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Abstract  Keywords 

As the prevalence of IoT devices increases, the need for strengthening security 

becomes inevitable. Lightweight encryption solutions play a pivotal role, particularly 

in addressing security concerns associated with IoT authentication and privacy. This 

study concentrates on the performance evaluation of open-source and lightweight 

encryption libraries. Various open-source encryption libraries underwent testing on a 

Raspberry Pi, revealing noteworthy variations in key generation, signing, verification 

times, and memory usage. This research provides comprehensive assistance for the 

selection of encryption libraries for IoT applications. Consideration extends beyond 

library performance, encompassing factors such as user base and documentation 

quality, to deliver optimal security solutions. 
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1. INTRODUCTION 
 

The Internet of Things (IoT) is experiencing an explosive rise in popularity. Now with IoT devices all 

over the world, it is evident that this technology is rapidly transforming our lifestyle, work, and 

interactions with the world around us. From smart homes to industrial systems, the IoT is playing an 

increasingly critical role in shaping our future. As the use of IoT devices grows significantly, the 

importance of ensuring their security has increased. Currently, IoT devices are susceptible to 

vulnerabilities due to limited hardware capabilities, such as processing power and memory. These 

limitations prevent the use of complex security functions on these devices. Therefore, insufficient 

authentication and confidentiality are prominent security problems for the IoT domain. Cryptography 

can be used to address these issues.  
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Cryptosystems can be put into two broad categories: symmetric and asymmetric. Symmetric encryption 

uses the same key to encrypt and decrypt data. In this approach encryption and decryption can be done 

quickly. However, the key must be shared with the relevant parties that need to encrypt/decrypt data. 

Key distribution is usually a challenging task that can lead to critical security issues like intercepted or 

stolen keys especially on untrusted networks. Asymmetric encryption uses two different keys called 

public and private keypairs. The public key is made available to anyone who wants to send encrypted 

data to the key owner, but only the recipient has the private key to decrypt messages. This feature 

addresses the key distribution problem of symmetric cryptosystems, but it also works slower than 

symmetric encryption Moreover, the use of currently reliable and widely used asymmetric encryption 

methods such as River-Shamir-Adleman (RSA) on IoT devices is not always feasible because of the 

hardware limitations. Elliptic Curve Cryptography (ECC) has become a promising alternative because 

it requires less resources [1]. It uses a smaller key size compared to other asymmetric cryptographic 

methods like RSA and can be used on devices with limited resources and is considered more efficient. 

ECC is used in a variety of applications, including secure communications [2], data encryption [3], 

digital signatures [4], and blockchain technology [5].  

 

It is both safer and recommended for application developers to use well-established cryptographic 

libraries rather than implementing cryptographic functions by themselves. There are many open-source 

cryptographic libraries available online that are reviewed and used in many projects by researchers. 

Most of the well-known crypto algorithms were implemented in these libraries. However, it is not 

always an easy task to decide which one of these libraries is best for the intended application. In this 

paper we address this problem and present results of a heuristic study that can help choose the right 

crypto library for resource constrained systems.  

  

In ECC, both different key sizes and their implementation can affect the performance of key generation 

signing and signature verification. Therefore, choosing an ECC library that provides a variety of key 

sizes, and the best performance is crucial for IoT based implementations. We found several ECC 

libraries that are open source and suitable for IoT implementations, including BearSSL, libecc, Mbed-

TLS, OpenSSL, MIRACL and RELIC. BearSSL, a C-based SSL/TLS implementation, targets small 

embedded systems and specialized contexts like bootstrap code; it prioritizes efficiency by avoiding 

dynamic allocation. It supports elliptic curves such as SECP256R1, SECP384R1, SECP521R1, and 

Curve25519 for ECDHE key exchange but lacks TLS 1.3 compatibility. OpenSSL is a cryptographic 

toolkit designed primarily for flexible applications in common computing environments, offering 

compatibility with a range of platforms such as web, Windows, Solaris, Linux, Android and OSX. The 

toolkit includes three core components: the libcrypto library, the libssl library and a command-line utility 

for performing cryptographic tasks. It enables TLS 1.3 support, key parameter generation, CSR and 

CRL creation as well as protocol support including SSL/TLS/DTLS/QUIC, and the handling of S/MIME 

signed or encrypted mail. MbedTLS is crafted to seamlessly integrate with diverse environments, 

spanning from embedded systems such as ARM-based platforms to personal computers, smartphones, 

and even gaming consoles. The range of features it offers includes handling X.509 certificates, 

supporting SSL/TLS and DTLS protocols. MIRACL (Multiprecision Integer and Rational Arithmetic 

Cryptographic Library) stands out by extending capabilities beyond traditional environments, catering 

to highly constrained platforms like embedded systems, mobile applications, and SCADA. It supports 

ECC, RSA and symmetric encryption. MIRACL’s multifunctionality extends to programming 

languages including C/C++, Go, Rust, Python, Java, JavaScript and Swift. Libecc is a C++ elliptic curve 

cryptography library created for maximum speed and efficiency without heap allocation and relies solely 

on constant global variables. It supports various signature algorithms outlined in the ISO 14888-3:2018 

standard, along with other signature algorithms and ECDH primitives. RELIC is a modern research-

oriented cryptographic meta-toolkit with emphasis on efficiency and flexibility. RELIC can be used to 

build efficient and usable cryptographic toolkits tailored for resource-constrained environments like 

embedded systems. Like MIRACL, RELIC also provides various symmetric and asymmetric 

encryption, digital signature, and hashing techniques. 
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These libraries allow developers to customize them to meet the specific needs of their applications. Also, 

they are suitable for use in resource constrained IoT devices that need to process data in real time. In 

this paper, we performed a comparative analysis of five ECC libraries written in C/C++. We evaluated 

their performance under different key lengths. Our analysis includes benchmarking each library based 

on its execution time for key generation signing and verification.  

  

The rest of the paper is organized as follows. Section II examines the fundamental aspects of ECC and 

gives necessary background information. Section III reviews previously published articles on the subject 

matter. Section IV overviews the performance metrics used in this study. The results are presented in 

Section V and finally the paper concludes with a discussion of the findings in Section VI. 

 

2. ECC OVERVIEW 

 

Public Key cryptographic systems are designed using public key schemes which contain a pair of public 

and private keys for each user. In contrast to the public key, which is accessible to all users, the private 

key is unique to each user and is kept confidential. The private key remains unpredictable, even with 

knowledge of the public key. The security of Public Key cryptographic systems relies on the difficulty 

of the mathematical approach used. In the literature, there are three well-known algorithms which use 

three different difficult problems to implement three different approaches. These algorithms are based 

on the factorization of integers, the discrete logarithm problem, and the elliptic curve discrete logarithm 

problem. Cryptosystems designed using these algorithms include examples such as RSA, ElGamal, and 

ECC. RSA uses the integer factorization algorithm based on the problem of finding the prime factors of 

a specially selected positive integer.  ElGamal public-key encryption relies on the discrete logarithm 

problem in a finite field, and ECC is based on the difficulty of the elliptic curve discrete logarithm 

problem (ECDLP) [6].  

 

Elliptic curve cryptography was introduced by Neal Koblitz and Victor Miller in 1985. It comprises a 

set of points defined on an elliptic curve generated over a finite field, with a prime field size [7]. Users 

have the flexibility to select different elliptic curves, even when they operate within the same finite field. 

The field parameters employed in the design of the elliptic curve play a pivotal role in determining the 

key size. In comparison to alternative algorithms, the chosen parameters enable a more compact key 

size [8].  

  
In general, the equation form of the elliptic curve is as follows: 
 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 

 
The set of points (x, y) in the equation represents the elliptic curve. 'a' and 'b' are constant numbers. The 

given equation is the simplified form of the Weierstrass equation.  
  
ECC provides low resource consumption, small parameters, and small key size compared to other 

algorithms for the same security levels. Therefore, it is preferred in various areas such as authentication 

systems in resource-limited devices, data sharing systems, and blockchain.  

 

3. RELATED WORK  

  
The popularity of elliptic curve cryptography has increased in secure IoT systems because it requires 

less power and memory. Many researchers have studied the implementation performance of this 

cryptosystem.  
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Hannes and Manuel [9] compared the performance of Symmetric, DH/DSA/RSA and ECC. They also 

explored the time required for sign and verify operations on various ARM-based devices using different 

ECC curves. They underscored the computational requirements of ECC, emphasizing that acceptable 

delays rely on the specific requirements of the application. The performance results provided in the 

paper are contingent on factors such as enabled optimizations, key sizes, curve type and CPU speed, 

showcasing the importance of selecting an appropriate microprocessor based on the expected usage 

environment.  In a study conducted by Mahto and Yadav ECC was compared [10] with three RSA 

variants (Basic, Chinese Remainder Theorem (CRT), Multi-prime). The authors used NIST 

recommendations as key sizes and compared average encryption and decryption times. The authors 

concluded that ECC outperforms RSA and its variants in terms of operational efficiency and security 

with lesser parameters. The performance of RSA and ECC cryptosystems on wireless sensor networks 

(WSN) was compared by Zagrouba et. al. [11]. This study evaluated energy consumption and observed 

the time to encrypt and decrypt messages in different key sizes (8, 64 ,256 bits). The results showed that 

RSA encryption times are better than ECC. However, ECC gives better performance in key size, energy 

consumption and decryption time.  

  
In a study done by Gupta et. al. [12] elliptic curve cryptography was utilized to improve SSL protocol 

performance. They tested RSA-based and ECC-based handshakes with and without client 

authentication. Additionally, they compared encryption, decryption, digital signature, and verification 

times. These authors observed performance improvements for both workstations and hand-held devices 

when using ECC-based cryptosystems. They concluded that ECC offers significant performance 

benefits to SSL clients and servers. Koppl et al. [13] measured and compared the time intervals for the 

sign, verify, and key generation operations of ECDH and ECDSA algorithms for different ECC curves 

(NIST and BRAINPOOL). They used the OpenSSL tool on the Ubuntu operating system to measure the 

time it took for each process. At first, they assumed that NIST curves provided more security than 

BRAINPOOL curves, but then they concluded that it is not necessary to prioritize the NIST curves over 

other curves by considering their test results.  
  
Pigatto et. al. [14] compared the time performance of MIRACL and RELIC libraries using two curves 

(having key size of 160 and 256 bits) and different message sizes (50 and 100 kb). They performed their 

tests on a system with a Pentium Dual-Core CPU and Ubuntu Linux installed. The experiment results 

showed that using a 256-bit key size to encrypt and decrypt the same message took an average of 20.9 

and 10.6 seconds for the MIRACL and RELIC libraries, respectively. The authors concluded that RELIC 

outperformed MIRACL on average response time. In another study, Popa et. al. [15] compared modern 

ECC libraries (MIRACL, RELIC) and WolfCrypt. The authors performed their tests on an ARM based 

32-bit microprocessor (Infineon TC297) used in the automotive industry. Also, they compared the 

implementation performance of ECDH, BLS, ECDSA protocols on three libraries using different curves 

and hash functions. The results showed that TC297 could handle ECC-based cryptosystems and the 

RELIC library was the fastest and provided the most configuration possibilities.  
  

The Di Matteo et al. [16] study introduces a noteworthy advancement in the field of elliptic curve 

cryptography (ECC) for real-time Internet of Things (IoT) applications, focusing on the development of 

a secure ECC crypto processor. This work emphasized the importance of hardware acceleration in 

enhancing the performance and energy efficiency of ECC in IoT devices. The study has been performed 

both on 45 nm Silvaco and 7 nm Artisan TSMC technologies and verified on a Xilinx ZCU106 board. 

By supporting key ECC schemes on NIST P-256/-521 (SECP256R1/SECP521R1) elliptic curves, the 

research highlights the processor's capability to provide high-speed cryptographic operations with robust 

security through smaller key sizes. This contribution is pivotal in demonstrating the vital role of 

hardware accelerators for secure and scalable IoT systems, offering a complementary perspective to the 

software-centric discussions in the existing literature. The study conducted by Aikins-Bekoe and 

Hayfron-Acquah [17] delves into the efficacy of Elliptic Curve Diffie-Hellman (ECDH) for securing 
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Wireless Sensor Networks (WSNs), comparing it against traditional algorithms such RSA. The tests 

were performed by using PyCryptodome and eciespy python libraries. Their findings highlight ECC's 

advantage of requiring smaller key sizes for equivalent security, which is crucial for the resource-

constrained environments typical of WSNs. This research underscores ECC's superiority in 

computational efficiency and operational speed, making it an ideal cryptographic solution for WSNs. 

This comparison demonstrates the practical benefits of ECC in a specific application area. 

 
These articles concentrated on various curves within the same cryptographic library or compared two 

ECC libraries for a specific purpose. Our study involved evaluating the performance of six different 

ECC libraries, BearSSL, libecc, MbedTLS, OpenSSL, RELIC and MIRACL. We conducted our tests 

on Raspberry Pi. We provide commentary on the strengths and weaknesses of each library, discussing 

the best-suited libraries for various use case scenarios. 
  
4. PERFORMANCE EVALUATION 

 
In this research, our emphasis was on exploring open-source libraries for Elliptic Curve Cryptography, 

with a detailed examination of three key metrics: key-pair generation time, sign time, and verification 

time. For our analysis, we chose three curves across these libraries, namely SECP256R1(NIST P-256), 

SECP384R1(NIST P-384), and SECP521R1(NIST P-521). Every curve starts with "SEC" to represent 

"Standards for Efficient Cryptography," followed by a "P" indicating parameters over a prime field (Fp), 

and then a number "x" signifying the bit length of the field size P, which also determines our key sizes. 

Following this, there is an "R" followed by a sequence of numbers "n" indicating that this curve is the 

nth recommended curve with an x-bit field size in the Standards for Efficient Cryptography Group 

(SECG) standards. 

 

Our tests were performed on the Raspberry Pi 4 model B with 8GB RAM. The key generation, sign, and 

verify operations were repeated for 200 000 iterations to assess their efficiency. The obtained results 

revealed noteworthy variations in the speed of these operations across different libraries. 
  

Key-Pair Generation:  

 

The key-pair generation time, which represents the duration to create both a private key and its 

corresponding public key, is a critical factor influencing the efficiency of cryptographic systems. The 

efficiency of this key generation impacts the performance of cryptographic systems. 

  
Signing and Signature Verification:  

 

The sign and verify times provide insights into the duration required for both signing a message and 

subsequently verifying its signature. Digital signatures play a crucial role in guaranteeing the 

authenticity and integrity of data. In our assessments, these execution times serve as fundamental 

metrics, gauging the efficiency of ECC libraries in generating digital signatures (sign) or verifying 

signatures (verify). A reduced execution time signifies quicker cryptographic operations, a highly 

desirable trait for applications requiring real-time or low-latency performance. 

 
5. RESULTS  

 

In our evaluations, we measured the key generation, signing, and verification times of selected libraries 

across various key lengths. The average processing time for each function across different key lengths 

for each library is presented in Table 1. Furthermore, the performance of individual libraries for key 

generation, signing, and verification across different key lengths is illustrated in Figures 1, 2, and 3, 

respectively. 
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Table 1. Mean Time Performance (in milliseconds) Across Three Key Length. 

Operation MIRACL BearSSL Libecc MbedTLS OpenSSL RELIC 

Key Gen. 7.51 5.69 41.76 1.39 4.01 1.37 

Sign 2.76 20.54 22.76 1.48 4.21 1.54 

Verify 3.25 37.43 43.53 5.75 3.30 5.16 

 

Key generation is a crucial aspect of cryptographic operations. While MbedTLS and RELIC stands out 

for its remarkably fast key generation, even with shorter key lengths, BearSSL, OpenSSL, and MIRACL 

exhibit comparable average performance. In contrast, Libecc demonstrates a relatively higher key 

generation time (see Figure 1). 

 

 

Figure 1. Key generation times (in milliseconds) of different libraries 
 

When it comes to signing, MbedTLS and RELIC distinguish themselves yet again by delivering the 

fastest execution times among the listed libraries, especially with short key lengths. OpenSSL and 

MIRACL consistently demonstrate superior performance on average, as illustrated in Figure 2. 

Conversely, BearSSL and Libecc show slower signing speeds compared to their counterparts. Notably, 

as the key length increases, BearSSL and Libecc experience a significant decrease in performance. 

 

Figure 2. Signing times (in milliseconds) of different libraries 
 

In the process of verification, MIRACL and OpenSSL libraries take the lead. While OpenSSL delivers 

the quickest results for short key lengths, it lags behind MIRACL on the average. MbedTLS and RELIC 
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follow behind, as illustrated in Figure 3. Conversely, BearSSL and Libecc highlight slower verification 

times across the range of libraries. 

 

Figure 3. Verification times (in milliseconds) of different libraries. 
 

Efficient memory utilization is a critical factor in cryptographic operations, particularly within resource-

constrained environments. Table 2 presents the average memory consumption of libraries for various 

operations, while Figures 4, 5, and 6 illustrate the variations in memory consumption for key generation, 

signing, and verification across different key lengths.  

 

Table 2. Memory Utilization Averages (in Bytes) for Three Different Key Lengths 

Operation MIRACL BearSSL Libecc MbedTLS OpenSSL RELIC 

Key Gen. 74837 74457 79889 109432 624404 75036 

Sign 76885 76505 79889 131001 717221 75036 

Verify 76885 76505 79889 198556 724491  75036 

 

Upon a comprehensive analysis of memory usage across different curves, it became evident that 

MIRACL, RELIC, Libecc and BearSSL exhibit consistent behaviour regardless of the operation and 

key length, displaying efficient memory utilization within the range of 74837 to 79889 bytes. MbedTLS 

exhibits a significant increase in memory use, reaching up to 241,956 bytes depending on the operation. 

Additionally, the memory requirements of MbedTLS increase with key size, unlike other libraries. 

OpenSSL, while excelling in performance metrics, tends to consume notably more memory, with 

memory results for key generation ranging from 620,952 to 627,206 bytes and for sign-verify from 

710,229 to 731,630 bytes. Due to this memory consumption, the details of Libecc and MbedTLS are 

difficult to distinguish in the table below; thus, a magnification of their results is provided in the speech 

bubble. It is also crucial to note that OpenSSL is primarily designed for general-purpose applications on 
traditional computing platforms, demanding more resources and potentially being unsuitable for 
certain IoT devices.  
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Figure 4: Key generation function memory usage (in bytes) of different libraries. 

 

Figure 5: Sign function memory usage (in bytes) of different libraries. 

 

Figure 6. Verify function memory usage (in bytes) of different libraries. 
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6. DISCUSSION AND CONCLUSION 
 

The rising prevalence of IoT devices necessitates improved security measures. Lightweight 

cryptographic solutions become crucial in addressing security concerns, particularly those related to 

authentication and confidentiality in the IoT domain. Given the challenges with key distribution in 

symmetric encryption, asymmetric methods, such as ECC, become more practical due to their lighter 

and additive operations when compared to resource-intensive multiplicative operations in methods like 

RSA. Consequently, our study focuses on performance tests of ECC-based open-source cryptographic 

libraries to help decide the right library for a target application.  

  

In this study, we conducted tests on various open-source cryptographic libraries, including MIRACL, 

RELIC, BearSSL, Libecc, MbedTLS, and OpenSSL. The evaluations were conducted on a Raspberry 

Pi. Our findings underscore the importance of selecting cryptographic libraries based on platform 

constraints and performance requirements. For instance, OpenSSL demonstrates a salient performance 

for all operations, however it requires more resources (code size, memory usage) since it was designed 

for legacy computing environments and may not be feasible to run on certain IoT devices. The rest of 

the libraries evaluated in this study are optimized for resource constraint platforms. Our experiments 

revealed distinct performance differences in key generation, signing, verification durations of these 

libraries.  

 

In our tests, RELIC and MbedTLS exhibited remarkable efficiency in key generation and signing but 

had an average verification performance. MIRACL showed comparatively slow key generation but 

balanced performance in signing and verification functions. BearSSL demonstrated efficiency in key 

generation but experienced longer signing and verification durations. Libecc was the slowest among all 

the libraries.  

  

Memory requirements are another critical factor when deciding on a library. When we consider both 

performance and memory usage at the same time RELIC, MIRACL, MbedTLS and BearSSL stand out.  

When prioritizing key generation, notable options include RELIC, BearSSL and MIRACL. On the other 

hand, if signing and verification performance is paramount, MIRACL and RELIC are strong contenders. 

Alternatively for devices with less memory constraints MbedTLS presents a decent performance for all 

operations. 

 

RELIC and MbedTLS demonstrate fast signing times and moderate verification times, rendering it a 

favourable choice for applications prioritizing quick signing operations. Also, RELIC, MbedTLS and 

BearSSL excel in key generation, and they are suitable for applications demanding rapid cryptographic 

key establishment. MIRACL demonstrates commendable performance for both signing and verification, 

making it suitable for applications where a balanced performance is critical. Therefore, MIRACL is 

recommended for applications requiring authentication or data integrity checks.  

 

In this study we used a heuristic approach to compare six open-source crypto libraries. While our results 

provide valuable insights into performance variations between different open-source ECC libraries, 

aiding in the selection of an appropriate library for a specific application, we did not delve deeper into 

the reasons behind these variations through methods like clock cycle analysis or a meticulous code 

review. Future enhanced performance analysis and code review studies would help increase the 

efficiency of existing crypto-libraries and become a guide for future cryptosystem implementation 

projects.  

 

Consequently, cryptographic libraries based on Elliptic Curve Cryptography (ECC) present viable 

choices for enhancing the security of IoT systems. Our findings empower informed decision-making 

when implementing security features on resource-constrained devices. Nevertheless, it is essential to 
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adopt a well-rounded approach to library selection, considering factors beyond performance. Alongside 

performance, considerations such as user base, development status, and documentation quality should 

be factored in when making a library choice.   
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