,𝑡𝑡, and 
the bank level, 𝛾𝛾𝛾𝛾𝛾𝛾𝑖𝑖,𝑡𝑡 . At the provincial level, the controls capture aspects of provincial 
economic development and fiscal policy and include the log of initial GDP per capita, 
and for each province the ratio to provincial GDP of central government development 

3 Deposits and Loans per bank per branch are not released by Turkish Banking Association and the 
local amount of deposits and loans are calculated on the basis of the number bank branches of any 
bank in each province over the total number of bank branches (see Hakenes et al. 2009). 

The dependent variable is the growth rate of provincial GDP, ΔGDPj,t, the subscripts i, j and t denote 
bank, province and time, respectively, αj is the intercept term for each province, and εj,t is the error 
term. The first financial intermediation variable, INTPRij,t, captures each bank’s contribution to 
intermediation and is defined by the ratio to provincial GDP of bank loans less bank deposits.2 
The second intermediation variable, INTBRi,t, measures each bank’s intermediation efficiency and 
is defined by the ratio to total assets of each bank’s deposits less its loans. The final intermediation 
variable, INTNATRt, captures intermediation at the national level and is defined by the ratio to 
total GDP of the sum of all bank loans less all banks. The objective underlying these measures is 
to capture the local effect of the ratio of the transformation of deposits into loans where β1, β2 and  
β3 are the coefficients of provincial, bank and national level financial intermediation, respectively. 
The remaining independent variables are the lagged dependent variable, ΔGDPj,t-1, to allow for 
persistence in the behaviour of the dependent variable, and vectors of control variables at the 
provincial level, PCVj,t, and the bank level, PCVj,t. At the provincial level, the controls capture aspects 
of provincial economic development and fiscal policy and include the log of initial GDP per capita, 
and for each province the ratio to provincial GDP of central government development expenditure. 
The coefficients on provincial GDP per capita and the human development index are expected to 
be negative, reflecting convergence across provinces, and for government development spending 
to impact positively on provincial GDP growth. The bank-level controls include the natural log of 
each bank’s total assets to measure bank size, the capital-asset ratio, and measures of bank efficiency, 
profitability, liquidity, and credit quality. The empirical literature suggests that provincial growth 
will be negatively associated to: bank size, because, the allocation of funds to smaller provinces falls 
as bank size increases (King and Levine 1993; Demirgüc-Kunt and Maksimovic, 1998); the liquidity 
ratio, because more liquid banks lend less (Demetriades and Liuntel, 1996); and credit quality, 
because banks are forced to reign in their lending portfolio as non-performing loans increase (Borio 

2 Deposits and Loans per bank per branch are not released by Turkish Banking Association and the local amount of 
deposits and loans are calculated on the basis of the number bank branches of any bank in each province over the total 
number of bank branches (see Hakenes et al. 2009).
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et al. 2002). In contrast, provincial growth is likely to be positively associated with bank profitability 
(Hasan et al. 2009) and efficiency (Belke et al., 2016). The evidence on bank capital and growth is 
more mixed, with considerable debate as to whether banks increase or reduce lending in response to 
the need to raise capital (Martynova 2015).

The model (2.10) is estimated with the one-step system dynamic panel data (DGMM) estimator 
that has been used widely in finance-growth literature (e.g., Casselli et al. 1996, Levine et al. 2000, 
for cross-country studies, and Beck et al. 2000, and Hasan et al. 2009, for regional studies). In this 
method, lagged levels are used as instruments for differenced equations and lagged differences are 
used as instruments for level equations to control for the presence of unobserved province-specific 
effects and for the potential joint endogeneity among explanatory variables (Blundell and Bond, 
1998).

A panel data set is constructed for analysis, comprising banking and growth indicators alongside 
various control variables for Türkiye’s 67 provinces spanning from 1975 to 2014. Notably, Türkiye 
expanded to 81 provinces in 2001, necessitating the consolidation of newly established provinces 
back into their original boundaries. This approach addresses both data gaps for the new provinces 
and mitigates the effects of boundary changes on surface area fluctuations. Monetary variables are 
adjusted for inflation and converted to USD, with all values scaled by a factor of 1,000,000. Ratios such 
as investment incentives, government expenditure, and net budget income are computed relative to 
GDP. Province size is gauged by the logarithm of GDP per capita, with GDP per capita scaled down by 
a factor of 100. The primary dependent variable is the GDP growth rate per province, supplemented 
by two newly created variables and a macroeconomic indicator (National GDP growth rate) derived 
from the model in the third chapter. Data on deposit banks operating in Türkiye from 1975 to 2014, 
sourced from balance sheets and income statements, facilitate the calculation of deposits and loans 
per bank per province based on branch distribution. Key data sources include TURKSTATS and the 
Banking Association of Türkiye (BAT), supplemented by data on closed and start-up enterprises, 
urban and rural populations, obtained from TURKSTATS to measure prosperity and urbanization 
ratios across provinces over the specified timeframe.

Table 1: Summary statistics

Variable Observations Mean Standard 
Deviation Median Minimum Maximum

Provincial GDP growth rate 111,019 9.55 27.74 6.72 -62.68 238.13
Provincial level 
intermediation 111,019 14.38 12.07 11.55 -12.52 99.58

Bank level intermediation 111,019 17.62 27.54 18.50 -75.03 97.17
National level 
intermediation 111,019 10.29 6.89 8.62 -1.12 31.42

Provincial GDP per Capita 
(log) 111,019 2898.39 3026.90 1578.71 152.62 19112.06
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Government expenditure/
GDP 111,019 0.04 0.09 0.02 0.00 2.58

Bank assets (log) 111,019 5.85 2.39 5.92 -1.77 11.50
Bank capital-asset ratio 111,019 13.77 16.41 8.55 0.00 98.89
Efficiency Structure 111,019 85.98 208.23 100.00 -5175.81 1094.19
Bank profitability 111,019 12.74 20.44 8.55 -300.89 98.89
Bank liquidity 111,019 26.67 18.27 22.23 0.14 98.55
Bank credit quality 111,019 79.86 1313.09 1.94 -1.86 43803.98

Summary statistics of the variables are presented in Table 13. Data set does not cover after 2014 firstly 
because, the highly centralized nature of institutions in Türkiye experienced further centralization 
after the 2010s. This heightened centralization may have influenced the dynamics of the data 
collection process, potentially impacting the reliability and impartiality of data produced post-2014. 
Additionally, the autonomy of statistical institutions was compromised, raising concerns about the 
political influence on data integrity. Secondly, the data span from 1970 to 2014 is deemed sufficient 
to illustrate the centralization effects on regional disparities, thus adding more years would not 
significantly contribute to the novelty or depth of the analysis.

3. Empirical results

A baseline set of results is reported in the first column of Table 2. The coefficients on the intermediation 
variables at the levels of the banks and the provinces are statistically significant and negative4. Branch 
banking in Türkiye is associated in a negative net flow of savings at the bank and provincial level, which 
adversely impacts on provincial GDP growth. That is, branch bank seems to promote unbalanced 
growth among provinces because local savings mobilized are only partially used for local investments, 
the rest being transferred to bank headquarters. This reflects bank branches having limited decision-
making authority, with head office investment decisions leading to a flow of funds from the province 
to the capital in the first instance. However, and consistent with most cross-country studies on the 
finance-growth nexus, financial development at the national level promotes regional growth overall. 
Of the province-level controls, the coefficients on initial provincial GDP per capita is statistically 
significant and negative, suggesting that growth and development of provinces converges over time. 
The coefficient on development expenditure is positive and significant, suggesting that this type 
of public spending promotes regional growth. The coefficients on the bank-level controls indicate 
that bank size, liquidity and credit quality are negatively associated with provincial growth, and that 
profitability and efficiency are associated positively with growth. More bank capital is associated 
negatively with provincial growth, suggesting that these banks are more likely to reduce lending 
and/or intermediate funds out of the province. The validity of the instruments is tested with Sargan’s 
test of overidentifying restrictions asymptotically distributed as in the number of restrictions. The 

3 Variable definitions and sources are presented in the Table A.1. in Appendix.
4 Multicollinearity is not a concern when employing instrumental analysis, which separates the individual impact of 

independent variables from group and other variable effects. The correlation matrix provided in Table A.2. also rules out 
any potential significant multicollinearity bias.
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analysis reveals the expected first-order serial correlation in the error terms, but no second-order 
serial correlation, suggesting that the instruments are not correlated with the remaining error terms.

Table 2: DGMM estimates of provincial GDP growth in Türkiye, 1975-2014

(1) (2) (3) (4)

Provincial level intermediation
-0.5089***
(0.015)

-0.5094***
(0.015)

-0.5580***
(0.146)

-0.5185***
(0.016)

Bank level intermediation
-0.3195***
(0.007)

-0.3187***
(0.007)

-0.3304***
(0.011)

-0.3191***
(0.007)

National level intermediation
1.5837***
(0.026)

1.5797***
(0.026)

1.5387***
(0.198)

1.6147***
(0.026)

Lagged provincial GDP growth
0.2588***
(0.005)

0.2586***
(0.005)

0.2100***
(0.026)

0.2401***
(0.005)

Initial GDP per capita
-0.2384
(0.141)

-0.2430*
(0.141)

-0.5723
(0.352)

-0.4420***
(0.149)

Government expenditure
11.8487***
(1.570)

12.2045***
(1.579)

11.2018**
(4.530)

2.7572*
(1.432)

Bank size -0.9351***
(0.058)

-0.8775***
(0.065)

-1.0121***
(0.071)

-1.0473***
(0.060)

Bank capital-asset ratio
-0.2548***
(0.022)

-0.2572***
(0.022)

-0.2774***
(0.019)

-0.2774***
(0.022)

Bank profitability
0.2612***
(0.019)

0.2634***
(0.019)

0.2717***
(0.019)

0.2725***
(0.020)

Bank efficiency
0.1082***
(0.005)

0.1086***
(0.005)

0.1075***
(0.006)

0.1145***
(0.005)

Bank liquidity
-0.1320***
(0.006)

-0.1326***
(0.006)

-0.1328***
(0.007)

-0.1353***
(0.007)

Bank credit quality
-0.0264***
(0.005)

-0.0254***
(0.005)

-0.0267***
(0.002)

-0.0288***
(0.005)

Number of bank branches -0.3188**
(0.150)

Presidential elections 2.0299***
(0.268)

Constant
-1.1239
(1.161)

-1.2599
(1.161)

-4.5510
(2.453)

-4.8988***
(1.204)

Observations 88556 92029 88556 87874
AR(1) 0.000 0.000 0.000 0.000
AR(2)) 0.740 0.824 0.347 0.384
Sargan-Hansen test 0.549 0.886 0.851 0.752

Notes: The dependent variable is growth rate of real provincial GDP. Robust standard errors are in parentheses. AR(2) and 
AR(1) are the Arellano-Bond tests for second-order and first-order autocorrelation, respectively, in the residuals of the 
differenced equation. The Ho for the Sargan-Hansen overidentification test is that the group of instruments is exogenous. *, 
**, and *** indicate statistical significance at the 10, 5, and 1% levels, respectively. The estimate in column (4) excludes the 
three largest provinces (Istanbul, Ankara, and Izmir).



Şefika Betül ESEN

242

In columns 2-4 of Table 2, some additional controls are introduced for robustness purposes. First, if 
branch banking promotes a flow of funds from branches to bank headquarters, a greater outflow might 
be expected from provinces with more branches and for this to be associated with a corresponding 
reduction in the GDP growth of those provinces. The number of bank branches per province are 
introduced in the estimate in column (2); as expected, the coefficient on the variable is negative and 
statistically significant while there is little change in the coefficients on the other variables compared 
to the results reported in column (1). Second, it is quite well documented that bank lending behavior 
changes during elections, especially in developing and emerging market economies, most usually in 
favor of lending to rural regions (Dinc 2005; Micco et al. 2007; Önder and Özyildirim 2013). The 
results reported in column (3) include a presidential election dummy to try to capture any impact on 
provincial growth. The coefficient on the dummy is positive and statistically significant, suggesting 
that elections promote regional growth, which may reflect a temporary change in bank lending and 
government development spending. Third, it might be that intermediation in the larger provinces 
dominates in a way that does not represent the behaviour of bank branches in the more numerous 
smaller provinces. The broad applicability of the results are captured by reporting in column (4) an 
estimate that excludes the three largest provinces (Istanbul, Ankara, and Izmir) from the sample. The 
result from this estimate is largely in line with those reported in columns (1)-(3) such that our finding 
that branch banking seems to promote unbalanced growth among provinces is broadly applicable. In 
each of these estimates, the Sargan test for the validity of the instruments remains satisfactory.

Table 3: DGMM estimates of provincial GDP growth in Türkiye over three sub-periods

1975-1989 1990-2000 2001-2014

Provincial level intermediation
-0.4616*
(0.240)

-0.2146**
(0.101)

-1.2436***
(0.266)

Bank level intermediation
-0.1896***
(0.020)

-0.3112***
(0.012)

-0.3921***
(0.014)

National level intermediation
6.0401***
(0.566)

0.5788***
(0.203)

1.3717***
(0.262)

Lagged provincial GDP growth
0.3151***
(0.057)

0.0791**
(0.033)

0.1295***
(0.030)

GDP per capita
-6.6677***
(1.090)

-0.6144
(0.842)

-12.3957***
(1.794)

Government expenditure
7.6633
(6.718)

28.8882**
(12.362)

70.5255*
(39.599)

Bank size
-0.8910***
(0.292)

-2.4709***
(0.131)

-2.8871***
(0.135)

Bank capital-asset ratio
-0.1194***
(0.024)

-0.3749***
(0.012)

-0.7007***
(0.022)

Bank profitability
0.1130
(0.077)

0.3341***
(0.028)

0.7444***
(0.032)
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Bank efficiency
-0.1215***
(0.033)

0.0018
(0.008)

0.0988***
(0.011)

Bank liquidity
-0.0562
(0.040)

-0.3011***
(0.026)

-0.6151***
(0.039)

Bank credit quality
-0.0748**
(0.038)

-0.0136**
(0.005)

-0.0625***
(0.007)

Constant
-51.0896***
(11.097)

32.5498***
(6.035)

133.3957***
(15.311)

No of observations 26557 35041 25125
AR(1) 0.000 0.000 0.000
AR(2) 0.120 0.142 0.144
Sargan-Hansen test 0.825 0.519 0.080

Notes: The dependent variable is growth rate of real provincial GDP. Robust standard errors are in parentheses. AR(2) and 
AR(1) are the Arellano-Bond tests for second-order and first-order autocorrelation, respectively, in the residuals of the 
differenced equation. The Ho for the Sargan/Hansen overidentification test is that the group of instruments is exogenous. *, 
**, and *** indicate statistical significance at the 10, 5, and 1% levels, respectively.

Finally, an examination is conducted to determine whether the provincial pattern of financial 
intermediation has changed over time by estimating model (1) for three sub-periods: 1975-89; 1990-
2000; and 2001-2014. The key elements of banking sector liberalization in Türkiye (e.g., elimination 
of interest rate and credit controls, easing of barriers)  were largely in place by the mid-1980s so 
there is no a priori reason to expect a change in bank intermediation behavior across the periods. 
However, provincial GDP growth would likely have been affected by changes in development policy 
that took place, including the creation of industrial zones, the implementation large-scale regional 
development project, changes in investment incentives, and a later focus on SME development. These 
empirical results are reported in Table 3. The same pattern of financial intermediation as reported 
in Table 2 is evident across all sub-periods: a net outflow of savings at the bank and provincial level 
that is associated negative real provincial GDP growth, but a positive impact on provincial growth of 
financial deepening at the national level. The sign and statistical significance of the coefficients on 
the control variables is broadly in line with the results reported in Table 2.

4. Conclusions

Inspecting the coefficients of intermediation variables at provincial, bank, and national level reveals 
the impact of banking activity on the provincial GDP growth rate. The model specified captures the 
effects of bank intermediation, controlling for regional fiscal tools such as government expenditure, 
macroeconomic factors, and changes in bank performance ratios in relation to provincial GDP 
growth rate. In contrast to previous studies, this analysis provides evidence that banks are one of 
the factors causing growth imbalances between regions within a country. The results quantify the 
significance of the influence of banking structure on growth in a developing country. This is an 
interesting result on its own, as several country-specific studies have found that branching has a 
stimulating effect on regional growth.
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Hierarchical branch banking may cause unequal regional economic development while facilitating 
financial deepening and faster economic growth at the national level—for example, if decisions on 
the deployment of savings mobilized are taken at headquarters without regard or knowledge of local 
investment opportunities. Our examination of the patterns of financial intermediation at the bank – 
provincial – and national levels in Türkiye is consistent with branch bank contributing to unbalanced 
growth at the level of the provinces by promoting an outflow of funds to the center, even while 
facilitating greater financial deepening and faster GDP growth for the national level economy.

The empirical model in the current study differs from models proposed in earlier research, as it 
considers the difference between deposits and loans divided by GDP to measure the financing gap 
in provinces. Earlier research has been based on regional panel data, employing a smaller subset of 
provincial and banking data, while the data set used here covers more provincial data and a longer 
sample period.

Branch banking might be considered advantageous in developed countries, as there are few or no 
regional disparities. Developing countries, however, have significant regional imbalances in terms 
of growth; therefore, branch banking might widen these disparities by causing capital flows from 
rural and poor regions to highly urbanised rich ones. For this reason, establishing decentralised unit 
(regional) banks or granting more authorisation to branch managers might stimulate more effective 
investment decisions in regions that are performing below the national growth level. Moreover, 
unit banks might be more welcomed by local people in poor regions, and they might save more 
if they knew the deposits collected would be used to fund investments in their region. Increasing 
savings, with an emphasis on reinvesting locally, could eventually lead to higher capital accumulation 
and development in these poorer areas. It is also recommended that fiscal policies be actively and 
efficiently applied, to help address the imbalances within the country. Finally, other financial 
institutions might be encouraged to enter the financial sector to ameliorate the monopolising effect 
of branch banks.
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Appendix

Table A.1: Variable definitions and sources

Variable Description Source

Provincial GDP growth rate Annual percentage change in GDP of each 
province

Özötün (1980,1988) for 1975-1986
TURKSTATS for 1987-2001 and 2004-2014
Authors’ interpolation 2002-2003

Provincial level 
intermediation

The difference between the deposits and 
loans per bank for each province divided by 
provincial GDP

Authors’ calculations using Turkish 
Banking Association data

Bank level intermediation Difference between the deposits and loans 
per bank divided by the bank’s total assets

Authors’ calculations using Turkish 
Banking Association data

National level 
intermediation

Difference between the national level 
deposits and loans divided by national GDP

Authors’ calculations using Turkish 
Banking Association data

Provincial GDP per Capita Provincial GDP/total population of the 
province

TURKSTATS for 1987-2001 and 2004-2014 
Authors’ interpolation for 2002-2003

Government development 
expenditure

Central government provincial development 
expenditure/provincial GDP Turkish Ministry of Development

Bank size Total assets of each bank Authors’ calculations using Turkish 
Banking Association data

Bank capital-asset ratio Ratio of bank equity to total assets Authors’ calculations using Turkish 
Banking Association data

Bank efficiency Bank total expenditure /total Income Authors’ calculations using Turkish 
Banking Association data

Bank profitability Bank net profit/total assets Authors’ calculations using Turkish 
Banking Association data

Bank liquidity Bank liquid assets/ total assets Authors’ calculations using Turkish 
Banking Association data

Bank credit quality Bank non-performing loans/total loans.
Authors’ calculations using Turkish 
Banking Association data. Authors’ 
interpolation for 1975-8.
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Table A.2. Correlation of Model Variables
Lagged 
provincial 
GDP 
growth 

Provincial level 
intermediation

Bank level 
intermediation

National level 
intermediation

Bank size
Bank 
capital-
asset ratio

Bank 
efficienciency

Bank 
profitability

Bank 
liquidity

Bank 
credit 
quality

Number 
of bank 
branches

Initial 
GDP per 
capita

Government 
expenditure

Presidential 
elections

Lagged provincial GDP growth 1.000

Provincial level intermediation 0.037*** 1.000

Bank level intermediation 0.017*** 0.193*** 1.000

National level intermediation 0.201*** 0.187*** 0.233*** 1.000

Bank size 0.035*** 0.127*** 0.052*** 0.172*** 1.000

Bank capital-asset ratio 0.019*** -0.074*** -0.352*** -0.054*** -0.270*** 1.000

Bank efficienciency 0.020*** 0.005 -0.266*** 0.028*** -0.323*** 0.846*** 1.000

Bank profitability -0.024*** -0.069*** -0.112*** -0.073*** -0.029*** 0.169*** 0.033*** 1.000

Bank liquidity -0.071*** -0.065*** 0.107*** -0.118*** -0.446*** 0.102*** 0.066*** 0.035*** 1.000

Bank credit quality -0.048*** 0.092*** 0.087*** 0.104*** -0.025*** 0.006 0.064*** -0.094*** 0.015*** 1.000

Number of bank branches -0.009** -0.025*** 0.027*** -0.009** 0.189*** -0.024*** -0.038*** 0.004 -0.099*** -0.011** 1.000

Initial GDP per capita 0.077*** -0.081*** -0.116*** 0.043*** 0.403*** 0.151*** 0.179*** -0.012*** -0.143*** -0.007* 0.210*** 1.000

Government expenditure -0.019*** -0.132*** -0.002 -0.126*** -0.091*** -0.005 -0.017*** 0.012*** 0.033*** -0.008* 0.257*** -0.035*** 1.000

Presidential elections 0.099*** 0.004* 0.019*** 0.008*** 0.043*** -0.042*** -0.006* -0.069*** 0.019*** -0.036*** 0.002 0.064*** -0.007*** 1.000

* p<0.05, ** p<0.01, *** p<0.001
 +1 (perfect positive correlation), 0 (no correlation), -1 (perfect negative correlation)


